Functionalization of tetrahydroindol-4-one derivatives

Keywords: 4,5,6,7-tetrahydroindol-4-ones, aromatization, nitrogen atom functionalization, carbonyl group modification, metal complex catalysis, polyheterocycles

Abstract

Available and effective methods of tetrahydroindol-4-one derivatives transformation are described, which include functionalization of the nitrogen atom, carbonyl group, side chains in positions 1,2,3,7 of the bicycle, as well as aromatization of the cyclohexene fragment in the presence of dehydrogenating agents. Original preparative approaches to the synthesis of [4,5]-fused indole derivatives (pyrroles, thiophenes, pyrazoles, isoxazoles, thiazoles, 1,2,3-triazoles, pyridazinones), implemented by introducing functional groups in the α-position to the carbonyl group with subsequent cyclocondensations (Hanch, Paal-Knorr, [4+2] and [3+2]-cyclization reactions) are reviewed. Beckman and Schmidt rearrangements in the chemistry of tetrahydroindolones are accompanied by a cycle expansion with the formation of lactams or their transformation products. The Fischer reaction allows to obtain polyheterocycles with a new indole ring at the same time as the Dimrot rearrangement allows to synthesize pyrroloquinolones. Among the ways of modifying side chains of tetrahydroindolone, the three-component Passerini reaction is the most promising one, which provides quick access to indolone-N-amino acid derivatives.

Received 09.09.2022

Accepted 29.11.2022

Downloads

Download data is not yet available.

References

Joule J. A., Mills K. Indoles: Reactions and Synthesis. In Heterocyclic chemistry. Blackwell Publishing Ltd,: 2010; рp. 402-421.

Neto J. S. S., Zeni G. Recent advances in the synthesis of indoles from alkynes and nitrogen sources. Org. Chem. Front. 2020, 7, 155-210. https://doi.org/10.1039/C9QO01315F

Taber D.F., Tirunahari P.K. Indole synthesis: a review and proposed classification. Tetrahedron 2011, 67, 7195-7210. https://doi.org/10.1016/j.tet.2011.06.040

Gribble G.W. Recent developments in indole ring synthesis – methodology and applications. J. Chem. Soc., Perkin Trans. 1, 2000, 1045-1075. https://doi.org/10.1039/A909834H

Sharma V., Kumar P., Pathak D. Biological importance of the indole nucleus in recent years: a comprehensive review. J. Heterocycl. Chem. 2010, 47, 491-502. https://doi.org/10.1002/jhet.349

Colasanti B.K. Chapter 25 Antipsychotic drugs. In Principles of Medical Biology; Bittar E., Bittar N., Eds.; Elsevier: Amsterdam, The Netherlands, 2000, 585-609.

Kamel A., Obach R.S., Tseng E., Sawant A. Metabolism, pharmacokinetics and excretion of the GABA-A receptor partial agonist [14C]CP-409,092 in rats. Xenobiotica 2010, 40, 400-414. https://doi.org/10.3109/00498251003710269

Zapf C.W., Bloom J.D., Li Z., Dushin R.G., Nittoli T., Otteng M., Nikitenko A., Golas J.M., Liu H., Lucas, J. Discovery of a stable macrocyclic o-aminobenzamide Hsp90 inhibitor which significantly decreases tumor volume in a mouse xenograft model. Bioorg. Med. Chem. Lett. 2011, 21, 4602-4607. https://doi.org/10.1016/j.bmcl.2011.05.102

Kolos N. N., Marchenko Е. I., Chechina N.V.; Buravov A.V., Omelchenko I.V. Chem. Heterocycl. Compd. 2021 57, 1181-1186. http://hgs.osi.lv/index.php/hgs/article/view/6418

Chechina N. V., Kolos N. N., Omelchenko I.V. One-pot three-component synthesis of polysubstituted tetrahydroindoles. Chem. Heterocycl. Compd. 2019, 55, 1190-1196. http://hgs.osi.lv/index.php/hgs/article/view/4908

Wang H.-Y., Shi D.-Q. Efficient synthesis of functionalized dihydro-1H-indol-4(5H)-ones via one-pot three-component reaction under catalyst-free Conditions. ACS Comb. Sci. 2013, 15, 261-266. https://doi.org/10.1021/co4000198

