Comparative analysis and study of the properties of information carriers for steganographic data hiding in clustered file sys-tems
Abstract
The paper studies and analyzes various modern information storage technologies, namely HDD, Flash-USB, SSD. We`ve analyzed different indicators such as the number of implemented products, price, speed of reading and writing. Besides, we`ve considered some indicators of the information carriers’ efficiency in terms of view of the possibility of using steganographic methods for hiding information in clustered file systems. It have been analyzed the speed of sequential reading / writing and the speed of access to a random cluster, corresponding to the speed of access to a fragmented file. For this task, we used the test results from the UserBenchmark resource. The testing has made using the Sequential and Random4k methods. In addition, we have provided an assessment of information carriers and have gave recommendations of using the particular information carrier and method for hiding data by mixing clusters in the structure of the file system. Besides, it was analyzed the dependence of the speed parameters of access to the cluster on the level of file fragmentation. Refinements are made of how an increase or decrease in the level of fragmentation (entanglement) affects the speed of access to the file, which is an important indicator when using the method of hiding data in the file system structure. The advantages and disadvantages of various types of storage devices have been discussed, and its comparative analysis was made. Moreover, we analyzed the features of the process of defragmentation of drives, and the influence of various factors on the overall level of fragmentation on the storage medium. We placed emphasis on the greater the level of fragmentation on the storage medium, the more information could be hidden. It was concluded that due to the widespread use of SSD / HDD drives, the method of hiding information in the structure of file systems, by mixing clusters of covering files, is relevant.
Downloads
References
Klima, R.E., Klima, R., Sigmon, N.P., Sigmon, N., Klima, R., Sigmon, N.P., Sigmon, N.: Cryptology : Classical and Modern. Chapman and Hall/CRC (2018). https://doi.org/10.1201/9781315170664.
Delfs, H., Knebl, H.: Introduction to Cryptography. Springer Berlin Heidelberg, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47974-2.
Childs, L.N.: Cryptology and Error Correction: An Algebraic Introduction and Real-World Applications. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-15453-0.
Manoj, I.V.S.: Cryptography and Steganography. IJCA. 1, 63–68 (2010). https://doi.org/10.5120/257-414.
Yahya, A.: Introduction to Steganography. In: Yahya, A. (ed.) Steganography Techniques for Digital Images. pp. 1–7. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-78597-4_1.
Qin, J., Luo, Y., Xiang, X., Tan, Y., Huang, H.: Coverless Image Steganography: A Survey. IEEE Access. 7, 171372–171394 (2019). https://doi.org/10.1109/ACCESS.2019.2955452.
Schöttle, P., Böhme, R.: Game Theory and Adaptive Steganography. IEEE Transactions on Information Forensics and Security. 11, 760–773 (2016). https://doi.org/10.1109/TIFS.2015.2509941.
Yahya, A.: Steganography Techniques. In: Yahya, A. (ed.) Steganography Techniques for Digital Images. pp. 9–42. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-78597-4_2.
Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge University Press, Cambridge ; New York (2009).
Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography, 2nd Ed. Morgan Kaufmann, Amsterdam ; Boston (2007).
Kim, C.R., Lee, S.H., Lee, J.H., Park, J.-I.: Blind decoding of image steganography using entropy model. Electronics Letters. 54, 626–628 (2018). https://doi.org/10.1049/el.2017.4276.
Rowland, C.H.: Covert channels in the TCP/IP protocol suite, https://firstmonday.org/ojs/index.php/fm/article/download/528/449?inline=1, Last Accessed 2020/11/01.
Mazurczyk, W., Lubacz, J.: LACK—a VoIP steganographic method. Telecommun Syst. 45, 153–163 (2010). https://doi.org/10.1007/s11235-009-9245-y.
Lubacz, J., Mazurczyk, W., Szczypiorski, K.: Principles and Overview of Network Steganography. IEEE Communications Magazine. 52, (2012). https://doi.org/10.1109/MCOM.2014.6815916.
Mazurczyk, W., Smolarczyk, M., Szczypiorski, K.: On information hiding in retransmissions. Telecommun Syst. 52, 1113–1121 (2013). https://doi.org/10.1007/s11235-011-9617-y.
Cauich, E., Gómez Cárdenas, R., Watanabe, R.: Data Hiding in Identification and Offset IP Fields. In: Ramos, F.F., Larios Rosillo, V., and Unger, H. (eds.) Advanced Distributed Systems. pp. 118–125. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/11533962_11.
Wang, M., Gu, W., Ma, C.: A Multimode Network Steganography for Covert Wireless Communication Based on BitTorrent, https://www.hindawi.com/journals/scn/2020/8848315/, last accessed 2020/11/08. https://doi.org/10.1155/2020/8848315.
Seo, J.O., Manoharan, S., Mahanti, A.: Network steganography and steganalysis - a concise review. In: 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT). pp. 368–371 (2016). https://doi.org/10.1109/ICATCCT.2016.7912025.
