α-Pyridinic analogs of 2,5-diaryloxazole as chemosensing compounds sensitive to heavy metals ions

  • I. Yu. Sevryukov V.N. Karazin Kharkiv National University
  • Elena A. Kovalenko V.N. Karazin Kharkiv National University
  • Rodion Yu. Ilyashenko V.N. Karazin Kharkiv National University
  • Oleg O. Borodin V.N. Karazin Kharkiv National University
  • Andrey O. Doroshenko V.N. Karazin Kharkiv National University https://orcid.org/0000-0002-9643-9549
Keywords: 2-(5-phenyl-1,3-oxazol-2-yl)-pyridine, 2-[5-(4’-N,N-dimethylaminophenyl)-1,3-oxazol-2-yl]pyridine, fluorescent probes, chemosensor compounds, complex formation

Abstract

Several oxazolic derivatives on the base of α-pyridinecarboxylic acid was synthesized, their spectral-fluorescent properties, protolytic equilibria and complexation with heavy metal ions were investigated. The prospects of this class of compounds for further development on their background fluorescent chemosensors for toxic polyvalent metals ions were revealed.

Downloads

Download data is not yet available.

References

Hutchinson T.C., Meema K.M. Lead, Mercury, Arsenic and Cadmium in the Environment.- Wiley: New York, 1987.- P. 1-8.

Scoullos G.H., Vonkeman M.J., Thorton L., Makuch Z. Mercury, Cadmium, and Lead: Hand-book for Sustainable Heavy Metals Policy and Regulation (Environment & Policy), vol. 31.- Kluwer Academic: Norwell, MA, 2001.

Coester C.J. Trends in environmental analysis // Anal. Chem.- 2005.- V. 77.- P. 3737-3754.

Richardson S.D., Temes T.A. Water analysis: emerging contaminants and current issues // Anal. Chem.- 2005.- V. 77.- P. 3807-3838.

Mercury Update Impact on Fish Advisories, EPA Fact Sheet EPA-823-F-01-011. EPA, Office of Water: Washington, DC, 2001.- P. 1-10.

Safavi A., Bagheri M. Design and characteristics of a mercury (II) optode based on immobili-zation of dithizone on a triacetylcellulose membrane // Sens. Actuators B.- 2004.- V. 99.- P. 608–612.

Shamsipur M., Hosseini M., Alizadeh K., Alizadeh N., Yari A., Caltagirone C., Lippolis V. Novel fluorimetric bulk optode membrane based on a dansylamidopropyl pendant arm deriva-tive of 1-aza-4,10-dithia-7-oxacyclododecane ([12]aneNS2O) for selective subnanomolar de-tection of Hg(II) // Anal. Chem. Acta.- 2005.- V. 533.- P. 17-24.

Bennun L., Gomez G. Determination of mercury by total-reflection X-ray fluorescence using amalgamation with gold // Spectrochim. Acta B.- 1999.- V. 54.- P.1291-1301.

Powell M.J., Quan E.S.K., Boomer D.W., Wiederin D.R. Inductively coupled plasma mass spectrometry with direct injection nebulization for mercury analysis of drinking water // Anal. Chem.- 1992.- V. 64.- P. 2253-2257.

Burrini C., Cagnini A. Determination of mercury in urine by ET-AAS using complexation with dithizone and extraction with cyclohexane // Talanta.- 1997.- V. 44.- P. 1219-1223.

Shafawi A., Ebdon L., Foulkes M., Stockwell P., Corns W. Determination of total mercury in hydrocarbons and natural gas condensate by atomic fluorescence spectrometry // Analyst.- 1999.- V. 124.- P. 185-189.

Yamini Y., Alizadeh N., Shamsipour M. Solid phase extraction and determination of ultra trace amounts of mercury(II) using octadecyl silica membrane disks modified by hexathia-18-crown-6-tetraone and cold vapour atomic absorption spectrometry // Anal. Chim. Acta.- 1997.- V. 355.- P. 69-74.

