Functionalization of tetrahydroindol-4-one derivatives
Abstract
Available and effective methods of tetrahydroindol-4-one derivatives transformation are described, which include functionalization of the nitrogen atom, carbonyl group, side chains in positions 1,2,3,7 of the bicycle, as well as aromatization of the cyclohexene fragment in the presence of dehydrogenating agents. Original preparative approaches to the synthesis of [4,5]-fused indole derivatives (pyrroles, thiophenes, pyrazoles, isoxazoles, thiazoles, 1,2,3-triazoles, pyridazinones), implemented by introducing functional groups in the α-position to the carbonyl group with subsequent cyclocondensations (Hanch, Paal-Knorr, [4+2] and [3+2]-cyclization reactions) are reviewed. Beckman and Schmidt rearrangements in the chemistry of tetrahydroindolones are accompanied by a cycle expansion with the formation of lactams or their transformation products. The Fischer reaction allows to obtain polyheterocycles with a new indole ring at the same time as the Dimrot rearrangement allows to synthesize pyrroloquinolones. Among the ways of modifying side chains of tetrahydroindolone, the three-component Passerini reaction is the most promising one, which provides quick access to indolone-N-amino acid derivatives.
Received 09.09.2022
Accepted 29.11.2022
Downloads
References
Joule J. A., Mills K. Indoles: Reactions and Synthesis. In Heterocyclic chemistry. Blackwell Publishing Ltd,: 2010; рp. 402-421.
Neto J. S. S., Zeni G. Recent advances in the synthesis of indoles from alkynes and nitrogen sources. Org. Chem. Front. 2020, 7, 155-210. https://doi.org/10.1039/C9QO01315F
Taber D.F., Tirunahari P.K. Indole synthesis: a review and proposed classification. Tetrahedron 2011, 67, 7195-7210. https://doi.org/10.1016/j.tet.2011.06.040
Gribble G.W. Recent developments in indole ring synthesis – methodology and applications. J. Chem. Soc., Perkin Trans. 1, 2000, 1045-1075. https://doi.org/10.1039/A909834H
Sharma V., Kumar P., Pathak D. Biological importance of the indole nucleus in recent years: a comprehensive review. J. Heterocycl. Chem. 2010, 47, 491-502. https://doi.org/10.1002/jhet.349
Colasanti B.K. Chapter 25 Antipsychotic drugs. In Principles of Medical Biology; Bittar E., Bittar N., Eds.; Elsevier: Amsterdam, The Netherlands, 2000, 585-609.
Kamel A., Obach R.S., Tseng E., Sawant A. Metabolism, pharmacokinetics and excretion of the GABA-A receptor partial agonist [14C]CP-409,092 in rats. Xenobiotica 2010, 40, 400-414. https://doi.org/10.3109/00498251003710269
Zapf C.W., Bloom J.D., Li Z., Dushin R.G., Nittoli T., Otteng M., Nikitenko A., Golas J.M., Liu H., Lucas, J. Discovery of a stable macrocyclic o-aminobenzamide Hsp90 inhibitor which significantly decreases tumor volume in a mouse xenograft model. Bioorg. Med. Chem. Lett. 2011, 21, 4602-4607. https://doi.org/10.1016/j.bmcl.2011.05.102
Kolos N. N., Marchenko Е. I., Chechina N.V.; Buravov A.V., Omelchenko I.V. Chem. Heterocycl. Compd. 2021 57, 1181-1186. http://hgs.osi.lv/index.php/hgs/article/view/6418
Chechina N. V., Kolos N. N., Omelchenko I.V. One-pot three-component synthesis of polysubstituted tetrahydroindoles. Chem. Heterocycl. Compd. 2019, 55, 1190-1196. http://hgs.osi.lv/index.php/hgs/article/view/4908
