Probabilistic minutia distribution in biometric fingerprint images
Abstract
The analysis of the fingerprint scanning results shows an extremely small degree of similarity among the obtained images. The cause of the problem mentioned above is not only the complexity of the procedure itself, but also the imperfection of the used recognition algorithms. The research involves development of a mathematical model for the probabilistic minutia distribution in biometric fingerprint images. The suggested model is based on heuristic analysis of the fingerprint scanning results with account for the nature of the potential errors. She allows to model a typical minutiae behavior in the biometric fingerprint images.
Downloads
References
Xudong Jiang and Wei-Yun Yau "Fingerprint minutiae matching based on the local and global structures, "Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, Barcelona, 2000, pp. 1038-1041 Vol. 2.
D. Maltoni, D.Maio, A.K.Jain, S.Prabhakar. Handbook of Fingerprint Recognition, Springer, New York, 2003.
“Privacy Enhancing Technologies for Biometric Data”, 2015. [On-line]. Internet: http://www.cs.haifa.ac.il/~orrd/PrivDay/2015/
“Privacy Enhancing Technologies for Biometric Data”, 2016. [On-line]. Internet: http://www.cs.haifa.ac.il/~orrd/PrivDay/
N. K. Ratha, K. Karu, Shaoyun Chen and A. K. Jain, "A real-time matching system for large fingerprint databases," in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 8, pp. 799-813, Aug 1996.
ISO/IEC 19794-2. Information technology – Biometric data interchange formats – Part 2: Finger minutiae data.
ISO/IEC 19794-3. Information technology – Biometric data interchange formats – Part 3: Finger pattern spectral data.
ISO/IEC 19794-4. Information technology – Biometric data interchange formats – Part 4: Finger image data.
ISO/IEC 19794-5. Information technology – Biometric data interchange formats – Part 5: Face image data.
Craw, I., Costen, N.P., Kato, T., Akamatsu, S., “How should we represent faces for automatic recognition?”, IEEE Trans. Pat. Anal. Mach. Intel. 21725–736, 1999.
Draper, B.A., Baek, K., Bartlett, M.S., Beveridge, J.R., “Recognizing faces with PCA and ICA”, Computer Vision and Image Understanding, 91:115-137, 2003.
C. Xiang, X.A. Fan, T.H. Lee. “Face recognition using recursive Fisher linear discriminant.” Communications, Circuits and Systems. – 2004. – Vol. 2. – pp. 27-29.
“FVC2004. Fingerprint Verification Competetion. Databases”. [On-line]. Internet: http://bias.csr.unibo.it/fvc2004/databases.asp
“SourceAFIS for Java and .NET”. [On-line]. Internet: https://sourceafis.machinezoo.com/
“SourceAFIS Fingerprint recognition library for .NET and experimentally for Java”. [On-line]. Internet: https://source-forge.net/projects/sourceafis/