On accurate high-order numerical derivatives computations for quantum chemistry purposes

Keywords: energy derivatives, numerical differentiation, finite-field method, coupled cluster theory, hyperpolarizability, DIIS

Abstract

Various molecular parameters in quantum chemistry could be computed as derivatives of energy over different arguments. Unfortunately, it is quite complicated to obtain analytical expression for characteristics that are of interest in the framework of methods that account electron correlation. Especially it relates to the coupled cluster (CC) theory. In such cases, numerical differentiation comes to rescue. This approach, like any other numerical method has empirical parameters and restrictions that require investigation. Current work is called to clarify the details of Finite-Field method usage for high-order derivatives calculation in CC approaches. General approach to the parameter choice and corresponding recommendations about numerical steadiness verification are proposed. As an example of Finite-Field approach implementation characterization of optical properties of fullerene passing process through the aperture of carbon nanotorus is given.

Downloads

Download data is not yet available.

References

Howard D. Cohen and C. C. J. Roothaan / Electric Dipole Polarizability of Atoms by the Hartree–Fock Method. I. Theory for Closed–Shell Systems // J. Chem. Phys. 43, 1965, pp. S34–S39.

Roger D. Amos / A configuration-interaction study of the polarizability derivatives of carbon monoxide // Chem. Phys. Lett. 70(3), 1979, pp. 613–617.

Richard L. Martin, Ernest R. Davidson, David F. Eggers Jr. / Ab initio theory of the polariza-bility and polarizability derivatives in H2S // Chem. Phys. 38, 1979, pp. 341–348.

Jill E. Gready, G. B. Bacskay, N. S. Hush / Finite-Field method calculations of molecular po-larizabilities. II. Theoretical analysis of the correlation corrections with application to some pseudo-two-electron systems // Chem. Phys. 23, 1977, pp. 9–22.

Jill E. Gready, G. B. Bacskay, N. S. Hush / Finite-Field method calculations of molecular po-larizabilities. III. Dipole moment gradients, polarisability gradients and field-induced shifts in bond lengths, vibrational levels, spectroscopic constants and dipole functions – application to LiH // Chem. Phys. 24, 1977, pp. 333–341.

Jill E. Gready, G. B. Bacskay, N. S. Hush / Finite-Field method calculations of molecular po-larizabilities. IV. Higher-order moments, dipole moment gradients, polarisability gradients and field-induced shifts in molecular properties: application to N2, CO, CN–, HCN and HNC // Chem. Phys. 31, 1978, pp. 467–483.

G. T. Daborn, W. I. Ferguson, N. C. Handy / The calculation of second-order molecular prop-erties at the configuration interaction level of accuracy // Chem. Phys. 50, 1950 pp. 255–263.

Tatyana A. Klimenko, Vladimir V. Ivanov and Ludwik Adamowicz / Dipole polarizabilities and hyperpolarizabilities of the small conjugated systems in the π-electron coupled cluster theory // Mol. Phys. 107(17), 2009, pp. 1729–1737.

Jingang Guan, Patrick Duffy, Jonathan T. Carter, Delano P. Chong et. al. / Comparison of lo-cal-density and Hartree-Fock calculations of molecular polarizabilities and hyperpolarizabili-ties // J. Chern. Phys. 98(6), 1993, pp. 4753-4765.

Edet F. Archibong and Ajit J. Thakkar / Finite-field many-body-perturbation-theory calcula-tion of the static hyperpolarizabilities and polarizabilities of Mg, Al+, and Ca // Phys. Rev. A. 44(9), 1991, pp. 5478-5484.

Ahmed A. K. Mohammed, Peter A. Limacher, E. Champagne / Finding optimal finite-field strengths allowing for a maximum of precision in the calculation of polarizabilities and hyper-polarizabilities / J. Comput. Chem. 34(17), 2013, pp. 1497–1507.

Anton B. Zakharov, Vladimir.V. Ivanov / A simple orbital basis set for π-electron calculations of the polarizabilities and hyperpolarizabilities of conjugated systems / J. Struct. Chem. (Russian) 52(4), 2011, pp. 645–651.