Wang H.-Y., Shi D.-Q. Efficient synthesis of functionalized dihydro-1H-indol-4(5H)-ones via one-pot three-component reaction under catalyst-free Conditions. ACS Comb. Sci. 2013, 15, 261-266. https://doi.org/10.1021/co4000198
Jiang B., Li, Q.-Y., Zhang, H., Tu S.-J., Pindi, S., Li, G. Efficient domino approaches to multifunctionalized fused pyrroles and dibenzo[b,e][1,4]diazepin-1-ones. Org. Lett, 2012, 14, 700-703. https://doi.org/10.1021/ol203166c
Remers W. A., WeissM. J.. Synthesis of indoles from 4-oxo-4,5,6,7-tetrahydroindoles. III. Introduction of substituents by electrophilic substitution. J. Org. Chem. 1971, 36, 1241–1247. https://doi.org/10.1021/jo00808a017
Montalban A. G., Baum S. M., Cowell J., McKillop A. Formation of N-substituted 4- and 7-oxo-4,5,6,7-tetrahydroindoles revisited: a mechanistic interpretation and conversion into 4- and 7-oxoindoles. Tetrahedron Lett. 2012, 53, 4276–4279. https://doi.org/10.1016/j.tetlet.2012.05.090
Ishikawa T., Saito S., Arai M., Miyauchi Y., Miyahara T. Synthesis of 4-acetoxyindoles and related derivatives by means of air oxidation of 4-oxo-4,5,6,7-tetrahydroindoles obtained from nitroalkenes and cyclohexane-1,3-diones. Synlett, 2009, 1, 122-126. https://doi.org/10.1055/s-0028-1087386
Maity S., Pathak S., Pramanik A. Substituted benzo[a]carbazoles and indoleacetic acids from arylglyoxals and enamines through domino condensation, thermal cyclization, and aromatization. Eur. J. Org. Chem. 2014, 21, 4651-4662. https://doi.org/10.1002/ejoc.201402085
Manjunatha S. G., Bachu S., Gautam V., Kumari M., Nambiar S., Ramasubramanian S., Puranik R. Semmler-Wolff aromatisation: a concise route for the synthesis of 5-amino-quinazolines and 4-amino-indoles. Tetrahedron Lett. 2014, 55, 6441-6446. https://doi.org/10.15407/bioorganica2022.01.056
Hatanaka N., Ozaki O., Matsumoto M. A facile synthesis of 4-(sulfonylmethyl)indoles from 4-oxo-4,5,6,7-tetrahydroindole: formal total synthesis of 6,7-secoagroclavine. Tetrahedron Lett. 1986, 27, 3169-3172. https://doi.org/10.1016/S0040-4039(00)84745-0
Murase M.; Watanabe K.; Yoshida T.; Tobinaga S. A new concise synthesis of arcyriacyanin A and its unique inhibitory activity against a panel of human cancer cell line. Chem. Pharm. Bull. 2000, 48, 81-20. https://doi.org/10.1248/cpb.48.81
Rousseaux S., Davi M., Sofack-Kreutzer J., Pierre C., Kefalidis C. E., Clot E., Fagnou K., Baudoin O. Intramolecular Palladium-Catalyzed Alkane CH Arylation from Aryl Chlorides. J. Am. Chem. Soc. 2010, 132, 10706-10716. https://doi.org/10.1021/ja1048847
Surry D. S.; Buchwald S. L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user's guide. Chem. Sci. 2011, 2, 27-50. https://doi.org/10.1039/C0SC00331J
Chen J.-Q., Li, J.-H., Dong Z.-B. A review on the latest progress of Chan-Lam coupling reaction. Adv. Synth. Catal. 2020, 362, 3311-3331. https://doi.org/10.1002/adsc.202000495
Huang K. H., Barta T. E., Rice J. W., Smith E. D., Ommen A. J., Ma W., Veal J. M., Fadden P.R., Barabasz A. F., Foley B. E., Hughes P. F., Hanson G.J., Markworth Ch. J., Silinski M., Partridge J. M., Steed P. M., Hall S. E. Discovery of novel aminoquinazolin-7-yl 6,7-dihydro-indol-4-ones as potent, selective inhibitors of heat shock protein 90. Bioorg. Med. Chem. Lett. 2012, 22, 2550-2554. https://doi.org/10.1016/j.bmcl.2012.01.137
