2-Phenyl-phenantr[9,10]oxazole and 2-(2’-ОН-phenyl)-5–phenyl-1,3,4–oxadiazole as fluorescent probes to study the changes in platelet membranes accompanied the atherosclerosis

  • E. A. Posohov
Keywords: fluorescence probes, bio-membrane, atherosclerosis, platelet (thrombocyte)

Abstract

The search of fluorescent probes to detect pathological changes in platelet membranes caused by the atherosclerosis has been performed. It has been found that the fluorescent probes, which are commonly used for monitoring the cholesterol content in lipoproteins (1,4-ANS, DPH, DMHL) failed to detect the changes in platelet membranes accompanied the atherosclerosis. It has been shown that fluorescence parameters of 2-phenyl-phenantr[9,10]oxazole and 2-(2’-ОН-phenyl)-5–phenyl-1,3,4–oxadiazole are sensitive to the changes in platelet membranes in this case.

Downloads

Download data is not yet available.

References

Goldman L, Ausiello D, eds. Cecil Medicine, 23rd edn. Philadelphia: WB Saunders; 2007.

Fayad ZA Cardiovascular molecular imaging. Arterioscler Thromb Vasc Biol 2009;29:981-2.

Choudhury RP, Fisher EA. Molecular imaging in atherosclerosis, thrombosis, and vascular in-flammation. Arterioscler Thromb Vasc Biol 2009;29:983-91.

Saraste A, Nekolla SG, Schwaiger M. Cardiovascular molecular imaging: an overview. Car-diovasc Res 2009;83:643-52.

Desai MY, Schoenhagen P. Emergence of targeted molecular imaging in atherosclerotic car-diovascular disease. Expert Rev Cardiovasc Ther 2009;7: 197-203.

Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature 2008;451:953-7.

Cormode DP, Skajaa T, Fayad ZA, Mulder WJM. Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 2009;29:992-1000.

Rudd JHF, Hyafil F, Fayad ZA. Inflammation imaging in atherosclerosis. Arterioscler Thromb Vasc Biol 2009;29:1009-16.

Laufer EM, Winkens MHM., Narula J, Hofstra L. Imaging of cell death in atherosclerosis. Ar-teriosclerThromb Vasc Biol 2009;29:1031-38.

Jaffer FA, Libby P, Weissleder R. Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler Thromb Vasc Biol 2009;29:1017-24.

Vladimirov YA, Dobretsov GE. Fluorescence probe in study of biological membranes. Mos-cow: Nauka, 1980.

Dobretsov GE. Fluorescence probes in cell, membrane and lipoprotein investigations. Mos-cow: Nauka, 1989.

Libby P, DiCarli M, Weissleder R. The vascular biology of atherosclerosis and imaging tar-gets. J Nucl Med 2010;51:33S-7S.

Bakic M. Pathogenetic aspects of atherosclerosis. Acta Medica Medianae 2007;46:25-9.

ChristophWanner C. Lipids and atherosclerosis. In: Horl WH, ed. () Replacement of renal function by dialysis. Dodrecht, Boston, London: Kluwer Academic Publishers 2004: 791-805.

Reminyak IV, Boyko TP. Change of lipid structure of thrombocyte membranes in patients with vascular pathology of hypertensive and atherosclerotic genesis. Ukr Visn Psyhoneurol 1999;7:14-6. (in Russian).

Doroshenko AO, Posokhov EA, Shershukov VM, Mitina VG, Ponomarev OA. Spectral and luminescence properties of derivatives of 2-aryl[9,10]phenanthroxazole. Chemistry of Hetero-cyclic Compounds 1995;31:492-9.

Doroshenko AO, Posokhov EA, Verezubova AA, Ptyagina LM. Excited State Intramolecular Proton Transfer Reaction and Luminescent Properties of the Ortho-Hydroxy Derivatives of 2,5-Diphenyl-1,3,4-oxadiazole. J Phys Org Chem 2000;13:253-65.

Rojas J, Domínguez JN, Charris JE, Lobo G, Payá M, Ferrándiz ML. Synthesis and inhibitory activity of dimethylamino-chalcone derivatives on the induction of nitric oxide synthase. Eur J Med Chem 2002;37:699-705.

Straume M, Littman BJ. Equilibrium and dynamic structure of large, unilamellar, unsaturated acyl chain phosphatidylcholine vesicles. Higher order analysis of 1,6-diphenyl-1,3,5-hexatriene and 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene anisotropy decay. Biochemistry 1987;26:5121-6.

Ho C, Slater SJ, Stubbs CD. Hydration and order in lipid bilayers, Biochemistry 1995;34:6188-95.

Disalvo EA, Larion F, Martini F, Tymczyczyn E, Frias M. Structural and functional properties of hydration and confined water in membrane interfaces. Biochim Biophys Acta 2008;1778:2655-70.

Gabdoulline RR, Zheng C, Vanderkooi G. Molecular origin of the internal dipole potential in lipid bilayers: role of the electrostatic potential of water. Chem Phys Lipid 1996;84:139-46.

Posokhov EA, Аbmanova NA, Boyko TP, Doroshenko AO. Visn Hark nac univ, № 454, Ser Him, issue 4(27), P. 188. [ISSN 2220-637X (print)] [in Russian/Ukrainian].

Doroshenko AO, Posokhov EA, Verezubova AA, Ptyagina LM, Skripkina VT, Shershukov VM. Radiationless deactivation of the excited phototautomer form and molecular structure of ESIPT-compounds. Photochem Photobiol Sci 2002;1:92-9.

Doroshenko AO, Posokhov EA. Proton phototransfer in a series of ortho-hydroxy derivatives of 2,5-diphenyl-1,3-оxazole and 2,5-diphenyl-1,3,4-оxadiazole in polystyrene films. Theor Exper Chem 1999;35:334-7.

Shapiro HM. Flow cytometry. New York: Science, 1995.

Published
2012-12-03
Cited
How to Cite
Posohov, E. A. (2012). 2-Phenyl-phenantr[9,10]oxazole and 2-(2’-ОН-phenyl)-5–phenyl-1,3,4–oxadiazole as fluorescent probes to study the changes in platelet membranes accompanied the atherosclerosis. Kharkiv University Bulletin. Chemical Series, (21), 112-121. https://doi.org/10.26565/2220-637X-2012-21-08