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ДОСЛІДЖЕННЯ ТА ЗНАХОДЖЕННЯ 1-ОЇ, 2-ОЇ ПОХІДНИХ ВІД СКЛАДОВИХ ЧЛЕНІВ 

ДИСПЕРСІЙНОГО РІВНЯННЯ ДЛЯ ПЛОСКОГО ДВОШАРОВОГО ОДНОВИМІРНО-

ПЕРІОДИЧНОГО ФОТОННОГО КРИСТАЛА  

Актуальність. Останні десятиріччя спостерігається стрімкий розвиток фотоніки. Тому науковий інтерес до 

оптичного діапазону електромагнітного випромінювання продовжує зберігати актуальність. Як наслідок, 

задача про розсіяння електромагнітних хвиль (дифракційна задача) на таких об’єктах як фотонні кристали 

представляться актуальною задачею. Йдеться про розв’язання хвильового рівняння з подальшим 

застосуванням методу розділення змінних та переходом до проблеми Штурма-Ліувілля на необмеженому 

інтервалі (−∞, + ∞). Для дифракційних структур, які розглядаються у роботі, зазначений метод розділення 

змінних дозволяє отримати розв’язок хвильового рівняння (котре у такому разі виявляється рівнянням з 

періодичними коефіцієнтами) у явному вигляді. Інший метод – метод матриці перенесення (Transfer matrix 

method) для хвильового рівняння з періодичними коефіцієнтами дає змогу врахувати специфіку його рішення 

на необмеженому інтервалі (−∞, + ∞), та досягти виконання складової умови розв’язності проблеми Штурма-

Ліувілля – умови про самоспряженість диференціального оператора в цій проблемі. Тож, метод матриці 

перенесення передбачає побудову та розв’язок так званого дисперсійного рівняння – рівняння, що пов’язує 

параметри дифракційної задачі з умовами розв’язності проблеми Штурма-Ліувілля. У наслідок цього виникає 

необхідність у дослідженні складових членів такого дисперсійного рівняння. А саме, виникає необхідність 

розуміти поведінку розв’язку спектрального рівняння у даній проблемі Штурма-Ліувілля залежно від 

спектрального параметра. Тому, на думку авторів, пошук похідних від цього розв’язку має актуальність, 

оскільки апарат похідної у цілому відіграє доволі важливу роль у дослідженні будь-яких функціональних 

залежностей.  

Мета роботи. Визначити першу та другу похідні за спектральним параметром від розв’язку спектрального 

рівняння у проблемі Штурма-Ліувілля для плоского двошарового одновимірно-періодичного фотонного 

кристала. А також, показати, що кожна із зазначених похідних лінійно виражається через сам розв’язок та свою 

похідну, але за просторовою змінною, а вже як наслідок, можливість мати дві лінійні залежності, що дає змогу 

отримати лінійне однорідне диференціальне рівняння 2-го порядку відносно цього розв’язку. Подальше 

дослідження зазначеного рівняння у деякій перспективі може послужити розвитку альтернативного апарату 

розуміння поведінки даного розв’язку як функції спектрального параметра.  

show that each of the specified derivatives is linearly expressed through the solution itself and its derivative, but in 

terms of a spatial variable, and as a consequence, the possibility of having two linear dependencies, which makes it 

possible to obtain a  

Методи і методологія. Умова про самоспряженість диференціального оператора у проблемі Штурма-Ліувілля 

(складова умова розв’язності проблеми Штурма-Ліувілля) для плоского двошарового нескінченного 

одновимірно-періодичного фотонного кристала досягається шляхом застосування методу матриці перенесення 

(Transfer matrix method). Спираючись на принцип невизначених коефіцієнтів, автори використовують 

підставлення (що запропоновано у роботі) та здійснюють перехід від лінійного неоднорідного 

диференціального рівняння 2-го порядку, розв’язком якого є шукана похідна (2-га похідна), до системи 

рівнянь, котра розглядається як матричне рівняння. Для розв’язання матричного рівняння використовується 

метод варіації.  

Результати. У поданій роботі визначається друга похідна за спектральним параметром від розв’язку 

спектрального рівняння у проблемі Штурма-Ліувілля для плоского двошарового одновимірно-періодичного 

фотонного кристала (необмеженого вздовж періодичності). Визначена похідна лінійно виражається через сам 
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розв’язок та свою похідну, але за просторовою змінною. Також у роботі розв’язується лінійне неоднорідне 

диференціальне рівняння 2-го порядку, таким чином, власне, й отримується шукана похідна. Таке рівняння 

вдається розв’язати на основі досліджень та результатів попередніх робіт – робіт з визначення відповідної 1-ї 

похідної. Втім, варто заначити, що прямої аналогії між методикою визначення 1-ї та 2-ї похідної вбачати не 

вдається у цьому, зокрема, й виражається змістовність даної роботи.  

