Synthesis of diethyl 2-{[3-(triethoxysilyl)propyl]amino}ethylphosphonate

  • Yuliia I. Chuiko V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0002-1552-2106
  • Yuriy V. Kholin V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0003-1369-741X
  • Maksim A. Kolosov V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0002-6714-0513
Keywords: 3-aminopropyltriethoxysilane (APTES), alkylation, polycondensation, surface modification

Abstract

Diethyl 2-{[3-(triethoxysilyl)propyl]amino}ethylphosphonate is promising reagent for the modification of silica surface and thus for the creation of chelate adsorbents for extraction of d‑metals ions from water media.

Diethyl 2-{[3-(triethoxysilyl)propyl]amino}ethylphosphonate was synthe­sized by alkylation of 3-aminopropyltriethoxysilane (APTES) with diethyl vinylphosphonate under quick neat heating. The possible alternative approaches to the synthesis of this compound were investigated (alkylation of APTES and N-acetylAPTES) as well as behavior of APTES towards heating in absolute ethanol and THF. APTES was shown to be not stable in absolute ethanol, that is caused by polycondensation processes. Because of this fact, previously reported protocol of diethyl 2‑{[3‑(triethoxysilyl)propyl]amino}ethylphosphonate synthesis in ethanol turned to be impossible.

Downloads

Download data is not yet available.

References

Dey T., Naughton D. Cleaning and anti-reflective (AR) hydrophobic coating of glass surface: a review from materials science perspective. J. Sol-Gel Sci. Technol. 2016, 77, 1–27.

Hossain Md. M., Trinh Q. H., Nguyen D. B., Sudhakaran M. S. P., Mok Y. S. Robust hydrophobic coating on glass surface by an atmospheric-pressure plasma jet for plasma-polymerisation of hexamethyldisiloxane conjugated with (3-aminopropyl) triethoxysilane. Surf. Eng. 2019, 35, 466–475.

Panteleimonov A., Tkachenko O., Baraban A., Benvenutti E., Gushikem Y., Kholin Y. Probing silica-organic hybrid materials using small probes: Simulation of adsorption equilibria influenced by cooperativity effects. Adsorpt. Sci. Technol. 2013, 67(1), 145–154.

Delafosse G., Patrone L., Goguenheim D. J. Functionalization of Silicon Dioxide Surface with 3-Aminopropyltrimethoxysilane for Fullerene C60 Immobilization. J. Nanosci. Nanotechnol. 2011, 11, 9310–9315.

Howarter J. A., Youngblood J. P. Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir 2006, 22, 11142–11147.

Buszewski B., Jezierska M., Wełniak M., Kaliszan R. Cholesteryl-silica stationary phase for liquid chromatography: Comparative study of retention behavior and selectivity. J. Chromatogr. A. 1999, 845, 433–445.

Zaitsev V. N., Vasilik L. S., Evans J., Brough A. Synthesis and structure of the grafted layer on silicas chemically modified by aminophosphonic acids. Russ. Chem. Bull. 1999, 48, 2315–2320.

Zhu M., Lerum M. Z., Chen W. How To Prepare Reproducible, Homogeneous, and Hydrolytically Stable Aminosilane-Derived Layers on Silica. Langmuir 2012, 28, 416–423.

Vrancken K. C., Possemiers K., Van Der Voort P., Vansant E. F. Surface modification of silica gels with aminoorganosilanes. Coll. Surf. A. 1995, 98, 235–241.

Chen S., Hayakawa S., Shirosaki Y., Fujii E., Kawabata K., Tsuru K., Osaka A. Sol–Gel Synthesis and Microstructure Analysis of Amino-Modified Hybrid Silica Nanoparticles from Aminopropyl-triethoxysilane and Tetraethoxysilane. J. Am. Ceram. Soc. 2009, 92, 2074–2082.