Jiang B., Li, Q.-Y., Zhang, H., Tu S.-J., Pindi, S., Li, G. Efficient domino approaches to multifunctionalized fused pyrroles and dibenzo[b,e][1,4]diazepin-1-ones. Org. Lett, 2012, 14, 700-703. https://doi.org/10.1021/ol203166c

Remers W. A., WeissM. J.. Synthesis of indoles from 4-oxo-4,5,6,7-tetrahydroindoles. III. Introduction of substituents by electrophilic substitution. J. Org. Chem. 1971, 36, 1241–1247. https://doi.org/10.1021/jo00808a017

Montalban A. G., Baum S. M., Cowell J., McKillop A. Formation of N-substituted 4- and 7-oxo-4,5,6,7-tetrahydroindoles revisited: a mechanistic interpretation and conversion into 4- and 7-oxoindoles. Tetrahedron Lett. 2012, 53, 4276–4279. https://doi.org/10.1016/j.tetlet.2012.05.090

Ishikawa T., Saito S., Arai M., Miyauchi Y., Miyahara T. Synthesis of 4-acetoxyindoles and related derivatives by means of air oxidation of 4-oxo-4,5,6,7-tetrahydroindoles obtained from nitroalkenes and cyclohexane-1,3-diones. Synlett, 2009, 1, 122-126. https://doi.org/10.1055/s-0028-1087386

Maity S., Pathak S., Pramanik A. Substituted benzo[a]carbazoles and indoleacetic acids from arylglyoxals and enamines through domino condensation, thermal cyclization, and aromatization. Eur. J. Org. Chem. 2014, 21, 4651-4662. https://doi.org/10.1002/ejoc.201402085

Manjunatha S. G., Bachu S., Gautam V., Kumari M., Nambiar S., Ramasubramanian S., Puranik R. Semmler-Wolff aromatisation: a concise route for the synthesis of 5-amino-quinazolines and 4-amino-indoles. Tetrahedron Lett. 2014, 55, 6441-6446. https://doi.org/10.15407/bioorganica2022.01.056

Hatanaka N., Ozaki O., Matsumoto M. A facile synthesis of 4-(sulfonylmethyl)indoles from 4-oxo-4,5,6,7-tetrahydroindole: formal total synthesis of 6,7-secoagroclavine. Tetrahedron Lett. 1986, 27, 3169-3172. https://doi.org/10.1016/S0040-4039(00)84745-0

Murase M.; Watanabe K.; Yoshida T.; Tobinaga S. A new concise synthesis of arcyriacyanin A and its unique inhibitory activity against a panel of human cancer cell line. Chem. Pharm. Bull. 2000, 48, 81-20. https://doi.org/10.1248/cpb.48.81

Rousseaux S., Davi M., Sofack-Kreutzer J., Pierre C., Kefalidis C. E., Clot E., Fagnou K., Baudoin O. Intramolecular Palladium-Catalyzed Alkane CH Arylation from Aryl Chlorides. J. Am. Chem. Soc. 2010, 132, 10706-10716. https://doi.org/10.1021/ja1048847

Surry D. S.; Buchwald S. L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user's guide. Chem. Sci. 2011, 2, 27-50. https://doi.org/10.1039/C0SC00331J

Chen J.-Q., Li, J.-H., Dong Z.-B. A review on the latest progress of Chan-Lam coupling reaction. Adv. Synth. Catal. 2020, 362, 3311-3331. https://doi.org/10.1002/adsc.202000495

Huang K. H., Barta T. E., Rice J. W., Smith E. D., Ommen A. J., Ma W., Veal J. M., Fadden P.R., Barabasz A. F., Foley B. E., Hughes P. F., Hanson G.J., Markworth Ch. J., Silinski M., Partridge J. M., Steed P. M., Hall S. E. Discovery of novel aminoquinazolin-7-yl 6,7-dihydro-indol-4-ones as potent, selective inhibitors of heat shock protein 90. Bioorg. Med. Chem. Lett. 2012, 22, 2550-2554. https://doi.org/10.1016/j.bmcl.2012.01.137