КЛЮЧОВІ СЛОВА: фотонний кристал, розсіяння електромагнітних хвиль, похідна за спектральним 

параметром, проблема Штурма-Ліувілля, спектральне рівняння, дисперсійне рівняння, власна 

функція, фотона заборонена зона.  
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ВСТУП 

У зв’язку зі стрімким розвитком такої галузі науки й техніки як фотоніка, в останні десятиріччя 

(приблизно з 90-х років XX-го століття), науковий інтерес до оптичного діапазону електромагнітного 

випромінювання продовжує зберігати актуальність. А разом з тим, задача про розсіяння електромагнітних 

хвиль (дифракційна задача) на таких об’єктах як фотонні кристали представляться актуальною [1-3]. Тобто 

йдеться про розв’язання скалярного хвилевого рівняння (вихідне хвильове рівняння) з подальшим 

застосуванням методу розділення змінних та переходом до проблеми Штурма-Ліувілля на необмеженому 

інтервалі (−∞, + ∞). Для структур, які розглядаються у роботі, зазначений метод розділення змінних 

дозволяє отримати розв’язок хвильового рівняння, (яке в такому разі виявляється рівнянням з 

періодичними коефіцієнтами), у явному вигляді.  

Втім, варто зазначити, що окрім фотонних кристалів, періодичні дифракційні структури, загалом, є 

важливою складовою пасивних та активних пристроїв мікрохвильової та терагерцової радіофізики. 

Періодичні дифракційні структури використовуються у приладах електронної техніки як уповільнювачі, а 

також канали входу та виходу у пристроях прийому та передачі енергії, в спектроскопії, радіолокації, 

антенофідерних приладах.  

Із загальної теорії рівнянь з частковими похідними відомо, що розв’язання хвильового рівняння 

методом розділення змінних приводить до проблеми Штурма-Ліувілля (проблеми про побудову повної 

ортогональної системи функцій, кожний елемент якої задовольняє деякому лінійному диференціальному 

рівнянню 2-го порядку) – спектральної проблеми (проблеми на власні функції) для лінійного 

диференціального оператора 2-го порядку. Умови повноти й ортогональності шуканих власних функцій 

цієї проблеми складають предмет доволі чималої теорії. Іншою мовою, чим більш конкретними є вимоги 

щодо вихідної дифракційної задачі, тим сильніше увиразнюються умови існування розв’язку проблеми 

Штурма-Ліувілля. Серед відомих умов розв’язності проблеми Штурма-Ліувілля справедливо виділити 

умову про самоспряженість диференціального оператора (власні функції утворюють повну ортогональну 

систему у такому функціональному просторі де даний диференціальний оператор є самоспряженим), 

оскільки така умова, на думку авторів, є однією з найбільш складно забезпечуваних умов.  

При розв'язанні хвильового рівняння на нескінченному інтервалі (−∞, + ∞) для одномірно-

періодичних дифракційних структур (необмежених уздовж періодичності) умова самопов'язаності 

диференціального оператора Штурма-Ліувілля може досягатися шляхом застосування методу матриці 

перенесення (Transfer matrix method) [4-5]. Цей метод передбачає підняття іншої спектральної проблеми, 

параметр якої, взагалі кажучи, виявляється залежним від спектрального параметра проблеми Штурма-

Ліувілля. Нововказана проблема ставиться для квадратної матриці 2-го порядку (матриці перенесення), та, 

як відомо, з загальної теорії матриць еквівалентна розв’язанню квадратного рівняння. Тож, якщо L𝑍 =
−𝛽2𝑍 – спектральне рівняння у проблеми Штурма-Ліувілля (𝛽 – спектральний параметр, L – 

диференціальний оператор, 𝑍 ∈ H – функції деякого простору Гільберта H – опорного простору), то, за 

методом матриці перенесення, виникає інше спектральне рівняння, у параметрі якого присутня залежність 

від параметра 𝛽: T𝑢 = Λ𝛽𝑢, T – квадратна матриця 2-го порядку, Λ𝛽 – спектральний параметр, 𝑢 – 

двовимірний вектор. Отже, власні числа Λ𝛽 квадратної матриці T є розв’язками квадратного рівняння 

det(T − Λ𝛽I) = 0 (I – квадратна одинична матриця).  

З іншого боку, для виділення простору самоспряження диференціального оператора L має 

виконуватись Λ𝛽Λ𝛽̅̅ ̅̅  = 1 (докладніше до цього питання торкатимемось нижче при постановці дифракційної 
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задачі, вибору опорного простору, скалярного добутку, системи координат, матеріальних та інших 

параметрів вихідної дифракційної задачі). Підкреслимо, що простір розв’язків спектрального рівняння L𝑍 

= −𝛽2𝑍, як простір лінійного диференціального рівняння 2-го порядку, являє собою двовимірний 

підпростір опорного простору: U𝛽 ⊂ H [6]. А також зазначимо, що через періодичність коефіцієнтів 

оператору L, функція 𝑢(𝑧 − 𝑙) є розв’язком, якщо 𝑢(𝑧) є розв’язком: L𝑢(𝑧) ≡ −𝛽2𝑢(𝑧)  <=>  L 𝑢(𝑧 − 𝑙) ≡
−𝛽2 𝑢(𝑧 − 𝑙), 𝑙 – період розглядуваного кристала (періодичність коефіцієнтів оператору L є наслідком 

періодичності коефіцієнтів вихідного хвильового рівняння – про це зазначалось вище). Підґрунтям для 

методу матриці перенесення стає лінійність оператора, який діє у двовимірному просторі U𝛽 та який 