Anthemidis A.N., Zachariadis G.A., Michos C.E., Stratis J.A. Time-based on-line preconcen-tration cold vapour generation procedure for ultra-trace mercury determination with induc-tively coupled plasma atomic emission spectrometry // Anal. Bioanal. Chem.- 2004.- V. 379.- P. 764-769.

Meng W., Weiyue F., Junwen S., Weiyue F., Fang Z., Bing W., Motao Z., Bai L., Yuliang Z., Zhifang C. Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC–ICP-MS // Talanta.- 2007.- V. 71.- P. 2034-2039.

Nolan E.M., Lippard S.J. Tools and tactics for the optical detection of mercury ion // Chem. Rev.- 2008.- V. 108.- P. 3443-3480.

Coskun A., Yilmaz M.D., Akkaya E.U. Bis(2-pyridyl)-substituted boratriazaindacene as an NIR-emitting chemosensor for Hg(II) // Org. Lett.- 2007.- V. 9.- P. 607-609.

Liu B., Tian H. A selective fluorescent ratiometric chemodosimeter for mercury ion // Chem. Commun.- 2005.- P. 3156–3158.

Zhu X.J., Fu S.T., Wong W.K., Guo H.P., Wong W.Y. A near-infrared-fluorescent chemodo-simeter for mercuric ion based on an expanded porphyrin // Angew. Chem. Int. Ed.- 2006.- V. 45.- P.- 3150-3154.

Zheng H., Qian Z.H., Xu L., Yuan F.F., Lan L.D., Xu J.G. Switching the recognition prefer-ence of rhodamine B spirolactam by replacing one atom: design of Rhodamine B thiohy-drazide for recognition of Hg(II) in aqueous solution // Org. Lett.- 2006.- V. 8.- P. 859-861.

Chen P., He C. A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions // J. Am. Chem. Soc.- 2004.- V. 126.- P. 728-729.

Ono A., Togashi H. Highly selective oligonucleotide-based sensor for Mercury(II) in aqueous solutions // Angew. Chem. Int. Ed.- 2004.- V. 43.- P. 4300-4302.

Wu J.S., Hwang I.C., Kim K.S., Kim J.S. Rhodamine-based Hg2+-selective chemodosimeter in aqueous solution: fluorescent OFF–ON // Org. Lett.- 2007.- V. 9.- P. 907-910.

Wang J., Qian X., Cui J. Detecting Hg2+ ions with an ICT fluorescent sensor molecule: re-markable emission spectra shift and unique selectivity // J. Org. Chem.- 2006.- V. 71.- P. 4308-4311.

Nolan E.M., Lippard S.J. MS4, a seminaphthofluorescein-based chemosensor for the ratiomet-ric detection of Hg(II) // J. Mater. Chem.- 2005.- V. 15.- P. 2778-2783.

Nolan E.M., Lippard S.J. Turn-On and ratiometric mercury sensing in water with a red-emitting probe // J. Am. Chem. Soc.- 2007.- V. 129.- P. 5910-5918.

Guo W., Yuan J., Wang E. Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion // Chem. Commun.- 2009.- P. 3395–3397.

Wang Z., Lee J.H., Lu Y. Highly sensitive “turn-on” fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA // Chem. Commun.- 2008.- P. 6005–6007.

Yang R., Jin J., Long L., Wang L., Wang H., Tan W. Reversible molecular switching of mo-lecular beacon: controlling DNA hybridization kinetics and thermodynamics using mer-cury(II) ions // Chem. Commun.- 2009.- P. 322–324.

Tian M., Ihmels H. Selective ratiometric detection of mercury(II) ions in water with an acrid-izinium-based fluorescent probe // Chem. Commun.- 2009.- P.- 3175–3177.

Li H., Li Y., Dang Y., Ma L., Wu Y., Hou G., Wu L. An easily prepared hypersensitive water-soluble fluorescent probe for mercury(II) ions // Chem. Commun.- 2009.- P. 4453–4455.