Ausekle E., Ejaz S.A., Khan S.U., Ehlers, P., Villinger A., Lecka J., Sévigny J., Iqbal J., Langer P. New one-pot synthesis of N-fused isoquinoline derivatives by palladium-catalyzed C–H arylation: Potent inhibitors of nucleotide pyrophosphatase-1 and -3. Org. Biomol. Chem. 2016, 14, 11402-11414. https://doi.org/10.1039/C6OB02236G
Hwang S. J., Cho S.H., Chang S. Synthesis of condensed pyrroloindoles via Pd-catalyzed intramolecular CH bond functionalization of pyrroles. J. Am. Chem. Soc. 2008, 130, 16158-16159. https://doi.org/10.1021/ja806897h
Sechi M., Mura A., Sannia L., Orecchioni M., Paglietti G. Synthesis of pyrrol[1,2-a]indole-1,8(5H)-diones as new synthones for developing novel tryciclic compounds of pharmaceutical interest. Arkivoc 2004, 2004, 97-106. https://doi.org/10.3998/ark.5550190.0005.510
Sechi M., Derudas M., Dallocchio R., Dessi A., Cosseddu A., Paglietti G. DNA Binders: 1. Evaluation of DNA-Interactive Ability, Design, and Synthesis of Novel Intercalating Agents. Lett. Drug Des. Discov. 2009, 6, 56-62. http://dx.doi.org/10.2174/157018009787158472
Tobinaga S., Murase M., Hosaka T. An easy synthesis of 4-alkylthioindoles. Heterocycles 1990, 30, 905-910. https://doi.org/10.3987/COM-89-S82
Remers W. A., Roth R. H., Gibs G. J., Weiss M.J. Synthesis of indoles from 4-oxo-4,5,6,7-tetrahydroindoles. II. Introduction of substituents into the 4 and 5 positions. J. Org. Chem. 1971, 36, 1232-1240. https://doi.org/10.1021/jo00808a016
Martinez R., Oloarte J. S., Avila G. 1,3-cyclohexanedione as the precursor of C4X-C6-C4Y systems. Synthesis of pyrrolo[2,3-e]indoles and thieno[2,3-e]indoles. J. Heterocycl. Chem. 1998, 35, 585-589. https://doi.org/10.3390%2Fmolecules26154596
Chacоn-Garcia L., Martinez R. Synthesis and in vitro cytotoxic activity of pyrrolo[2,3-e]indole derivatives and a dihydrobenzoindole analogue. Eur. J. Med. Chem. 2002, 37, 261-266. http://dx.doi.org/10.1016/S0223-5234(01)01328-9
Remers W.A., Roth, R.H., Weiss M.J. Synthesis of indoles from 4-oxo-4,5,6,7-tetrahydroindoles. 4. Tricyclic heterocycles. 1971, 14, 860-862. https://doi.org/10.1021/jm00291a021
Mohareb R.M., Abdelaziz M.A. Substituted 4,5,6,7-tetrahydroindoles and their fused derivatives. Synthesis and cytotoxic activity towards tumor and normal human cell lines. Chem. Heterocycl. Compd. 2013, 49, 1212-1223. http://hgs.osi.lv/index.php/hgs/article/view/838
Spyridonidou K., Fousteris M., Antonia M., Chatzianastasiou A., Papapetropoulos A., Nikolaropoulos S. Tricyclic indole and dihydroindole derivatives as new inhibitors of soluble guanylate cyclase. Bioorg. Med. Chem. Lett. 2009, 19, 4810-4813. https://doi.org/10.3390%2Fmolecules26154596
Meijer L., Leost M., Lozach O., Schmitt S., Kunick C. The Paullones: A Family of Pharmacological Inhibitors of Cyclin Dependent Kinases and Glycogen Synthase Kinase 3. In Inhibitors of Protein Kinases and Protein Phosphates. Handbook of Experimental Pharmacology. Springer 2005, 167, 47-64. https://link.springer.com/chapter/10.1007/3-540-26670-4_3
Martinez R., Arzate M.M., Ramirez-Apan M.T. Synthesis and cytotoxic activity of new azepino[3',4':4,5]pyrrolo[2,1-a]isoquinolin-12-ones. Bioorg. Med. Chem. 2009, 17, 1849-1856. https://doi.org/10.1016/j.bmc.2009.01.056
Clayden J., Greeves N., Warren S. Perycyclic reaction 2: sigmatropic and electrocyclic reactions. In Organic chemistry. Oxford University Press Inc.: 2012; pp. 913-916.