розв’язку 𝑢(𝑧) ставить у відповідність розв’язок 𝑢(𝑧 − 𝑙) (лінійність цього оператору перевіряється 

безпосередньо за визначенням). Отже, такий оператор однозначно задається квадратною матрицею, яку й 

називають матрицею перенесення. Нехай T = T𝛽 – матриця перенесення: T𝛽: 𝑢(𝑧) → 𝑢(𝑧 − 𝑙). Спектральна 

проблема для матриці перенесення приводить до сумісного розв’язання двох наступних рівнянь 

det(T𝛽 − Λ𝛽I) = 0, Λ𝛽Λ𝛽̅̅ ̅̅  = 1. Це рівняння, як рівняння незалежного параметра 𝛽 (спектрального 

параметра проблеми Штурма-Ліувілля), називають дисперсійним рівнянням фотонного кристала. (точніше, 

дисперсійним рівнянням плоского двошарового одновимірно-періодичного необмеженого вздовж 

періодичності фотонного кристала). 

Нехай тепер Λ𝛽 – власне число матриці перенесення T𝛽, яке задовольняє умові Λ𝛽Λ𝛽̅̅ ̅̅  = 1, тоді 

дисперсійне рівняння det(T𝛽  − Λ𝛽I) = 0 еквівалентне рівнянню Λ𝛽𝑍𝛽(𝑧 − 𝑙) = 𝑍𝛽(𝑧), де 𝑍𝛽(𝑧) ∈ U𝛽 – 

розв’язок спектрального рівняння у проблемі Штурма-Ліувілля. Зрозуміло, що про таку еквівалентність 

слід говорити тоді, коли існує відповідність між 𝛽 та 𝑍𝛽, за якою для будь-якого 𝛽 існує одна (та лише 

одна) функція 𝑍𝛽 ∈ U𝛽 (таку відповідність нескладно вказати, оскільки структура простору розв’язків 

спектрального рівняння L𝑍 = −𝛽2𝑍, як простору розв’язків рівняння з кусково-сталими періодичними 

коефіцієнтами піддається глибокому розумінню). Отже, видно, що складовим членом дисперсійного 

рівняння є функція 𝑍𝛽. Тому властивості дисперсійного рівняння здебільше визначаються характером 

поведінки функції 𝑍𝛽 як функції спектрального параметра 𝛽.  

У роботах [7-9] була виявлена можливість лінійно представити похідну від функції 𝑍 – розв’язку 

спектрального рівняння L𝑍 = −𝛽2𝑍 (точніше, похідну за спектральним параметром 𝛽), через саму 

функцію та свою похідну, але за просторою змінною:  𝜕
𝜕𝛽

 𝑍 = 𝑍′ = −
1

2
𝜉̇𝑍 + 𝜉𝑍̇, тут 𝜉 = 𝜉(𝑧) – відома 

функція [8]. Цей результат наводить на думку про існування можливості представити й 2-гу похідну в 

аналогічному вигляді: 𝜕
2

𝜕𝛽2
 𝑍 = 𝑍′′ = 𝜂𝑍 + 𝜒𝑍̇, 𝜂 = 𝜂(𝑧), 𝜒 = 𝜒(𝑧) – деякі функції. Своєю чергою, можливість 

мати дві такі лінійні залежності дає змогу отримати лінійне рівняння відносно функції 𝑍, дослідження 

якого у перспективі може послужити створенню альтернативного апарату, що дозволяє розуміти загальні 

властивості розв’язка 𝑍 (точніше, йдеться про можливість отримати лінійне однорідне диференціальне 

рівняння 2-го порядку відносно функції 𝑍). Новозазначене рівняння безпосередньо випливає з двох 

лінійних залежностей 𝑍′ = −
1

2
𝜉̇𝑍 + 𝜉𝑍̇, 𝑍′′ = 𝜂𝑍 + 𝜒𝑍̇, інша річ полягає у тому, чи буде отримане рівняння 

піддаватися подальшому вивченню. Втім, не дивлячись на такий стан речей зрозумілим є те, що 1-ша й 2-

га похідні, загалом, відіграють доволі важливу роль у дослідженні будь-яких функціональних залежностей. 

Тому натепер пошуки 2-ї похідної, як видається авторам, становлять інтерес у зв’язку з прагненням 

розуміти поведінку розв’язка 𝑍 як функції спектрального параметра 𝛽. 

 

ПОСТАНОВКА ЗАДАЧІ  

Розглянемо дифракційну задачу для двошарового нескінченного одновимірного періодичного 

фотонного кристала з періодом 𝑙. Нехай 𝜀𝑗, 𝜇𝑗 – діелектрична та магнітна проникності відповідно першого 

й другого шарів (𝑗 = 1, 2), 𝑑 – розмір першого шару, 𝑙 − 𝑑 – другого шару. Уведемо прямокутну декартову 

систему координат ZOY таким чином, щоб періодичність структури була направлена вздовж вісі OZ. 

