Quantum-chemical estimation of the threshold temperature of spontaneous 2D clusterization of substituted alkanes at the water/air interface

  • E. S. Fomina
  • E. A. Belyaeva
  • Yu. B. Vysocky
Keywords: substituted alkans, water/air interface, spontaneous clusterization

Abstract

In this work it was show that parameters used in the framework of the model to the assessment of the threshold temperature of spontaneous clusterization of non-ionic surfactants at the air/water interface (T) do not depend on the surfactant class which was inherently used in the developed schemes. The temperature dependencies of the Gibbs’ energies of alkilamide clusterization CnH2n+1CОNH2 (n=6–16) were used in this study for example. These dependencies were obtained in the frameworks of the schemes which differ from each other by the degree of their theoretical validity.

It was shown that the threshold temperature of spontaneous clusterization of substituted alkanes can be described using the fractionally linear function versus the number of СН···НС interactions in the framework of the simplest scheme with account of the found correction. The values of the threshold temperature of spontaneous clusterization of alcohols calculated using this scheme agrees well with available experimental data. The relative error of this scheme for T assessment does not exceed 1%. It was determined that the effect of the alkyl chain elongation of substituted alkanes by two methylene units corresponds to subphase temperature reduction (ΔТ) by 10-20 K in good agreement with the available experimental data.

Downloads

Download data is not yet available.

References

Langmuir, I. J. Am. Chem. Soc. 1917, 39, 1848.

Campbell, I. H., Kress, J. D., Martin, R. S., Smith, D. L., Barashkov, N. N., Ferraris, J. P. Appl. Phys. Lett. 1997, 71, 3528.

Oliveira, O. N. Brazilian Journal of Physics. 1992, 2, 60.

Ulman, A. An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly, Academic Press, Boston. 1991.

Scherer, I., Vogt, M. R., Mangussen, O. M., Behm, R. J. Langmuir 1997, 13, 7045.

Labinis, P. E., Whitesides, G. M. J. Am. Chem. Soc. 1992, 114, 9022.

Flink, S., Veggel, C. J., Reinhoudt, D. N. Adv. Mater. 2000, 12, 1315.

Somasundaran, P. Encyclopedia of Surface and Colloid Science. Taylor & Francis: Pennsyl-vania, 2006.

Chaki, N. K., Aslam, M., Sharma, J., Vijayamohanan, K. Proc. Indian Acad. Sci. (Chem. Sci.) 2001, 113, 659.

Henry, D. J., Dewan, V. I., Prime, E. L., Qiao, G. G., Solomon, D. H., Yarovsky, I. J. Phys. Chem. B. 2010, 114, 3869.

Gutierrez-Campos, A., Diaz-Leines, G., Castillo, R. J. Phys. Chem. B. 2010, 114, 5046.

Vollhardt, D. Adv. Coll. Int. Sci. 1999, 79, 19.

Flores, A., Corvera-Poire, E., Garza, C., Castillo, R. J. Phys. Chem. B. 2006, 110, 4824.

Weinbach, S. P., Jacquemain, D., Leveiller, F., et alю J. Am. Chem. Soc. 1993, 15, 11110.

Ben-Naim, A. New-York: Springer, 1980, 320.

Du, X., Liang, Y. J. Phys. Chem. B. 2000,104, 10047.

Hoffmann, F., Huhnerfuss, H., Stine, K.J. Langmuir. 1998, 14, 4525.

Harvey, N. G., Rose, P. L., Mirajovsky, D., Arnett, E. M. J. Am. Chem. Soc. 1990, 112, 3547.

Huhnerfuss, H., Neumann, V., Stine, K.J. Langmuir. 1996, 12, 2561.

Vollhardt, D. J. Phys. Chem. C. 2007, 111, 6805.

Vollhardt, D., Finerman, V.B. Adv. Coll. Int. Sci. 2006, 127, 83.

Vysotsky, Yu. B., Fomina, E. S., Belyaeva, E. A., Fainerman, V. B., Vollhardt, D., Miller, R. J. Phys. Chem. B. 2012, 116, 8996.