Vladimir V. Ivanov, Anton B. Zakharov, Ludwik Adamowicz / Molecular dipole static polarisabilities and hyperpolarisabilities of conjugated oligomer chains calculated with the local π-electron coupled cluster theory // Mol. Phys. 111(24), 2013, pp. 3779–3792.

Anton B. Zakharov, Vladimir V. Ivanov, Ludwik Adamowicz / Optical parameters of π-conjugated oligomer chains from the semiempirical local coupled-cluster theory // Practical Aspects of Computational Chemistry IV J. Leszczynski, M. K. Shukla (Eds.). Springer Sci-ence+Business Media, New York, 2016. Chapter 3, pp. 57-102.

A. D. Buckingham / Permanent and induced molecular moments and long-range intermolecu-lar forces // Adv. Chem. Phys. 12, 1967, pp. 107–142.

V. M. Geskin, J.-L. Brédas / Evolution of the third-order molecular polarizability in polyenes: A local view from atomic charge derivatives // J. Chem. Phys. 109(14), 1998, p. 6163.

V. M. Geskin, C. Lambert, J.-L. Brédas / Origin of high second- and third-order nonlinear op-tical response in ammonio/borato diphenylpolyene zwitterions: the remarkable role of polar-ized aromatic groups // J. Am. Chem. Soc. 125(50), 2003, pp. 15651–156.

A. V. Luzanov, O. V. Prezhdo / Analysis of Multiconfigurational Wave Functions in Terms of Hole-Particle Distributions. // J. Chem. Phys. 124, 2006, p. 224109.

John F. Stanton and Rodney J. Bartlett / The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties // J. Chem. Phys. 98(9), 1993, pp. 7029–7039.

J. L. Stuber, J. Paldus / Coupled cluster approach to electron densities // J. Mol. Structure (Theochem) 591, 2002, pp. 219–230.

E. Bogomolny, O. Bohigas, C. Schmit / Spectral properties of distance matrices // J. Phys. A: Math. Gen. 36, 2003, pp. 1–31.

F. A. Matsen / The unitary group formulation of the N-particle problem // Int. J. Quantum Chem. 8(S8), 1974, pp. 379–388.

Vladimir V. Ivanov / About procedure of the spin adaptation of the coupled cluster equations // Kharkov Univ. Bull. Chem. Series. 16(39), 2008, pp. 205–212.

P. Pulay / Improved SCF Convergence Acceleration // J. Comp. Chem. 3(4), 1982, pp. 556-560.

G. E. Scuseria, T. J. Lee and H. F. Schaefer / Accelerating the convergence of the coupled-cluster approach. The use of the DIIS method // Chem. Phys. Lett. 130(3), 1986, pp. 236–239.

M. I. Berdnyk, V. V. Ivanov / Solution of coupled cluster equations with usage of first order multistep methods // Kharkov Univ. Bull. Chem. Series. 25(48), 2015, pp. 38–45.

Yu. F. Pedash, V. V. Ivanov, A. V. Luzanov / Dipole Polarizability in π Systems in Complete Configuration Interaction // Theor. Exp. Chem. 25, 1989, pp. 607−611.

Yu. F. Pedash, V. V. Ivanov, A. V. Luzanov / Complete configuration interaction and π-shell structure in 10-center conjugated systems // Theor. Exp. Chem. 27, 1991, pp. 393−395.

Yu. F. Pedash, V. V. Ivanov, A. Yu. Semenov, O. A. Jikol / Optical and Nonlinear-Optical Properties of Quasi-One-Dimensional Conjugated Molecules: the Influence of the Alternation of Bond Lengths in the Method of Full Configuration Interaction // Kharkov Univ. Bull. Chem. Ser. 77, 2000, pp. 29−39.

Cheney W. Numerical Mathematics and Computing / W. Cheney, D. Kincaid. – Belmont: Thomson Brooks/Cole, 2008, 763 p.

Published
2018-09-03
Cited
How to Cite
Zakharov, A. B., & Ivanov, V. V. (2018). On accurate high-order numerical derivatives computations for quantum chemistry purposes. Kharkiv University Bulletin. Chemical Series, (30), 36-49. https://doi.org/10.26565/2220-637X-2018-30-04