Скалярне рівняння плоскої монохроматичної E-поляризованої хвилі для двовимірного середовища, 

заповненого даним кристалом, має наступний вигляд (модифіковане рівняння Гельмгольца):  

Δ𝜇𝑢 + 𝑘
2𝒏2𝑢 = 0, (1) 

тут ∆𝜇 = 𝜇∇
1

𝜇
∇ – модифікований оператор Лапласа, 𝑢 = 𝑢(𝑧, 𝑦) – шукана скалярна функція, 𝑧, 𝑦 (−∞, +

∞), 𝒏(𝑧) = √𝜀𝜇 – коефіцієнт заломлення – кусково-стала функція, 𝜀 = 𝜀(𝑧) – діелектрична проникність, 

 𝜇 = 𝜇(𝑧) – магнітна проникність – кусково-сталі: 
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𝜀(𝑧) = {
𝜀1, 𝑧 ∈ ( 𝑑

2
−𝑙+𝑚𝑙,  −𝑑

2
+𝑚𝑙]

𝜀2, 𝑧 ∈ (−𝑑
2
+𝑚𝑙,      𝑑

2
+𝑚𝑙]

,  𝜇(𝑧) = {
𝜇1, 𝑧 ∈ ( 𝑑

2
−𝑙+𝑚𝑙,  −𝑑

2
+𝑚𝑙]

𝜇2, 𝑧 ∈ (−𝑑
2
+𝑚𝑙,       𝑑

2
+𝑚𝑙]

, 

𝑚 – ціле, 𝑙  – період шаруватого середовища, 𝑘 =
𝜔

𝑐
 – хвильове число, 𝜔 – циклічна частота плоскої 

монохроматичної хвилі, 𝑐 – швидкість світла у порожнечі [10].  

За методом розділення змінних, загальний розв’язок рівняння (1) представляється у вигляді ряду 

Фур’є  

𝑢 =∑𝑌𝛽𝑛𝑍𝛽𝑛

∞

𝑛

, (2) 

де 𝑌𝛽𝑛 = 𝑌𝛽𝑛(𝑦) – задовольняє такому рівнянню 𝑌̈𝛽𝑛 + 𝛽𝑛
2𝑌 = 0 (звичайному лінійному диференціальному 

рівнянні 2-го порядку), та відповідно має вигляд, 𝑌𝛽𝑛(𝑦) = 𝐶𝛽𝑛𝑒
𝛽𝑛𝑦 + 𝐷𝛽𝑛𝑒

−𝛽𝑛𝑦, 𝐶𝛽𝑛  , 𝐷𝛽𝑛 – довільні 

константи, {𝑍𝛽𝑛}𝑛=0,±1,…
 – повна ортогональна система функцій, причому, 𝑍𝛽𝑛 = 𝑍𝛽𝑛(𝑧) задовольняє 

рівнянню 𝜇(
1

𝜇
𝑍̇)̇ + (𝑘2𝒏2 + 𝛽𝑛

2)𝑍 = 0 [11]. Специфіка розв’язання задачі, зокрема, виявляється у тому, що 

розв’язок відшукується на всій числовій вісі.  

Як відомо, побудова повної ортогональної системи функцій, кожен елемент якої задовольняє деякому 

лінійному диференціальному рівнянню 2-го порядку – проблема Штурма-Ліувілля – може здійснюється 

шляхом розв’язання наступної спектральної проблеми  

L𝑍 = −𝛽2𝑍, (3) 

де 𝛽 – спектральний параметр,  L – лінійний диференціальний оператор 2-го порядку, заданий у певному 

функціональному просторі Гільберта H – в опорному просторі. Стосовно рівняння (1) та ряду Фур’є (2), 

диференціальний оператор має вигляд L𝑍 ≡ 𝜇(
1

𝜇
𝑍̇)̇ + 𝑘2𝒏2𝑍, а у якості опорного простора H вибирається 

простір майже-періодичних функцій з наступним скалярним добутком (майже-періодичні функції 

утворюють повний простір, що й потрібно для застосування апарату рядів Фур’є та розв’язності проблеми 

Штурма-Ліувілля):  

(𝑢, v) = lim
𝑇→∞

 
1

Т
 ∫

1

𝜇
𝑢v̅ d𝑧

𝑧0+𝑇

𝑧0

 , (4) 

де 𝑢, v ∈ H, 𝜇 = 𝜇(𝑧) – магнітна проникність – кусково-стала функція, 𝑧0 ∈ (−∞,+∞) – довільна точка. 

Скалярний добуток (4) не залежить від вибору точи 𝑧0.  

Як вже неодноразово відмічалося раніше (в теперішній роботі), складовою умовою розв’язності 

проблеми Штурма-Ліувілля є умова самоспряження диференціального оператора L, тому з опорного 

простору H необхідно виділити такий підпростір H0  H у якому диференціальний оператор L буде 

самоспряженим (симетрическим). Таким простором є простір функцій 𝑢 ∈ H таких, що  
1

𝜇
𝑢̇ – неперервна, 

Λ𝑢(𝑧 − 𝑙) = 𝑢(𝑧), ΛΛ̅ = 1 (Λ – деяке комплексне число): 

H0 = {𝑢 ∈ H: 
1

𝜇
𝑢̇ − неперервна, Λ𝑢(𝑧 − 𝑙) = 𝑢(𝑧)}. 