Noskov, A.: Analysis of Network Protocols: The Ability of Concealing the Information. Computer and Network Security. (2020). https://doi.org/10.5772/intechopen.88098.
A High Capacity 3D Steganography Algorithm, https://www.computer.org/csdl/journal/tg/2009/02/ttg2009020274/13rRUwdIOUD, Last Accessed 2020/10/20. https://doi.org/10.1109/TVCG.2008.94.
Paramasivan, T., Natarajan, V., Gnanasekaran, A., Venkatesan, V., Anitha, R.: Pattern based 3D image Steganography. 3D Research. 4, (2014). https://doi.org/10.1007/3DRes.01(2013)1.
Chao, M.-W., Lin, C., Yu, C.-W., Lee, T.-Y.: A high capacity 3D steganography algorithm. IEEE Trans Vis Comput Graph. 15, 274–284 (2009). https://doi.org/10.1109/TVCG.2008.94.
Li, N., Hu, J., Sun, R., Wang, S., Luo, Z.: A High-Capacity 3D Steganography Algorithm With Adjustable Distortion. IEEE Access. 5, 24457–24466 (2017). https://doi.org/10.1109/ACCESS.2017.2767072.
Thiyagarajan, P., Natarajan, V., Aghila, G., Prasanna Venkatesan, V., Anitha, R.: Pattern based 3D image Steganography. 3D Res. 4, 1 (2014). https://doi.org/10.1007/3DRes.01(2013)1.
Kuznetsov, A., Stefanovych, O., Gorbenko, Y., Smirnov, O., Krasnobaev, V., Kuznetsova, K.: Information Hiding Using 3D-Printing Technology. In: 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). pp. 701–706 (2019). https://doi.org/10.1109/IDAACS.2019.8924352.
Kuznetsov, A.A., Stefanovych, O.O., Prokopovych-Tkachenko, D.I., Kuznetsova, K.O.: 3D STEGANOGRAPHY INFORMATION HIDING. TRE. 78, (2019). https://doi.org/10.1615/TelecomRadEng.v78.i12.30.
Khan, H., Javed, M., Mirza, F., Khayam, S.: Evading Disk Investigation and Forensics using a Cluster-Based Covert Channel. (2012).
Khan, H., Javed, M., Khayam, S.A., Mirza, F.: Designing a cluster-based covert channel to evade disk investigation and forensics. Computers & Security. 30, 35–49 (2011). https://doi.org/10.1016/j.cose.2010.10.005.
Venčkauskas, A., Morkevicius, N., Petraitis, G., Ceponis, J.: Covert Channel for Cluster-based File Systems Using Multiple Cover Files. Information technology and control. 42, (2013). https://doi.org/10.5755/j01.itc.42.3.3328.
Kuznetsov, A., Shekhanin, K., Kolhatin, A., Mikheev, I., Belozertsev, I.: Hiding data in the structure of the FAT family file system. In: 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT). pp. 337–342 (2018). https://doi.org/10.1109/DESSERT.2018.8409155.
Shekhanin, K.Y., Kolhatin, A.O., Demenko, E.E., Kuznetsov, A.A.: ON HIDING DATA INTO THE STRUCTURE OF THE FAT FAMILY FILE SYSTEM. TRE. 78, (2019). https://doi.org/10.1615/TelecomRadEng.v78.i11.50.
Vokorokos, L., Madoš, B., Ádám, N., Baláž, A., Porubän, J., Chovancová, E.: Multi-Carrier Steganographic Algorithm Using File Fragmentation of FAT FS. COMPUTING AND INFORMATICS. 38, 343-366–366 (2019).
Shekhanin, K., Kuznetsov, A., Krasnobayev, V., Smirnov, O.: Detecting Hidden Information in FAT. IJCNIS. 12, 33–43 (2020). https://doi.org/10.5815/ijcnis.2020.03.04.
Aycock, J., de Castro, D.M.N.: Permutation Steganography in FAT Filesystems. In: Shi, Y.Q. (ed.) Transactions on Data Hiding and Multimedia Security X. pp. 92–105. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46739-86.
Davis, J., MacLean, J., Dampier, D.: Methods of Information Hiding and Detection in File Systems. (2010). https://doi.org/10.1109/SADFE.2010.17.
Neuner, S., Voyiatzis, A.G., Schmiedecker, M., Brunthaler, S., Katzenbeisser, S., Weippl, E.R.: Time is on my side: Steganography in filesystem metadata. Digital Investigation. 18, S76–S86 (2016). https://doi.org/10.1016/j.diin.2016.04.010.
FAT File System, https://www.keil.com/pack/doc/mw/FileSystem/html/fat_fs.html, Last Accessed 2020/10/01.
FAT File Systems. FAT32, FAT16, FAT12 - NTFS.com, https://www.ntfs.com/fat_systems.htm, Last Accessed 2020/10/10.
Overview of FAT, HPFS, and NTFS File Systems, https://support.microsoft.com/en-us/help/100108/overview-of-fat-hpfs-and-ntfs-file-systems, Last Accessed 2020/10/10.