Principles of formation, processing and properties of OFDM signals
Abstract
The article discusses the technology of forming signals used in mobile, information and telecommunication systems, and also provides an analysis of promising technologies that can be used in wireless communication systems of broadband access. It is shown that the widely used modulation scheme with orthogonal frequency division (OFDM) has a number of drawbacks, which can lead to a decrease in system performance. Alternative technologies for generating signals are presented, in particular, a technology based on windowed signal processing (W-OFDM), a technology based on time division (w-OFDM); UFMC technology and others to eliminate the disadvantages of OFDM technology. New points of view are proposed on the use of multi-carrier transmission technology in the form of multiplexing with orthogonal frequency division (in order to increase the security of modern wireless broadband access communication systems from external and internal threats), a class of non-linear discrete cryptographic sequences to form a physical data carrier - signal. It is shown that the use of such signals will improve the security of these systems from inserting (imposing) false messages into the system, falsifying messages, as well as ensuring the integrity and confidentiality of data, receiving noise immunity and secrecy of the system.
Downloads
References
Gorbenko, I.D., Zamula, A.A., Semenko, Ye.A. Ensemble and correlation properties of cryptographic signals for telecommunication system and network applications // Telecommunications and Radio Engineering. – Vol. 75, 2016 Issue 2, pp. 169-178.
I.D. Gorbenko, А.А. Zamula Cryptographic signals: requirements, methods of synthesis, properties, application in telecommuni-cation systems Telecommunications and Radio Engineering. Vol. 76, 2017 Issue 12, pp. 1079-1100.
ITU-R, Recommendation M.2083-0, “IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond”, ITU recommendation, Sept. 2015.
Pen Guan et al. “5G Field Trials: OFDM-Based Waveforms and Mixed Numerologies” IEEE Journal on Selected Areas in Com-munications, Vol. 35, No. 6, pp. 1234-1243, March 2017.
T.S. Rappaport et al. “Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!”, IEEE Access, Vol. 1, pp. 335-349, 2013.
J.G. Andrews et al. “What will 5G be?”, IEEE Journal on Selected Areas in Communications, Vol. 32, no. 6, pp. 1065-1082, June 2014.
J. Abdoli, et al. “Filtered OFDM: A new waveform for future wireless systems”, Proc. IEEE SPAWC, pp. 66-70, Jun. 2015.
X. Zhang et al. “Filtered-OFDM – Enabler for Flexible Waveformin The 5th Generation Cellular Networks”, Proc. IEEE GLOBECOM, pp. 1-6, Dec. 2015.
Li. Jialing et al. “A resource block based filtered OFDM scheme and performance comparison”, Proc. IEEE ICT, pp. 1-5, May 2013.
T. L. Marzetta “Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas”, IEEE Transactions on Wireless Communications, Vol. 9, No. 11, pp. 3590-3600, Nov. 2010.
China Mobile Research Institute, “C-RAN: The Road Towards Green RAN”, white paper, 2011. [On-line]. Available: http://labs.chinamobile.com/cran/
H. Nikopour et al. “Sparse code multiple access”, Proc. IEEE PIMRC, pp. 332-336, Sept. 2013.
G Forum. (2016, Mar.). 5G white paper: 5G vision, requirements, and enabling technologies [On-line]. Available: http://kani.or.kr/5g/whitepaper/5G%20Vision,%20Requirements,%20and%20Enabling%20Technologies.pdf.
B. Farhang Boroujeny “Filter bank multicarrier modulation: a waveform candidate for 5G and beyond,”Advances in Electrical Engineering, vol. 2014, Dec. 2014. doi:10.1155/2014/482805.
Zekeriyya Esat Ankaralı et al. “Enhanced OFDM for 5G RAN”, June 2017, doi: 10.3969/j. issn. 1673-5188. 2017. S1. 002.
A. Şahin, I. Güvenç and H. Arslan “A survey on multicarrier communications: prototype filters, lattice structures, and imple-mentation aspects, ”IEEE Communications Surveys & Tutorials, Vol. 16, No. 3, pp. 1312-1338, Aug. 2014. doi:10.1109/SURV.2013.121213.00263.
Huawei and HiSilicon, “f-OFDM scheme and filter design,”3GPP Standard Contribution (R1-165425), Nanjing, China, May 2016.
V.P. Fedosov, D.G. Kovtun, A.A. Legin, A.V. Lomakina Issledovanie modeli OFDM signala s malym urovnem vnepolosnogo izlucheniya / Izvestiya YuFU. Tekhnicheskie nauki. 2016, pp. 6-16.
Harish Kumar Pal, Anand Kumar Singh PAPR Reduction technique using advanced peak windowing method of OFDM System. International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Vol.-3, Issue 2, May 2013.
Bakulin, M. G., Kreindelin, V. B., Shloma, A. M., Shumov, A. P. Tekhnologiya OFDM. Uchebnoe posobie dlya vuzov. – M.: Goryachaya liniya – Telekom, 2015. - 360 p.
Zamula O.A. Tekhnologii formirovaniya OFDM signalov v sovremennykh informatsionno-kommunikatsionnykh sistemakh Radiotekhnika: Vseukrainskii mezhvedomstvennyi nauchno – tekhnicheskii sbornik – 2018. – Vip. 193. pp. 152-159.
Gorbenko, I.D., Gorbenko, Ju.I. Prykladna kryptologija. Teorija. Praktyka. Zastosuvannja: monografija / I.D. Gorbenko, Ju.I. Gorbenko. – Harkiv: Fort, 2012. – 880 p.