Ausekle E., Ejaz S.A., Khan S.U., Ehlers, P., Villinger A., Lecka J., Sévigny J., Iqbal J., Langer P. New one-pot synthesis of N-fused isoquinoline derivatives by palladium-catalyzed C–H arylation: Potent inhibitors of nucleotide pyrophosphatase-1 and -3. Org. Biomol. Chem. 2016, 14, 11402-11414. https://doi.org/10.1039/C6OB02236G

Hwang S. J., Cho S.H., Chang S. Synthesis of condensed pyrroloindoles via Pd-catalyzed intramolecular CH bond functionalization of pyrroles. J. Am. Chem. Soc. 2008, 130, 16158-16159. https://doi.org/10.1021/ja806897h

Sechi M., Mura A., Sannia L., Orecchioni M., Paglietti G. Synthesis of pyrrol[1,2-a]indole-1,8(5H)-diones as new synthones for developing novel tryciclic compounds of pharmaceutical interest. Arkivoc 2004, 2004, 97-106. https://doi.org/10.3998/ark.5550190.0005.510

Sechi M., Derudas M., Dallocchio R., Dessi A., Cosseddu A., Paglietti G. DNA Binders: 1. Evaluation of DNA-Interactive Ability, Design, and Synthesis of Novel Intercalating Agents. Lett. Drug Des. Discov. 2009, 6, 56-62. http://dx.doi.org/10.2174/157018009787158472

Tobinaga S., Murase M., Hosaka T. An easy synthesis of 4-alkylthioindoles. Heterocycles 1990, 30, 905-910. https://doi.org/10.3987/COM-89-S82

Remers W. A., Roth R. H., Gibs G. J., Weiss M.J. Synthesis of indoles from 4-oxo-4,5,6,7-tetrahydroindoles. II. Introduction of substituents into the 4 and 5 positions. J. Org. Chem. 1971, 36, 1232-1240. https://doi.org/10.1021/jo00808a016

Martinez R., Oloarte J. S., Avila G. 1,3-cyclohexanedione as the precursor of C4X-C6-C4Y systems. Synthesis of pyrrolo[2,3-e]indoles and thieno[2,3-e]indoles. J. Heterocycl. Chem. 1998, 35, 585-589. https://doi.org/10.3390%2Fmolecules26154596

Chacоn-Garcia L., Martinez R. Synthesis and in vitro cytotoxic activity of pyrrolo[2,3-e]indole derivatives and a dihydrobenzoindole analogue. Eur. J. Med. Chem. 2002, 37, 261-266. http://dx.doi.org/10.1016/S0223-5234(01)01328-9

Remers W.A., Roth, R.H., Weiss M.J. Synthesis of indoles from 4-oxo-4,5,6,7-tetrahydroindoles. 4. Tricyclic heterocycles. 1971, 14, 860-862. https://doi.org/10.1021/jm00291a021

Mohareb R.M., Abdelaziz M.A. Substituted 4,5,6,7-tetrahydroindoles and their fused derivatives. Synthesis and cytotoxic activity towards tumor and normal human cell lines. Chem. Heterocycl. Compd. 2013, 49, 1212-1223. http://hgs.osi.lv/index.php/hgs/article/view/838

Spyridonidou K., Fousteris M., Antonia M., Chatzianastasiou A., Papapetropoulos A., Nikolaropoulos S. Tricyclic indole and dihydroindole derivatives as new inhibitors of soluble guanylate cyclase. Bioorg. Med. Chem. Lett. 2009, 19, 4810-4813. https://doi.org/10.3390%2Fmolecules26154596

Meijer L., Leost M., Lozach O., Schmitt S., Kunick C. The Paullones: A Family of Pharmacological Inhibitors of Cyclin Dependent Kinases and Glycogen Synthase Kinase 3. In Inhibitors of Protein Kinases and Protein Phosphates. Handbook of Experimental Pharmacology. Springer 2005, 167, 47-64. https://link.springer.com/chapter/10.1007/3-540-26670-4_3

Martinez R., Arzate M.M., Ramirez-Apan M.T. Synthesis and cytotoxic activity of new azepino[3',4':4,5]pyrrolo[2,1-a]isoquinolin-12-ones. Bioorg. Med. Chem. 2009, 17, 1849-1856. https://doi.org/10.1016/j.bmc.2009.01.056

Clayden J., Greeves N., Warren S. Perycyclic reaction 2: sigmatropic and electrocyclic reactions. In Organic chemistry. Oxford University Press Inc.: 2012; pp. 913-916.