Для функцій простору H0 скалярний добуток (4) еквівалентний наступному скалярному добутку  

(𝑢, v) =  ∫
1

𝜇
𝑢v̅ d𝑧

𝑧0

𝑧0−𝑙

 , 

де 𝑢, v ∈ H0, а самоспряжність оператору L перевіряється безпосередньо за визначенням виконання (L𝑢,v). 
= (𝑢, Lv) [12-13]. Для функцій простору H0 незалежність вибору точи 𝑧0 ∈ (−∞,+∞) нескладно показати. 

Справді, задамо точи 𝑧0 приріст ∆𝑧, тоді 

∫  
1

𝜇
𝑢v̅ d𝑧

𝑧0+∆𝑧

𝑧0+∆𝑧-𝑙

= ∫  
1

𝜇
𝑢v̅ d𝑧

𝑧0

𝑧0-𝑙+∆∆𝑧

+ ∫  
1

𝜇
𝑢v̅ d𝑧

𝑧0+∆𝑍

𝑧0

 . 

У другому доданку правої частини останнього перетворень виконуємо замінну змінної z на 𝑧-𝑙: 
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∫  
1

𝜇
𝑢v̅ d𝑧

𝑧0+∆𝑍

𝑧0-𝑙+∆𝑍

= ∫  …

𝑧0

𝑧0-𝑙+∆𝑍

∫  
1

𝜇(𝑧-𝑙)
𝑢(𝑧-𝑙)v(𝑧-𝑙)̅̅ ̅̅ ̅̅ ̅ d(𝑧 − 𝑙)

𝑧0−𝑙+∆𝑍

𝑧0-𝑙

 

= ∫  …

𝑧0

𝑧0-𝑙+∆𝑍

+ ∫  
1

𝜇(𝑧)
Λ𝑢(𝑧)Λv(𝑧)̅̅ ̅̅ ̅̅ ̅ d𝑧

𝑧0−𝑙+∆𝑍

𝑧0-𝑙

= ∫  
1

𝜇(𝑧)
𝑢(𝑧)v(𝑧)̅̅ ̅̅ ̅ d𝑧

𝑧0−𝑙+∆𝑍

𝑧0-𝑙

+ ∫  …

𝑧0

𝑧0-𝑙+∆𝑍

 . 

За адитивністю, поєднуємо останні інтеграли  

∫  
1

𝜇
𝑢v̅ d𝑧

𝑧0+∆𝑍

𝑧0-𝑙+∆𝑍

= ∫  
1

𝜇
𝑢v̅ d𝑧

𝑧0

𝑧0-𝑙

 . 

ОГЛЯД 

Один зі шляхів, що допомагає формувати кількісний погляд на розуміння поведінки складових членів 

дисперсійного рівняння для плоского одновимірно-періодичного фотонного кристала (необмеженого 

вздовж періодичності), як стає зрозумілим з переднього розділу, лежить через дослідження розв’язка 

спектрального рівняння (3). Перші спроби розвивати такий погляд автори намагалися здійснювати у 

роботах [7-9, 11]. Були розглянуті питання про характер осциляцій та можливість виділення проміжків 

монотонності, також була з’ясована асимптотика рівняння на нескінченності (𝛽 → ∞). Зокрема, такі 

дослідження є важливими для побудови фотонних заборонених зон, наявність яких є основною 

властивістю дифракційних ефектів на кристалах, та завдяки якій, фотонні кристали здебільш й 

зарекомендували своє практичне застосування. Поряд із побудовою фотонних заборонених зон важливим 

також представляєтеся виявлення різниці у поведінки складових членів дисперсійного рівняння в 

залежності від знаку (додатних та від’ємних) значень матеріальних параметрів, впливу частотного 

хвильового числа 𝑘 =
𝜔

𝑐
, (𝜔 – циклічна частота плоского монохроматичної хвилі, 𝑐 – швидкість світла у 

порожнечі) та інших параметрів кристала. Й наостанок, зазначимо, що пошуки коренів, дисперсійного 

рівняння відносно спектрального параметра 𝛽 безпосередньо пов’язані з визначенням власних чисел та 

відповідних власних функцій.  

Перша похідна 𝑍𝛽
′  відшукується як розв’язок лінійного неоднорідного диференціального рівняння 2-

го порядку [6] (рівняння отримується шляхом взяття похідної від спектрального рівняння за спектральним 

параметром):  

(
1

𝜇
̇)̇ +

𝜍𝛽
2

𝜇
 = −2

𝛽

𝜇
𝑍𝛽 . (5) 

Своєю чергою, розв’язок такого рівняння на кінцевому проміжку [𝑑
2
−𝑙, 𝑑

2
) записується у наступному 

вигляді 


0
= −

1

2
𝜉̇𝑍𝛽 + 𝜉𝑍̇𝛽, (6) 

Як було показано де функція 𝜉 обертається в нуль на межі розподілу середовищ: 𝜉|
−
𝑑
2
 = 0 (цією 

вимогою забезпечується неперервність розв’язку 
0
, оскільки похідна 𝑍̇𝛽 може потерпати стрибок). 𝜉 =


- 

d

2

 𝜙, 𝜙 – розв’язок рівняння 

(
1

𝜇
𝜙̇)̇ + 4

𝜍𝛽
2

𝜇
𝜙 = 4

𝛽

𝜇
 . (7) 

У протиставлення рівнянню (3), рівняння (5) розв’язується на обмеженому проміжку [𝑑
2
−𝑙, 𝑑