Vysotsky, Yu. B., Fomina, E. S., Belyaeva, E. A., Vollhardt, D., Fainerman, V. B., Miller, R. Colloids and Surfaces A: Physicochem. Eng. Aspects – in press, http://dx.doi.org/10.1016/j.colsurfa.2012.03.047

Kaplan, I.G., Rodimova, O. V. Sov. Phys. Usp., 1978, 21, 918.

Tsuzuki, S., Tanabe, K. J. Phys. Chem., 1991, 95, 2272.

Williams, D. E., Craycroft, D. J. J. Phys. Chem., 1987, 91, 6365.

Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. J. Chem. Phys., 2006, 124, 114304.

Vysotsky, Yu. B., Bryantsev, V. S, Fainerman, V. B., Vollhardt, D. J. Phys. Chem. B 2002, 106, 11285.

Solov'ev, M. E.; Solov'ev, M. M. Komp'yuternaya himiya; SOLON-Press: M., 2005.

Stone, A. J. The theory of intermolecular force. Clarendon Press: Oxford, 1996.

Vysotsky, Yu. B., Fomina, E. S., Belyaeva, E. A., Vollhardt, D., Fainerman, V. B., Miller, R. J. Phys. Chem. B 2012, 116, 2173.

Vysotsky, Yu. B., Fomina, E. S., Belyaeva, E. A., Aksenenko, E. V., Fainerman, V. B., Voll-hardt, D., Miller, R. J. Phys. Chem. B 2011, 115, 2264.

Vysotsky, Yu. B., Fomina, E. S., Belyaeva, E. A., Aksenenko, E. V., Vollhardt, D., Miller, R. J. Phys. Chem. B 2009, 113, 16557.

Vysotsky, Yu. B., Belyaeva, E. A., Fainerman, V. B., Aksenenko, E. V., Vollhardt, D., Miller, R. J. Phys. Chem. C 2007, 111, 15342.

Vysotsky, Yu. B., Muratov, D. V., Boldyreva, F. L., Fainerman, V. B., Vollhardt, D., Miller, R. J. Phys. Chem. B 2006, 110, 4717.

Vysotsky, Yu. B., Belyaeva, E. A., Fainerman V. B., Vollhardt, D., Miller, R. J. Phys. Chem. C 2007, 111, 5374.

Vysotsky, Yu. B., Belyaeva, E. A., Fainerman, V. B., Aksenenko, E. V., Vollhardt, D., Miller, R. J. Phys. Chem. B 2009, 113, 4347.

Vysotsky, Yu. B., Shved, A.A., Belyaeva, E.A., Aksenenko, E. V., Vollhardt, D., Miller, R. J. Phys. Chem. B, 2009, 113, 13235.

Stewart J. J. MOPAC 2000.00 Manual; Fujitsu Limited: Tokyo: Japan, 1999.

Vysotsky, Yu. B., Fomina, E. S., Miller, R. MACC-4, Lviv, 28 June-2 July, 2011, p. 83.

Susnow, R., Nachbar, Jr., R. B., Shchutt, C., Rabitz, H. J. Phys. Chem., 1991, 95, 10662.

Ghaskadvi, R. S., Ketterson, J. B., Dutta, P. Langmuir, 1997, 13, 5137.

Nagle, J. F. Ann. Rev. Phys. Chem. 1980, 31, 157.

Schmidt, F., Stadler, C., Lange, H. Coll. and Surf. A: Physicochem. and Eng. Asp. 1999, 149, 301.

Birdi, K. S. Self-Assembly Monolayer Structures of Lipids and Macromolecules at Interfaces. Springer: N.-Y., 1999.

Berge, B., Renault, A. Europhys. Lett., 1993, 21, 773.

Loste, E., Díaz-Martí, E., Zarbakhsh, A., Meldrum, F. C. Langmuir, 2003, 19, 2830.

F. Schreiber. Prog. Surf. Sci. 2002, 65, 151.

Published
2012-12-03
Cited
How to Cite
Fomina, E. S., Belyaeva, E. A., & Vysocky, Y. B. (2012). Quantum-chemical estimation of the threshold temperature of spontaneous 2D clusterization of substituted alkanes at the water/air interface. Kharkiv University Bulletin. Chemical Series, (21), 80-96. https://doi.org/10.26565/2220-637X-2012-21-05