Dagher K., Terentev P.B., Kulikov N.S. Tetracyanoethylation and fischer rearrangement of some 4-oxo-4,5,6,7-tetrahydroindoles.Chem. Heterocycl. Compd. 1986, 22, 172-175. https://link.springer.com/article/10.1007/BF00519938
Pinna G.A., Sechi M., Paglietti G., Pirisi M. A. Addition Reactions of Acetylenic Esters to 6,7-Dihydrobenzo[b]furan-4(5H)-one, 6,7-Dihydroindol-4(5H)-one, 5,6-Dihydrobenzo[b]furan-7(6H)-one and 5,6-Dihydroindol-7(6H)-one Ketoximes. Formation of Reduced Furo[g]- and Pyrrolo[g]-indoles. J. Chem. Res. 2003, 2003, 117-120. https://doi.org/10.3184/030823403103173426
Dandia A., Arya K., Dhaka N. Multistep microwave assisted solvent free green chemical synthesis of 2,7-dihydro-3H-pyridazino[3',4':4,5]indolo[3,2-c]quinoline-3,13(12H)-dione. J. Chem. Res. 2006, 192-198. https://journals.sagepub.com/doi/pdf/10.3184/030823406776330666
Bardakos V., Sucrow, W. Enhydrazine, 22: Lactame aus 1,5,6,7-Tetrahydro-4H-indol-4-onen. Chem. Ber. 1978, 111, 1780-1788. https://doi.org/10.1002/CBER.19761090531
Dominguez-Villa X. F., Avila-Zarraga G., Armenta-Salinas C. Synthesis of new fused dipyrroloazepinones via a two-step tandem reaction: Comparison of the Schmidt and Beckmann pathways. Tetrahedron Lett. 2020, 61, 151-751. https://doi.org/10.1016/j.tetlet.2020.151751
Jana S; Thomas J; Dehaen W. A One-Pot Procedure for the Synthesis of "Click-Ready" Triazoles from Ketones. J. Org. Chem. 2016, 81, 12426-12432. https://doi.org/10.1021/acs.joc.6b02607
Opsomer T., Thomas J., Dehaen W. Chemoselectivity in the Synthesis of 1,2,3-Triazoles from Enolizable Ketones, Primary Alkylamines, and 4-Nitrophenyl Azide. Synthesis 2017, 49, 4191-4198. https://doi.org/10.1055/s-0036-1588856
Prakash, R., Opsomer, T., Dehaen, W. Triazolization of Enolizable Ketones with Primary Amines: A General Strategytoward Multifunctional 1,2,3-Triazoles. Chem. Rec. 2020, 20, 1-11. http://dx.doi.org/10.1002/tcr.202000151
Thomas J., Jana S., John J., Liekens S., Dehaen W. A general metal-free route towards the synthesis of 1,2,3-triazoles from readily available primary amines and ketones. Chem. Commun. 2016, 52, 2885-2888. https://doi.org/10.1039/C5CC08347H
Pookkandam Parambil S., de Jong F., Veys K., Huang J., Veettil S. P., Verhaeghe D., Van Meervelt L., Escudero D., van der Auweraer M., Dehaen W. BOPAHY: A doubly chelated highly fluorescent pyrrole–acyl hydrazone -BF 2 chromophore. Chem.Commun. 2020, 56, 5791-5794. https://doi.org/10.1021/ja502477a
Yu C., Jiao L., Zhang P., Feng Z., Cheng C., Wei Y., Mu X., Hao E. Highly Fluorescent BF 2 Complexes of Hydrazine–Schiff Base Linked Bispyrrole. Org. Lett. 2014, 16, 3048-3051. https://doi.org/10.1021/ol501162f
Horsten T., de Jong, F., Theunissen D., van der Auweraer M., Dehaen W. Synthesis and spectroscopic properties of 1,2,3-triazole BOPAHY dyes and their water-soluble triazolium salts. 2021, 86, 13774-13782. https://pubs.acs.org/doi/full/10.1021/acs.joc.1c01459
Mosti L., Schenone P., Menozzi G. Reaction of sulfene and dichloroketene with N,N -disubstituted 5-aminomethylene-1,5,6,7-tetrahydro-2-methyl-1-phenylindol-4-ones. Synthesis of 1,2-oxathiino[6,5- E ] indole and of pyrano[2,3- e]indole derivatives. J. Heterocycl. Chem. 1979, 16, 913-915. https://doi.org/10.1002/jhet.5570160516
Carey F. A., Sundberg R. J.Concerted Cycloadditions, Unimolecular Rearrangements, and Thermal Eliminations. In Advanced Organic Chemistry, 5th ed.; Springer: 2008; part B, pp. 539-541.