Jana A., Kim J.S., Jung H.S., Bharadwaj P.K. A cryptand based chemodosimetric probe for naked-eye detection of mercury(II) ion in aqueous medium and its application in live cell im-aging // Chem. Commun.- 2009.- P. 4417–4419.

Joshi B.P., Lohani C.R., Lee K.H. A highly sensitive and selective detection of Hg(II) in 100% aqueous solution with fluorescent labeled dimerized Cys residues // Org. Bio. Chem.- 2010.- V. 8.- P. 3220-3226.

Yoon S., Miller E.W., He Q., Do P.H., Chang C. A bright and specific fluorescent sensor for mercury in water, cells, and tissue // Angew. Chem. Int. Ed.- 2007.- V. 46.- P. 6658-6661.

Ma L.J., Li Y., Li L., Sun J., Tian C., Wu Y. A protein-supported fluorescent reagent for the highly-sensitive and selective detection of mercury ions in aqueous solution and live cells // Chem. Commun.- 2008.- P. 6345–6347.

Yang M.H., Lohani C.R., Cho H., Lee K.H. A methionine-based turn-on chemical sensor for selectively monitoring Hg2+ ions in 100% aqueous solution // Org. Biomol. Chem.- 2011.- V. 9.- P. 2350-2356.

Nolan E.M., Lippard S.J.A. Turn-on fluorescent sensor for the selective detection of mercuric ion in aqueous media // J. Am. Chem. Soc.- 2003.- V. 125.- P. 14270-14271.

Melhuish W.H. Absolute spectrofluorometry // J. Res. Nat. Bur. Stand. USA.– 1972.– V. 76A.– P. 547-560

Albert A., Serjeant E.P. The determination of ionization constants: a laboratory manual.- Chapman and Hall: London.- 1971.

Krasovitskii B.M., Bolotin B.M. Organic Luminescent Materials.- VCH: New York.- 1988.

Reichardt C. Solvatochromic dyes as solvent polarity indicators // Chem. Rev.- 1994.- V. 94.- P. 2319-2358.

Grabowski Z.R., Rotkiewicz K., Siemiarczuk A., Cowley D.J., Baumann W. Twisted in-tramolecular charge transfer states (TICT). A new class of excited states with a full charge separation // // Nouv. J. Chim.-1979.- V. 3.- P. 443-454.

Grabowski Z.R., Rotkiewicz K., Rettig W. Structural changes accompanying intramolecular electron transfer: focus on Twisted Intramolecular Charge-Transfer states and structures // Chem. Rev.- 2003.- V. 103.- P. 3899-4031.

Iliashenko R.Yu., Zozulia O.S., Doroshenko A.O. High Stokes shift long-wavelength energy gap regulated fluorescence in the series of nitro/dimethylamino-substituted ortho-analogs of POPOP // Cent. Eur. J. Chem.- 2011.- V.9.- P.962-971.

Luzanov A.V. The structure of the electronic excitation of molecules in quantum-chemical models // Russ. Chem. Rev.- 1980.- V. 49.- P. 1033-1048.

Luzanov A.V., Zhikol O.A. Electron invariants and excited state structural analysis for electronic transitions within CIS, RPA, and TDDFT models // Int. J. Quant. Chem.- 2010.- V. 110.- P. 902-924.

Parker C. Photoluminescence in solutions.- Elsevier: Amsterdam-Londnon-New York, 1968.

Published
2012-12-03
Cited
How to Cite
Sevryukov, I. Y., Kovalenko, E. A., Ilyashenko, R. Y., Borodin, O. O., & Doroshenko, A. O. (2012). α-Pyridinic analogs of 2,5-diaryloxazole as chemosensing compounds sensitive to heavy metals ions. Kharkiv University Bulletin. Chemical Series, (21), 97-107. https://doi.org/10.26565/2220-637X-2012-21-06

Most read articles by the same author(s)