2
). Річ у 

тому, що можливість інтегрувати рівняння на кінцевому проміжку дає змогу знизити диференціальні 

якості розв’язків при виході на границю й таким чином ставить дослідника у більш вигідне становище у 

порівнянні з ситуацією, коли розв’язки відшукуються на нескінченному інтервалі (−∞,+∞). Розв’язання 

спектрального диференціального рівняння (3) та відповідно хвильового рівняння (1) на 

нескінченному  інтервалі (−∞,+∞) зрозуміло, що немає граничних точок у цьому, власне, й виражається 

специфіка в підході та залучення методу матриці перенесення (Transfer matrix method) дозволяє зрозуміти 

та виділити простір у якому диференціальний оператор L є самоспряженим й таким чином досягти 
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складової умову розв’язності проблеми Штурма-Ліувілля. Авторам роботи видається важливим дослідити 

питання щодо існування можливості записати 2-гу похідну від функції 𝑍𝛽 – розв’язку спектрального 

диференціального рівняння (3), але не як функції просторової змінної 𝑧, а як функції спектрального 

параметра 𝛽. 

 

ОCНОВНА ЧАСТИНА  

Перейдемо до знаходження 2-ї похідної. Тож, диференціюючи спектральне диференціальне рівняння 

(3) за спектральним параметром 𝛽, маємо  

(
1

𝜇
𝑍̇)̇′′  +

𝜍𝛽
2

𝜇
𝑍′′ = −2

1

𝜇
𝑍 − 2

2𝛽

𝜇
𝑍′.  

Або, здійснюючи підставлення 𝑍′′ =
𝜕2

𝜕𝛽2
𝑍 = 𝜑, отримуємо 

(
1

𝜇
𝜑̇)̇ +

𝜍𝛽
2

𝜇
𝜑 = −2

1

𝜇
𝑍 − 4

𝛽

𝜇
𝑍′. ((8) 

Таким чином, було записано лінійне неоднорідне диференціальне рівняння 2-го порядку відносно 

функції 𝜑. З погляду математичної строгості, класична похідна (якою є похідна за спектральним 

параметром) та узагальнена похідна за Соболєвим (відносно якої вибудувані хвильове, спектральне та всі 

інші диференціальні рівняння у даній роботі) не є тотожними поняттями, тому питання про рівність 

мішаних похідних у принципі потребує пояснень, тобто питання про рівність (
1

𝜇
𝑍̇)̇′′ = (

1

𝜇
(𝑍′′)̇)

.

. Подібна 

проблема вже висвітлювалась у роботах [7-9, 11] при пошуку 1-ї похідної – тут існування та рівність 

мішаних похідних пояснюється аналогічно.  

Спираючись на досвід розв’язання рівнянь виду (5) – рівнянь, що виникають при знаходженні 1-ї 

похідної (за спектральним параметром 𝛽) від розв’язку 𝑍, приходить на думку наступна логіка. Спершу 

зробити підставлення (6) у (8) та виключити член 𝑍′, а тоді звести доданки у правій частині та знайти 

розв’язок у вигляді 𝜑 = 𝜂𝑍 + 𝜒𝑍̇, тобто розв’язок зведеного рівняння (7) відшукувати у такому ж вигляді 

як й розв’язок рівняння (5). На цьому шляху приходимо до неоднорідного рівняння з правою частиною, 

що містить функцію 𝜉. Тобто, цей шлях не приводить до суттєвого спрощення відправного рівняння (7). 

Справді,  

L𝜑 = −2
1

𝜇
𝑍 − 4

𝛽

𝜇
(−
1

2
𝜉̇𝑍𝛽 + 𝜉𝑍̇𝛽) ≡ −2

1

𝜇
𝑍 + 4

𝛽

𝜇
∙
1

2
𝜉̇𝑍𝛽 − 4

𝛽

𝜇
𝜉𝑍̇𝛽, 

робимо підставлення (6) у (8) та зводимо доданки при функціях 𝑍, 𝑍̇: 

L𝜑 =  2(𝛽𝜉̇ − 1 )
1

𝜇
𝑍𝛽 − 4

𝛽

𝜇
𝜉𝑍̇𝛽 . 

Для знаходження 2-ї похідної маємо наступне лінійне неоднорідне диференціальне рівняння 2-го порядку: 

(
1

𝜇
𝜑̇)̇ +

𝜍𝛽
2

𝜇
𝜑 = 2(𝛽𝜉̇ − 1)

1

𝜇
𝑍𝛽 − 4𝛽𝜉

1

𝜇
𝑍̇𝛽 . 

Далі, діємо диференціальним оператором L на функцію 𝜑 = 𝜂𝑍 + 𝜒𝑍̇, та записуємо (аналогія з 

пошуками 1-ї похідної [5-7]): 

L𝜑 ≡ ((𝜂̇
1

𝜇
)̇ − 2

𝜍𝛽
2

𝜇
𝜒̇) 𝑍 + (𝜒̈ + 2𝜂̇ )

1

𝜇
𝑍̇ = 2(−1 + 𝛽𝜉̇)

1

𝜇
𝑍 − 4

𝛽

𝜇
𝜉𝑍̇𝛽, 

𝜒̈ + 2𝜂̇ = −4𝛽𝜉 => 𝜂̇ = −
1

2
 𝜒̈ − 2𝛽𝜉 => {𝜗 = 𝜒̇}, 𝜂 = −

1

2
𝜗 − 2𝛽∫𝜉 + 𝜂0, 

(𝜂̇
1

𝜇
)̇ − 2

𝜍𝛽
2

𝜇
𝜒̇ = 2(𝛽𝜉̇ − 1)

1

𝜇
 . 