Zhi K., Wang L., Zhang Y., Jiang Y., Zhang L., Yasin A. Influence of Size and Shape of Silica Supports on the Sol–Gel Surface Molecularly Imprinted Polymers for Selective Adsorption of Gossypol. Materials 2018, 11, E777.

Lecoq E., Duday D., Bulou S., Frache G., Hilt F., Maurau R., Choquet P. Plasma Polymerization of APTES to Elaborate Nitrogen Containing Organosilicon Thin Films: Influence of Process Pa-rameters and Discussion About the Growing Mechanisms. Plasma Process. Polym. 2013, 10, 250–261.

Nomura A., Yamada J., Tsunoda K. Acylation of Aminopropyl-Bonded Silica Gel for Liquid Chromatography. Anal. Sci. 1987, 3, 209–212.

Silveira G. Q., Ronconi C. M., Vargas M. D., San Gil R. A. S., Magalhães A. Modified silica nanoparticles with an Aminonaphthoquinone. J. Braz. Chem. Soc. 2011, 22(5), 961–967.

Kolosov M. A., Chuyko Yu. I., Kulyk O. G., Mazepa A. V., Zavarzin V. V., Kholin Yu. V. α-Aminophosphonate derivatives of triethoxysilane for the synthesis of surface-modified silica Synth. Commun. 2020, 50, 123–128.

Schmider M., Mu1 E., Klee J. E., Mülhaupt R. A Versatile Synthetic Route to Phosphonate-Functional Monomers, Oligomers, Silanes, and Hybrid Nanoparticles. Macromolecules 2005, 38, 9548–9555.

Bugerenko Ye. F., Petukhova A. S., Chernyshev Ye. A. Sintez kremniyfosforsoderzhashih soedi-neniy prisoedineniem po dvoynoy uglerod-uglerodnoy svyazi. Zhurn. Obsh. Khim. 1970, 40, 606–609.

Chernyshev Ye. A., Bugerenko Ye. F., Petukhova A. S. Pat. of USSR 242168 (1969).

Klee J. E., Lehmann U., Walz U. Int. pat. WO 03/070198 A1 (2003).

Jain R., Rimer J. D. Seed-Assisted zeolite synthesis: The impact of seeding conditions and inter-zeolite transformations on crystal structure and morphology. Micropor. Mesopor. Mat. 2020, 300, 110174.

Fourgeaud P., Midrier C., Vors J.-P., Volle J.-N., Pirat J.-L., Virieux D. Oxaphospholene and oxaphosphinene heterocycles via RCM using unsymmetrical phosphonates or functional phosphi-nates. Tetrahedron 2010, 66, 758–764.

Tang Xi., Zhong Q., Xu J., Li H., Xu S., Cui X., Wei B., Ma Y., Yuan R. Co(II)4Gd(III)6 phos-phonate grid and cage as molecular refrigerants. Inorg. Chim. Acta 2016, 442, 195–199.

Cichowicz N. R., Nagorny P. Synthesis of Conjugated Polyenes via Sequential Condensation of Sulfonylphosphonates and Aldehydes. Org. Lett. 2012, 14, 1058–1061.

Li X., Chen X., Yuan J., Liu Y., Li P., Qu L., Zhao Y. An Efficient Synthesis of 1,2,3-Triazole Bridge-Connected Phosphonate Derivatives of Coumarin. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 961–971.

Lukáč M., Garajová M., Mrva M., Devínsky F., Ondriska F, Kubincová J. Novel fluorinated dial-kylphosphonatocholines: Synthesis, physicochemical properties and antiprotozoal activities against Acanthamoeba spp. J. Fluor. Chem. 2014, 164, 10–17.

Published
2020-06-29
Cited
How to Cite
Chuiko, Y. I., Kholin, Y. V., & Kolosov, M. A. (2020). Synthesis of diethyl 2-{[3-(triethoxysilyl)propyl]amino}ethylphosphonate. Kharkiv University Bulletin. Chemical Series, (34), 65-73. https://doi.org/10.26565/2220-637X-2020-34-03