From mathematical logic to programming languages artificial intelligence

  • Володимир Куклін V.N. Karazin Kharkiv National University
Keywords: Theory predicates, hypergraphs AND/OR, Prolog programming

Abstract

The paper considers the process of formation of the theory of expert systems on an example of formation of artificial intelligence programming language PROLOG. It showed a difficult path of awareness of artificial intelligence and the motives that led to the emergence of expert systems that are based on mathematical logic. We discuss the basic ideas and procedures that led to the construction of the first department of mathematical logic - predicates theory, representation of procedure on hypergraphs, and then to create a Prolog language. Progress has been made in the development of intelligent systems and the problems faced by researchers are discussed.

Downloads

Download data is not yet available.

Author Biography

Володимир Куклін, V.N. Karazin Kharkiv National University
Dr., Full Professor, head of the chair

References

Newell A. The chess machine: an example of dealing with a complex task by adaptation / A. Newell // ACM. Proceedings of the 1955 Western joint computer conference. – 1955. – Р.101 – 108.

Newell A. GPS, program that simulates human thought / A. Newell, H. Simon // Defense Technical Information Center. – 1961. – Vol.4. – №10. – P. 109 – 124.

Shannon C.E. A Mathematical Theory of Communication / C.E. Shannon // The Bell System Technical Journal. – 1948. – Vol. 27. – P.379 – 423; 623 – 656.

Gotlob F. Izbrannye raboty / Frege Gotlob; Sost. V.V. Anashvili, A.L. Nikiforov; Per. s nem. V.V. Anashvili .– Moskva: Domintellektual, 1997. – 159 s.

Turing A.M. On Computable Numbers, with an application to the Entscheidungsproblem / A.M. Turing // Proc. London Math. Soc. Ser. 2. – 1937. – Vol. 42. – P. 230-265.

Newell A. Programming the Logic Theory Machine / A. Newell, F.C. Shaw // Proceedings of the Western Joint Computer Conference. – 1957. – P. 230-240.

McCarthy J. Lisp 1.5 Programmer’s Manual / J. McCarthy, P. Abrahams, D. Edwards et al. – MIT Press, Cambridge, Massachu-setts. – 1962.

Church A. Introduction to mathematical logic. Vol.1./ A. Church . – Princeton: Princeton University Press,1956. – 485 p.

Robinson J. A. A Machine-Oriented Logic Based on the Resolution Principle / J. A. Robinson // Communications of the ACM. – 1965. – Vol. 12. – №1. – P. 23-41.

Chang C.L. Symbolic Logic and Mechanical Theorem Proving / C.L. Chang, R.C.T. Lee. – New York: Academic Press, 1973. – 331 p.

Colmerauer A. Un système de communication enfrançais / Colmerauer Alain, Henry Kanoui, Robert Pasero et Philippe Roussel // Rapport préliminaire de fin de contrat IRIA, Groupe Intelligence Artificielle, Faculté des Sciences de Luminy, Université Aix-Marseille II, France, 1972.

Herbrand J. Recherches sur la théorie de la demonstration / J. Herbrand // Travaux de la société des Sciences et des Lettres de Var-sovie, Class III, Sciences Mathématiques et Physiques. – 1930. – Vol. 33.

Pospesel H. Introdaction to Logic: Predicate Logic. Englewood Cliffs / H. Pospesel. – New Jersey: Prentice – Hall, 1976.

Nil'son N. Printsipy iskusstvennogo intellekta / N. Nil'son; per. s angl. – Moskva: Radio i svyaz', 1985. – 376 s.

Maslov S. An inverse method of establishing deducibility in classical predicate calculus / S. Maslov // Dokl. AN SSSR. – 1964. – Vol. 159. – P. 17–20; Proof-search strategies for methods of the resolution type // Machine Intelligence. – 1971. – N. 6. – P. 77-90.

Van Vaalen J. An extension of unification to substitutions with an application to automatic theorem proving / J. van Vaalen // IJCAI. – 1975. – Vol.4. – P. 77–82.

Sickel S. A search technique for clause interconnectivity graphs / S. Sickel // IEEE Trans. On Computers. C-25. – 1976. – № 8. – P. 823–835.

Kőnig D. Theorie der endlichen und unendlichen Graphen / D.Kőnig. - Leipzig: Akademische Verlagsgesellschaf, 1936; per. s angl.: Theory of finite and infinite graphs. - Birkhäuser, 1990.

Martelli A. From dynamic programming to search algorithms with functional costs / A. Martelli, U. Montanari // IJCA. - 1975. - Vol.4. - P.345-350; Optimizing decision trees through heuristically guided search // CACM. - 1978. - Vol.21. - № 12. - P. 1025-1039.

Bratko I. Programmirovanie na yazyke PROLOG dlya iskusstvennogo intellekta / I. Bratko; per. s angl. – Moskva: Mir, 1990. – 560 s.

Jang J.S.R. ANFIS: adaptive-network-based fuzzy inference system / J.S.R. Jang // IEEE transactions on systems, man, and cybernetics. - 1993. - Vol.23. - № 3. - P. 665-685.

Zadeh Lotfi A. Fuzzy sets / Lotfi A. Zadeh // Information and Control. - 1965. - Vol.8. - P. 338 – 353; Fuzzy sets and systems // System Theory; Fox J. editor. - Brooklyn, New York: Polytechnic Press, 1965. - P. 29–39.

Kosko B. Fuzzy systems as universal approximation / B. Kosko // IEEE Transactions on Computers. - 1994. - Vol. 43. - № 11. - P. 1329-1333.

Kuklin V. M. Vzglyad na budushchee planetarnoi tsivilizatsii / V. M. Kuklin // Universitates: Nauka i prosveshchenie. – 2003. – № 4 (16). – S. 18–22.

Kuklin V. Will the artificial intelligence help us? / V. Kuklin // COMPUTER SCIENCE AND CYBERSECURITY. - 2016. - Issue 4(4). – P. 35-41 [Electronic Resource]. - Way of access: http://periodicals.karazin.ua/cscs/article/view/8266/7739.pdf.
Published
2017-04-24
Cited
How to Cite
Куклін, В. (2017). From mathematical logic to programming languages artificial intelligence. Computer Science and Cybersecurity, (1), 40-52. Retrieved from https://periodicals.karazin.ua/cscs/article/view/8306
Section
Статті