Звідки, дістаємось  

−
1

2
(
1

𝜇
𝜗̇)̇ − 2

𝜍𝛽
2

𝜇
𝜗 = 2𝛽𝜉̇

1

𝜇
+ 2(𝛽𝜉̇ − 1)

1

𝜇
  <=> (

1

𝜇
𝜗̇)̇ + 4

𝜍𝛽
2

𝜇
𝜗 = 4(2𝛽𝜉̇ − 1)

1

𝜇
 . 
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Отож, дія диференціального оператора L на функцію 𝜑 = 𝜂𝑍 + 𝜒𝑍̇ приводить до неоднорідного 

диференціального рівняння з правою частиною, що містить функцію 𝜉, тобто приходимо до рівняння, яке 

істотно не спрощує вихідне рівняння – (7). Це є ознакою того, що дана задача скоріш ускладняється ніж 

розв’язується. Внаслідок цього й доводиться поглиблювати дослідження та вдаватися в пошуки шляхів 

отримати розв’язок (7) у прийнятному вигляді. Тож, розімкнути коло, на думку авторів, допомагає підхід, 

який полягає у спробах відшукувати розв’язки у наступному вигляді 

𝜑 = 𝜂𝑍′ + 𝜒𝑍̇′ + 𝜐𝑍 + 𝜏𝑍̇, (9) 

де 𝜂, 𝜒, 𝜐, 𝜏 – шукані функції. (питання щодо існування похідних розглядалися у роботах [7-9], 

підкреслимо, що коефіцієнти 𝜒, 𝜏 обертаються в нуль на межі розподілу середовищ й таким чином 

забезпечують неперервність шуканого розв’язку 𝜑). Хоча прямої аналогії між підходом на основі (9) та 

розв’язанням рівняння (5) не вбачається, втім, було б розумно сподіватися, що деякі збіжності у методах, 

застосованих до рівнянь виду (5) [7-9], можуть посприяти пошуку розв’язку (7) у прийнятному вигляді. 

Справді, функція 𝑍′ задовольняє неоднорідному рівнянню (5), тому під дією диференціального оператора 

L  у сполучені з деяким коефіцієнтом 𝜂 = 𝜂(𝑧), буде переходити у функцію 𝑍̇′, й навпаки, функція 𝑍̇′ під 

дією оператору L у сполучені з іншим коефіцієнтом 𝜒 = 𝜒(𝑧), переходитиме у функцію 𝑍′, створюючи 

таким чином зв'язок між цими коефіцієнтами 𝜂, 𝜒 (виявляється, що такий зв'язок є лінійним). Власне так, 

й відбувається при пошуках 1-ї похідної, тобто при розв’язанні рівняння (5), у цьому рівнянні у якості 

несучих лінійність функцій виступали функції 𝑍, 𝑍̇, а тут – 𝑍′, 𝑍̇′. 
Втім, перетворення подібне до (9) може отримуватися шляхом безпосереднього взяття похідної за 

спектральним параметром 𝛽 від представлення (6). Але у такому разі маємо невідомі функції 𝜉̇′, 𝜉′, пошук 

яких приводить до рівнянь, що за складністю не поступаються вихідному рівнянню (7).  

Нижче показується, що підставлення розв’язку у вигляді (9) приводить до системи 4-х рівнянь, яку 

своєю чергою, вдається звести до системи 2-х лінійних неоднорідних диференціальних рівнянь 2-го 

порядку та може розв’язуватися у матрицях (дві шукані функції з двох інших рівнянь виключаються). Тож, 

розглянемо окремо кожен член представлення (9). Запишемо 1-шу, 2-гу похідні (за просторовою змінною 

z):  

1

𝜇
(𝜂𝑍′)̇ = 𝜂̇

1

𝜇
𝑍′ + 𝜂

1

𝜇
𝑍̇′ => (𝜂̇

1

𝜇
𝑍′ + 𝜂

1

𝜇
𝑍̇′)

.

= (𝜂̇
1

𝜇
)̇𝑍′ + 𝜂̇

1

𝜇
𝑍̇′ + 𝜂̇

1

𝜇
𝑍̇′ + 𝜂(

1

𝜇
𝑍̇′)̇  

= (𝜂̇
1

𝜇
)̇𝑍′ + 2𝜂̇

1

𝜇
𝑍̇′ − 𝜂

𝜍𝛽
2

𝜇
𝑍′ − 2𝜂

𝛽

𝜇
𝑍 . 

(тут скористалися тим, що функція 𝑍′ є розв’язком неоднорідного рівняння (4): (
1

𝜇
𝑍̇′)̇ = −

𝜍𝛽
2

𝜇
𝑍′ − 2

𝛽

𝜇
𝑍 ). 