Alberola A., Calvo L. A., Ortega A.G., Sañudo Ruíz M.C., Yustos P., Granda S.G., Garcia-Rodriguez E. Regioselective Synthesis of 2(1 H)-Pyridinones from α-Aminoenones and Malononitrile. Reaction Mechanism. J. Org. Chem. 1999, 64, 9493-9498. https://doi.org/10.1021/jo991121o
Kharaneko O.I. New approach to the synthesis of pyrrolo[3,4-c]pyridines. Russ. J. Org. Chem. 2016, 52, 1593-1599. https://doi.org/10.1134/S1070428016110075
Barraja P., Diana P., Montalbano A., Carbone A., Cirrincione G., Viola G., Salvador A., Velaldi D., Dall’Acqua, F. Thiopyrano[2,3-e]indol-2-ones: Angelicin heteroanalogues with potent photoantiproliferative activity. Bioorg. Med. Chem. 2008, 16, 9668-9683. https://doi.org/10.1016/j.bmc.2008.10.002
Li R.-K., Yang Q.-L., Liu Y., Li D.-W., Huang N.-Y., Liu, M.-G. A novel and green synthesis of indolone-N-amino acid derivatives via the Passerini three-component reactions in water. Chinese Chemical Letters, 2016, 27, 345-348. https://doi.org/10.1016/j.cclet.2015.11.008
Piras L., Genesio E., Ghiron C., Taddei M. Scaffold Preparation and Parallel Synthesis of Arrays of 5,6,7,8-Tetrahydropyrrolo-azepinones in the Solution Phase. Eur. J. Org. Chem. 2008, 16, 2789-2800. https://doi.org/10.1021/jo991766o
Tu X.-C., Fan W., Jiang B., Wang S.-L., Tu S.-J. A novel allylic substitution strategy to four-component synthesis of pyrazole-substituted fused pyrroles. Tetrahedron 2013, 69, 6100-6107. https://doi.org/10.1016/j.tet.2013.05.063
Jiang B., Li Q.-Y., Zhang H., Tu S.-J., Pindi S., Li G. Efficient Domino Approaches to Multifunctionalized Fused Pyrroles and Dibenzo[b,e][1,4]diazepin-1-ones. Org. Lett. 2012, 14, 700-703. https://doi.org/10.1021/ol203166c
Huang J.-R., Zhang Q.-R., Qu C.-H., Sun X.-H., Dong L., Chen Y.-C. Rhodium(III)-Catalyzed Direct Selective C(5)–H Oxidative Annulations of 2-Substituted Imidazoles and Alkynes by Double C–H Activation. Org. Lett. 2013, 15, 1878-1881. https://doi.org/10.1021/ol400537b
Chen S., Han X., Wu J., Li Q., Chen Y., Wang, H. Manganese(I)-Catalyzed Regio- and Stereoselective 1,2-Diheteroarylation of Allenes: Combination of CH Activation and Smiles Rearrangement. Angew. Chem. 2017, 56, 9939-9943. https://doi.org/10.1002/anie.201704952