Gorbenko, Ju.I. Metody pobuduvannja ta analizu, standartyzacija ta zastosuvannja kryptografichnyh system / Ju.I. Gorbenko. – Harkiv: Fort, 2016. – 959 p.
I.D. Gorbenko, А.А. Zamula, V.L. Morozov Information security and noise immunity of telecommunication systems under con-ditions of various internal and external impacts // Telecommunications and Radio Engineering Vol. 76, 2017 Issue 19, pp 1705-1717.
Zamula A.A., Morozov V.L. Informatsionnye tekhnologii peredachi dannykh v sovremennykh telekommunikatsionnykh sistemakh // Radiotekhnika: Vseukrainskii mezhvedomstvennyi nauchno – tekhnicheskii sbornik – 2016. – Vyp. 186. pp. 24-32.
Simmons G. J. «Authentication theory coding theory» 1985.
I. D. Gorbenko, А.А. Zamula, A. E. Semenko, V.L. Morozov Method for synthesis of performed signals systems based on cryp-tographic discrete sequences of symbols // Telecommunications and Radio Engineering Vol. 76, 2017 Issue 17, pp. 1523-1533.
I.D. Gorbenko, А.А. Zamula, A.E. Semenko, V. L. Morozov Method for complex improvement of characteristics of orthogonal ensembles based on multiplicative combining of signals of different classes// Telecommunications and Radio Engineering Vol. 76, 2017 Issue 18, pp. 1581-1594.
Gorbenko, I.D., Zamula, O.A. Modeli ta metody syntezu kryptografichnyh sygnaliv ta i'h optymizacija za kryterijem chasovoi' skladnosti // Matematychne ta komp’juterne modeljuvannja. Serija: Fizyko-matematychni nauky: zb. Nauk. prac' / Instytut kiber-netyky imeni V.M. Glushkova Nacional'noi' akademii' nauk Ukrai'ny, 2017. Vyp. 15. 272 p.
Sarvate D.V. Crosleration Properties of Pseudorandom and Related Sequences / D.V. Sarvate, M.V. Pursley // IEEE Trans. Commun, 1980. – Vol. Com 68 – pp. 59–90.
Sverdlik, M. B. Optimal'nye diskretnye signaly. / Sverdlik M. B. M: Radio i Svyaz', 1975. – 200 p.
Tew, Y. & Wong, K. (2014). An overview of data hiding in H.264/AVC compressed video. IEEE Transactions on Circuits and Systems for Video Technology, 24(2), 305–319.
Sharma, V. & Singh, G. (2014). On BER assessment of conventional- and wavelet-OFDM over AWGN channel. Jounal of Optik, 125, 6071–6073.
Gupta, M. K. & Tiwari, S. (2013). Performance evaluation of conventional and wavelet based OFDM system. International Journal of Electronics and Communications, 67(4), 348–354.
Dutta, A. et al. (2013). Secret agent radio: Covert communication through dirty constellations. In M. Kirchner & D. Ghosal (Eds.), Information Hiding. IH 2012. Lecture notes in computer science (Vol. 7692, pp. 160-175). Berlin, Heidelberg: Springer.
Bash, B. A., Goeckel, D., Towsley, D. & Guha, S. (2015). Hiding information in noise: Fundamental limits of covert wireless communication. IEEE Communications Magazine, 53(12), 26–31.
Bloch, M. (2016). Covert communication over noisy memoryless channels: A resolvability perspective. IEEE Transactions on Information Theory, 62(5), 2334–2354.
Bouhlel A., Sakly A. & Mansouri N. (2015). Performance comparison of DWT based MIMO OFDM and FFT based MIMO OFDM. Procedia Computer Science, 73, 266–273.
Khan, A. R. & Gulhane, S. M. (2017). A highly sustainable multi-band orthogonal wavelet code division multiplexing UWB communication system for underground mine channel. Digital Communications and Networks, 3, 1–13.
Kaur, H., Kumar, M., Sharma, A. K. & Singh, H. P. (2016). Performance analysis of DWT based OFDM over fading environ-ments for mobile WiMax. Jounal of Optik, 127, 544–547.
Mushtaq, A. S., Ihsan, A. A. & Qasim, N. (2015). 2D-DWT vs. FFT OFDM systems in fading AWGN channels. Radioelectron-ics and Communication Systems, 58(5), 228–233.
Mahapatra, C., Leung, V. C. M. & Stouraitis, T. (2017). An orthogonal wavelet division multiple-access processor architecture for LTE-advanced wireless/radio-over-fiber systems over heterogeneous networks. EURASIP Journal on Advances in Signal Processing, 1, 1–16.
Villalobos, S., Aldana, F., Ladino, I., Diaz, I. (2017). A waveletbased OFDM system implementation on GNURadio platform vs. an FFT-based. In Springer workshop on engineering applications (WEA-2017), Vol. 742, 201–211.
Kumar, S. & Sharma, S. (2013). Performance evaluation physical layer of IEEE 802.11 standards under Fourier transform and wavelet transform over Rician fading channel. In IEEE, 2nd international conference on information management in the knowledge economy, pp. 69–74.
Kumar, S., Singh, A. & Kumar, M. Wireless Netw (2018). https://doi.org/10.1007/s11276-018-1775-3
Kansal, L., Sharma, V. & Singh, J. (2017). BER assessment of FFT-OFDM against WHT-OFDM over different fading channel. Wireless Networks, 23(7), 2189–2196.