Quantum-chemical calculations of electronic spectra absorption: ab initio or semiempirical methods?

  • Volodymyr Ivanov V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0003-2297-9048
  • Pavlo Trostianko V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0002-1333-9375
  • Sergiy Kovalenko V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0003-2222-8180
  • Anastasia Volodchenko V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0002-4331-0354
  • Tetyana Chernozhuk V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0001-5580-7838
  • Darya Stepaniuk V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0002-2629-0427
  • Oleg Kalugin V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0003-3273-9259
Keywords: solar cells, π-conjugated organic dyes, nonempirical (ab initio) methods, density functional theory, semi-empirical calculations, π-electron approximation, all valence methods

Abstract

In order to develop approaches to predict the spectral properties of organic dyes for solar cells the test calculations of typical π-conjugated systems with various structural fragments, have been performed. Among the structural elements there are benzene, oxazole, oxsadiazole, thiophene and coumarin fragments. Nitro, methoxy, dimethylamino and diethylamino groups are substituents. According to the obtained experimental data, the diethylamino group at position 7 of the coumarin moiety gave the highest bato- and hyperchromic shifts of spectra. Experimental absorption spectra were measured in various solvents with different polarity. Among them are cyclohexane, dimethoxyethane, tetrahydrofuran, methanol, acetonitrile, and dimethylsulfoxide. It has been shown that there are no significant changes in the λ(max) absorption of coumarin-based compounds when the solvent is changed to a more polar one, but there is a noticeable tendency to increase the intensity of the absorption spectra. For the theoretical interpretations of electronic spectra absorption ab initio density functional theory (DFT) as well as semi-empirical methods (PPP/CIS, ZINDO/S, AM1/CIS) were used. In the DFT calculations the functionals B3LYP, CAM-B3LYP, M06-2x, PBE1PBE, wB97XD were used. A significant discrepancy in the estimations of electronic excitations is demonstrated by the DFT for the different functionals. It is concluded that DFT calculations should be performed by using both B3LYP and CAM-B3LYP (or M06-2x) functionals. Linear response theory has been used to evaluate the solvatochromic properties of π-conjugated compounds in the DFT frameworks. In general it was found that semi-empirical approaches especially π-electron method PPP/CIS and all valence method ZINDO/S can provide adequate estimations of excitation energies of π-conjugated dyes for moderate computer resources.

Downloads

Download data is not yet available.

References

O'Regan B., Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991, 353(6346), 737-740. https://doi.org/10.1038/353737a0

Smestad G., Bignozzi C., Argazzi R. Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies. Solar Energy Materials and Solar Cells. 1994. 32(3), 259-272. https://doi.org/10.1016/0927-0248(94)90263-1

Kay A., Grätzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells. 1996, 44(1), 99-117. https://doi.org/10.1016/0927-0248(96)00063-3

Hagfeldt A., Grätzel M. Molecular Photovoltaics. Acc. Chem. Res. 2000. 33(5), 269-277. https://doi.org/10.1021/ar980112j

Nazeeruddin M.K., De Ngelis F., Fantacci S., Selloni A., Viscardi G., Liska P., Ito S., Takeru B., Grätzel M. Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. J. Am. Chem. Soc. 2005. 127(48), 16835-16847. https://doi.org/10.1021/ja052467l

Chiba Y., Islam A., Watanabe Y., Komiya R., Koide N., Han L. Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%. Jpn. J. Appl. Phys. 2005. 45(25), L638-L640. https://doi.org/10.1143/jjap.45.l638

Cao Y., Bai Y., Yu Q., Cheng Y., Liu S., Shi D., Gao F., Wang P. Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine. J. Phys. Chem. C. 2009. 113(15), 6290-6297. https://doi.org/10.1021/jp9006872

Gonga J., Sumathya K., Qiaob Q., Zhoub Z. Review on dye-sensitized solar cells (DSSCs). Advanced techniques and research trends. Renewable and Sustainable Energy Reviews. 2017. 68. 234–246. https://doi.org/10.1016/j.rser.2016.09.097

Carella A., Borbone F., Centore R Research progress on photosensitizers for DSSC. Frontiers in Chemistry. 2018, 6, 481 (24 pages). https://doi.org/10.3389/fchem.2018.00481

Sharma K., Sharma V., Sharma S. S. Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Research Letters. 2018, 13, 381 (46 pages). https://doi.org/10.1186/s11671-018-2760-6

Devadiga D., Selvakumar M., Shetty P., Santosh M.S. Dye-Sensitized Solar Cell for Indoor Applications: A Mini-Review. Journal of Electronic Materials, 2021, 50(6), 3187-3205. https://doi.org/10.1007/s11664-021-08854-3

Bera S., Sengupta D., Roy S., Mukherjee K. Research into dye-sensitized solar cells: a review highlighting progress in India. J. Phys. Energy. 2021, 3. 032013 (30 pages). https://doi.org/10.1088/2515-7655/abff6c

Kokkonen M., Talebi P., Zhou J., Asgari S., Soomro S.A., Elsehrawy F., Halme J., Ahmad S., Hagfeldt A., Hashmi S.G. Advanced research trends in dye-sensitized solar cells. J. Mater. Chem. A, 2021, 9, 10527-10545. https://doi.org/10.1039/d1ta00690h

Theoretical And Computational Developments In Modern Density. Functional Theory A. K. Roy Ed, Nova Science Publishers, Inc.: New York, 2013; 598 p.

Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14 (1), 1347-1363. https://doi.org/10.1002/jcc.540141112

Tirado-Rives J., Jorgensen W. L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules J. Chem. Theory Comput. 2008, 4, 297–306. https://doi.org/10.1021/ct700248k

Zhao Y., Truhlar D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account. 2008, 120, 215-241. https://doi.org/10.1007/s00214-007-0310-x

Silva-Junior M. R., Schreiber M., Sauer S. P., Thiel W. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction. J. Chem. Phys. 2008, 129, 104103. https://doi.org/10.1063/1.2973541

Leang S. S., Zahariev F., and Gordon M. S. Benchmarking the performance of time-dependent density functional methods. J. Chem. Phys. 2012, 136, 104101. https://doi.org/10.1063/1.3689445

Krasovitsky B. M., Afanasiadi, L. M. Preparative Chemistry of Organic Luminophores. Kharkiv: Folio, 1997; 205 p. [in Rus]. Красовицкий Б. М., Афанасиади Л. М. Препаративная химия органических люминофоров, Харьков: Фолио, 1997; 205 с.

Krasovitsky B.M., Grinev B.V., Vinetskiaya J. M., Bogdanova L.I. Spectra of organic luminophores. Atlas, Volume 1. Kharkiv: Folio, 2001; 139 p. [in Rus]. Красовицкий Б. М., Гринев Б. В., Винецкая Ю. М., Богданова Л. И. Спектры органических люминофоров. Атлас. Выпуск первый. Харьков: Фолио, 2001; 139 с.

Krasovitsky B.M., Grinev B.V., Vinetskiaya J. M., Bogdanova L.I. Spectra of organic luminophores. Atlas, Volume 2. Kharkiv: Folio, 2001; 151 p. [in Rus]. Красовицкий Б.М., Гринев Б. В., Винецкая Ю. М., Богданова Л. И. Спектры органических люминофоров. Атлас. Выпуск второй. Харьков: Фолио, 2003; 151 с.

Kovalenko S. N., Sytnik K. M., Nikitchenko V. M., Rusanova, S. V., Chernykh V. P., Porokhnyak A. O. Recyclization of 2-imino-2H-1-benzopyrans by the action of nucleophilic reagents 4. Use of 2-(N-aroylhydrazono)coumarin-3-carboxamides for the synthesis of 3-(1,3,4-oxadiazol-2-yl)coumarins. Chem. Heterocycl. Compd. 1999, 35 (2), 167–170. https://doi.org/10.1007/BF02251703

Zubkov V. A., Kovalenko S. N., Chernykh V. P., Ivkov S.M. New derivatives of coumarin: 2-(N-R-imino)-2H-1-benzopyrans. Chem. Heterocycl. Compd. 1994, 30 (6), 665–670. https://doi.org/10.1007/BF01166306

Kovalenko S. N., Zubkov V. A., Chernykh V. P., Turov A. V., Ivkov S. M. Recyclization of 2-imino-2H-1-benzopyrans under the influence of nucleophilic reagents. 1. New approach to the synthesis of 3-(1,3,4oxadi-, thiadi-, and triazolyl-2)coumarins. Chem. Heterocycl. Compd. 1996, 32(2), 163–168. https://doi.org/10.1007/BF01165439

Tomasi J., Mennucci B., Cammi R., Quantum mechanical continuum solvation models. Chemical Reviews. 2005, 105, 2999. https://doi.org/10.1021/cr9904009

Mennucci B., Caricato M., Ingrosso F., Cappelli C., Cammi R., Tomasi J., Scalmani G. How the environment controls absorption and fluorescence spectra of PRODAN: A quantum-mechanical study in homogeneous and heterogeneous media. The Journal of Physical Chemistry B. 2008, 112, 414-423. https://doi.org/10.1021/jp076138m

Pariser R., Parr R. G. A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. I. J. Chem. Phys. 1953, 21(3), 466-471. https://doi.org/10.1063/1.1698929

Pariser R., Parr R. G. A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. II. J. Chem. Phys. 1953, 21 (5), 767-776. https://doi.org/10.1063/1.1699030

Zakharov A. B., Ivanov V.V., Adamowicz L. Optical Parameters of p-Conjugated Oligomer Chains from the Semiempirical Local Coupled-Cluster Theory. In book: “Practical Aspects of Computational Chemistry IV”, J. Leszczynski, M. K. Shukla, Eds. Springer Scence+Business Media, New York 2016. Chapter 3, P. 57-102. https://doi.org/10.1007/978-1-4899-7699-4_3

Da Motta L., Neto J. D., Zerner M. C. New parametrization scheme for the resonance integrals (Hμv) within the INDO/1 approximation. Main group elements. International Journal of Quantum Chemistry. 2001, 81, 187-201. https://doi.org/10.1002/1097-461X(2001)81:3<187::AID-QUA1>3.0.CO;2-B

RDKit: Open-source cheminformatics; http://www.rdkit.org

Mardirossian N. Head-Gordon M. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys. 2017, 115, 2315-2372. https://doi.org/10.1080/00268976.2017.1333644

Yanai T., Tew D. P., Handy N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) Chemical Physics Letters. 2004, 393, 51–57. https://doi.org/10.1016/j.cplett.2004.06.011

Kirkwood J. G. Theory of solutions of molecules contaiting widely separated charges with special applications to zwitterions J. Chem. Phys. 1934, 2. 351-361. https://doi.org/10.1063/1.1749489

Continuum Solvation Models in Chemical Physics: From Theory to Applications B. Mennucci, R. Cammi eds. John Wiley & Sons, Ltd.: Chichester, 2007; 619 p.

Published
2021-03-29
Cited
How to Cite
Ivanov, V., Trostianko, P., Kovalenko, S., Volodchenko, A., Chernozhuk, T., Stepaniuk, D., & Kalugin, O. (2021). Quantum-chemical calculations of electronic spectra absorption: ab initio or semiempirical methods?. Kharkiv University Bulletin. Chemical Series, (36), 33-43. https://doi.org/10.26565/2220-637X-2021-36-06