Dagher K., Terentev P.B., Kulikov N.S. Tetracyanoethylation and fischer rearrangement of some 4-oxo-4,5,6,7-tetrahydroindoles.Chem. Heterocycl. Compd. 1986, 22, 172-175. https://link.springer.com/article/10.1007/BF00519938

Pinna G.A., Sechi M., Paglietti G., Pirisi M. A. Addition Reactions of Acetylenic Esters to 6,7-Dihydrobenzo[b]furan-4(5H)-one, 6,7-Dihydroindol-4(5H)-one, 5,6-Dihydrobenzo[b]furan-7(6H)-one and 5,6-Dihydroindol-7(6H)-one Ketoximes. Formation of Reduced Furo[g]- and Pyrrolo[g]-indoles. J. Chem. Res. 2003, 2003, 117-120. https://doi.org/10.3184/030823403103173426

Dandia A., Arya K., Dhaka N. Multistep microwave assisted solvent free green chemical synthesis of 2,7-dihydro-3H-pyridazino[3',4':4,5]indolo[3,2-c]quinoline-3,13(12H)-dione. J. Chem. Res. 2006, 192-198. https://journals.sagepub.com/doi/pdf/10.3184/030823406776330666

Bardakos V., Sucrow, W. Enhydrazine, 22: Lactame aus 1,5,6,7-Tetrahydro-4H-indol-4-onen. Chem. Ber. 1978, 111, 1780-1788. https://doi.org/10.1002/CBER.19761090531

Dominguez-Villa X. F., Avila-Zarraga G., Armenta-Salinas C. Synthesis of new fused dipyrroloazepinones via a two-step tandem reaction: Comparison of the Schmidt and Beckmann pathways. Tetrahedron Lett. 2020, 61, 151-751. https://doi.org/10.1016/j.tetlet.2020.151751

Jana S; Thomas J; Dehaen W. A One-Pot Procedure for the Synthesis of "Click-Ready" Triazoles from Ketones. J. Org. Chem. 2016, 81, 12426-12432. https://doi.org/10.1021/acs.joc.6b02607

Opsomer T., Thomas J., Dehaen W. Chemoselectivity in the Synthesis of 1,2,3-Triazoles from Enolizable Ketones, Primary Alkylamines, and 4-Nitrophenyl Azide. Synthesis 2017, 49, 4191-4198. https://doi.org/10.1055/s-0036-1588856

Prakash, R., Opsomer, T., Dehaen, W. Triazolization of Enolizable Ketones with Primary Amines: A General Strategytoward Multifunctional 1,2,3-Triazoles. Chem. Rec. 2020, 20, 1-11. http://dx.doi.org/10.1002/tcr.202000151

Thomas J., Jana S., John J., Liekens S., Dehaen W. A general metal-free route towards the synthesis of 1,2,3-triazoles from readily available primary amines and ketones. Chem. Commun. 2016, 52, 2885-2888. https://doi.org/10.1039/C5CC08347H

Pookkandam Parambil S., de Jong F., Veys K., Huang J., Veettil S. P., Verhaeghe D., Van Meervelt L., Escudero D., van der Auweraer M., Dehaen W. BOPAHY: A doubly chelated highly fluorescent pyrrole–acyl hydrazone -BF 2 chromophore. Chem.Commun. 2020, 56, 5791-5794. https://doi.org/10.1021/ja502477a

Yu C., Jiao L., Zhang P., Feng Z., Cheng C., Wei Y., Mu X., Hao E. Highly Fluorescent BF 2 Complexes of Hydrazine–Schiff Base Linked Bispyrrole. Org. Lett. 2014, 16, 3048-3051. https://doi.org/10.1021/ol501162f

