The method of pseudorandom codes decoding on the basis of the modified method of branches and boundaries
Keywords:
pseudorandom code, branch and bound method, computational complexity, error-correcting coding
Abstract
Reasons of crisis of error-correcting coding are considered. Underlined the urgency of application of pseudo random codes in modern systems transmission of information. Presented constructive mathematical method of decoding pseudorandom codes based on the use of the method of branches and borders. Is proposed for modification of the classical algorithm of branch and bound. Is proposed, assessment of computing complexity of methods of decoding of pseudorandom codes on basis of the classical and modified algorithm of branches and boundaries is made, and also assessment of computing complexity of the offered method in comparison with exhaustive search method. Program implementation of method of decoding of pseudorandom codes is developed.Downloads
Download data is not yet available.
References
Shannon C. E. A Mathematical Theory of Communication / C. E. Shannon // Bell Syst. Tech. J. – 1948. – Vol. 27. – P. 379 – 423, 623 – 656. (In English)
Shannon C. E. Communication in the presence of noise / Shannon C. E. // Proc. IRE. – 1949. – Vol. 37. – P. 10 – 21. (In English)
Lavrovskaya T.V. Matematicheskie modeli sluchaynyih i psevdosluchaynyih kodov // T.V. Lavrovskaya, S.G. Rassomahin // Sistemi obrobki Informatsiyi. – 2016. – Vip.9 (146). – S. 55-61. (In Russian)
Lavrovskaya T.V. Fizicheskaya model psevdosluchaynyih kodov v mnogomernom Evklidovom prostranstve / T.V. Lavrovskaya, S.G. Rassomahin // Sistemi Ozbroennya i Viyskova TehnIka. – 2016. – Vip. 3 (47). – S. 79-84. (In Russian)
Nazaryants E.G. Polinomialnaya slozhnost parallelnoy formyi metoda vetvey i granits resheniya zadachi kommivoyazhera // Ya.E. Romm, E.G. Nazaryants // Izvestiya Yuzhnogo federalnogo universiteta. Tehnicheskie nauki. – 2015. – Vip.4 (165). – S. 44. (In Russian)
Akulich I.L. Matematicheskoe programmirovanie v primerah i zadachah: ucheb. posobie dlya studentov ekonom. spets. vuzov / I.L. Akulich – Moskva: Vyissh. Shkola. – 1986. – 319 s. (In Russian)
Shannon C. E. Communication in the presence of noise / Shannon C. E. // Proc. IRE. – 1949. – Vol. 37. – P. 10 – 21. (In English)
Lavrovskaya T.V. Matematicheskie modeli sluchaynyih i psevdosluchaynyih kodov // T.V. Lavrovskaya, S.G. Rassomahin // Sistemi obrobki Informatsiyi. – 2016. – Vip.9 (146). – S. 55-61. (In Russian)
Lavrovskaya T.V. Fizicheskaya model psevdosluchaynyih kodov v mnogomernom Evklidovom prostranstve / T.V. Lavrovskaya, S.G. Rassomahin // Sistemi Ozbroennya i Viyskova TehnIka. – 2016. – Vip. 3 (47). – S. 79-84. (In Russian)
Nazaryants E.G. Polinomialnaya slozhnost parallelnoy formyi metoda vetvey i granits resheniya zadachi kommivoyazhera // Ya.E. Romm, E.G. Nazaryants // Izvestiya Yuzhnogo federalnogo universiteta. Tehnicheskie nauki. – 2015. – Vip.4 (165). – S. 44. (In Russian)
Akulich I.L. Matematicheskoe programmirovanie v primerah i zadachah: ucheb. posobie dlya studentov ekonom. spets. vuzov / I.L. Akulich – Moskva: Vyissh. Shkola. – 1986. – 319 s. (In Russian)
Published
2017-04-24
Cited
How to Cite
Лавровська, Т., & Рассомахін, С. (2017). The method of pseudorandom codes decoding on the basis of the modified method of branches and boundaries. Computer Science and Cybersecurity, (1), 4-21. Retrieved from https://periodicals.karazin.ua/cscs/article/view/8293
Issue
Section
Статті