Horsten T., de Jong, F., Theunissen D., van der Auweraer M., Dehaen W. Synthesis and spectroscopic properties of 1,2,3-triazole BOPAHY dyes and their water-soluble triazolium salts. 2021, 86, 13774-13782. https://pubs.acs.org/doi/full/10.1021/acs.joc.1c01459

Mosti L., Schenone P., Menozzi G. Reaction of sulfene and dichloroketene with N,N -disubstituted 5-aminomethylene-1,5,6,7-tetrahydro-2-methyl-1-phenylindol-4-ones. Synthesis of 1,2-oxathiino[6,5- E ] indole and of pyrano[2,3- e]indole derivatives. J. Heterocycl. Chem. 1979, 16, 913-915. https://doi.org/10.1002/jhet.5570160516

Carey F. A., Sundberg R. J.Concerted Cycloadditions, Unimolecular Rearrangements, and Thermal Eliminations. In Advanced Organic Chemistry, 5th ed.; Springer: 2008; part B, pp. 539-541.

Alberola A., Calvo L. A., Ortega A.G., Sañudo Ruíz M.C., Yustos P., Granda S.G., Garcia-Rodriguez E. Regioselective Synthesis of 2(1 H)-Pyridinones from α-Aminoenones and Malononitrile. Reaction Mechanism. J. Org. Chem. 1999, 64, 9493-9498. https://doi.org/10.1021/jo991121o

Kharaneko O.I. New approach to the synthesis of pyrrolo[3,4-c]pyridines. Russ. J. Org. Chem. 2016, 52, 1593-1599. https://doi.org/10.1134/S1070428016110075

Barraja P., Diana P., Montalbano A., Carbone A., Cirrincione G., Viola G., Salvador A., Velaldi D., Dall’Acqua, F. Thiopyrano[2,3-e]indol-2-ones: Angelicin heteroanalogues with potent photoantiproliferative activity. Bioorg. Med. Chem. 2008, 16, 9668-9683. https://doi.org/10.1016/j.bmc.2008.10.002

Li R.-K., Yang Q.-L., Liu Y., Li D.-W., Huang N.-Y., Liu, M.-G. A novel and green synthesis of indolone-N-amino acid derivatives via the Passerini three-component reactions in water. Chinese Chemical Letters, 2016, 27, 345-348. https://doi.org/10.1016/j.cclet.2015.11.008

Piras L., Genesio E., Ghiron C., Taddei M. Scaffold Preparation and Parallel Synthesis of Arrays of 5,6,7,8-Tetrahydropyrrolo-azepinones in the Solution Phase. Eur. J. Org. Chem. 2008, 16, 2789-2800. https://doi.org/10.1021/jo991766o

Tu X.-C., Fan W., Jiang B., Wang S.-L., Tu S.-J. A novel allylic substitution strategy to four-component synthesis of pyrazole-substituted fused pyrroles. Tetrahedron 2013, 69, 6100-6107. https://doi.org/10.1016/j.tet.2013.05.063

Jiang B., Li Q.-Y., Zhang H., Tu S.-J., Pindi S., Li G. Efficient Domino Approaches to Multifunctionalized Fused Pyrroles and Dibenzo[b,e][1,4]diazepin-1-ones. Org. Lett. 2012, 14, 700-703. https://doi.org/10.1021/ol203166c

Huang J.-R., Zhang Q.-R., Qu C.-H., Sun X.-H., Dong L., Chen Y.-C. Rhodium(III)-Catalyzed Direct Selective C(5)–H Oxidative Annulations of 2-Substituted Imidazoles and Alkynes by Double C–H Activation. Org. Lett. 2013, 15, 1878-1881. https://doi.org/10.1021/ol400537b

Chen S., Han X., Wu J., Li Q., Chen Y., Wang, H. Manganese(I)-Catalyzed Regio- and Stereoselective 1,2-Diheteroarylation of Allenes: Combination of CH Activation and Smiles Rearrangement. Angew. Chem. 2017, 56, 9939-9943. https://doi.org/10.1002/anie.201704952

Published
2022-09-09
Cited
How to Cite
Kolos, N., & Marchenko, K. (2022). Functionalization of tetrahydroindol-4-one derivatives. Kharkiv University Bulletin. Chemical Series, (39), 6-20. https://doi.org/10.26565/2220-637X-2022-39-01