Застосуємо диференціальний оператор L до 𝜂𝑍′: 

L 𝜂𝑍′ = (𝜂̇
1

𝜇
)̇𝑍′ + 2𝜂̇

1

𝜇
𝑍̇′ − 𝜂

𝜍𝛽
2

𝜇
𝑍′ − 2𝜂

𝛽

𝜇
𝑍  +

𝜍𝛽
2

𝜇
𝜂𝑍′ = (𝜂̇

1

𝜇
)̇𝑍′ + 2𝜂̇

1

𝜇
𝑍̇′ − 2𝜂

𝛽

𝜇
𝑍. 

Переходимо до наступного члена представлення (9). Запишемо 1-шу похідну від 𝜒𝑍̇′: 

1

𝜇
(𝜒𝑍̇′)

∙
= 𝜒̇

1

𝜇
𝑍̇′ + 𝜒(

1

𝜇
𝑍̇′)̇ = 𝜒̇

1

𝜇
𝑍̇′ − 𝜒

𝜍𝛽
2

𝜇
𝑍′ − 2

𝛽

𝜇
𝜒𝑍. 

тут, як й вище, (
1

𝜇
𝑍̇′)̇ = −

𝜍𝛽
2

𝜇
𝑍′ − 2

𝛽

𝜇
𝑍 . Відповідно, 2-га похідна від 𝜒𝑍̇′:  

(𝜒̇
1

𝜇
𝑍̇′ − 𝜒

𝜍𝛽
2

𝜇
𝑍′ − 2

𝛽

𝜇
𝜒𝑍)

∙.

= 𝜒̈
1

𝜇
𝑍̇′ + 𝜒̇(

1

𝜇
𝑍̇′)̇ − 𝜒̇

𝜍𝛽
2

𝜇
𝑍′ − 𝜒

𝜍𝛽
2

𝜇
𝑍̇′ − 2

𝛽

𝜇
(𝜒𝑍)̇ 

= 𝜒̈
1

𝜇
𝑍̇′−𝜒̇

𝜍𝛽
2

𝜇
𝑍′ − 2

𝛽

𝜇
𝜒̇𝑍

⏟            

=𝜒̇(
1
𝜇
𝑍̇′)̇

−𝜒̇
𝜍𝛽
2

𝜇
𝑍′ − 𝜒

𝜍𝛽
2

𝜇
𝑍̇′ − 2

𝛽

𝜇
(𝜒𝑍)̇ 

(підкреслені доданки є подібними). Застосуємо диференціальний оператор L до 𝜒𝑍̇′: 
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L 𝜒𝑍̇′ = 𝜒̈
1

𝜇
𝑍̇′ − 2𝜒̇

𝜍𝛽
2

𝜇
𝑍′ − 2

𝛽

𝜇
𝜒̇𝑍 − 2

𝛽

𝜇
(𝜒𝑍)̇ −𝜒

𝜍𝛽
2

𝜇
𝑍̇′ +

𝜍𝛽
2

𝜇
𝜒𝑍̇′

⏟          
=0

= 𝜒̈
1

𝜇
𝑍̇′ − 2𝜒̇

𝜍𝛽
2

𝜇
𝑍′ − 2

𝛽

𝜇
𝜒̇𝑍 − 2

𝛽

𝜇
(𝜒𝑍)̇ . 

Як видно, дія диференціального оператора L на члени 𝜂𝑍′, 𝜒𝑍̇′ представлення (9) лінійно пов’язує 

коефіцієнти 𝜂, 𝜒. Але окрім несучих лінійність функцій 𝑍′, 𝑍̇′, таке застосування оператора L, зумовлює 

виникнення й ще функцій 𝑍, 𝑍̇. Іншою мовою, перші два члени представлення (9) дають два невідомих 

коефіцієнти, але разом з тим й чотири рівняння. Але за результатами робіт [7-9, 11] стає зрозумілим, що 

характер дії диференціального оператора L на 2-а інших члени 𝜐𝑍, 𝜏𝑍̇  не призводить до появи нових 

невідомих, тому маємо чотири несучих лінійність функції 𝑍′, 𝑍̇′, 𝑍, 𝑍̇ та чотири шукані коефіцієнти 𝜂, 𝜒, 

𝜐, 𝜏. Перегруповуємо та зводимо доданки: 

𝑍′: (𝜂̇
1

𝜇
)̇ − 2𝜒̇

𝜍𝛽
2

𝜇
= −2

2𝛽

𝜇
, 𝑍̇′: 𝜒̈ + 2𝜂̇ = 0, 

L (𝜂𝑍′ + 𝜒𝑍̇′) =. . . −2
𝛽

𝜇
(𝜂 + 𝜒̇)𝑍 − 2

𝛽

𝜇
(𝜒̇𝑍 + 𝜒𝑍̇) =. . . −2

𝛽

𝜇
(𝜂 + 2𝜒̇)𝑍 − 2

𝛽

𝜇
𝜒𝑍̇ . 

при підстановці двох інших членів представлення (9) матимемо наступні лінійні співвідношення між 

функціями 𝑍, 𝑍̇:  

L (𝜐𝑍 + 𝜏𝑍̇) = (𝜐̇
1

𝜇
)̇𝑍 + 2𝜐̇

1

𝜇
𝑍̇ + 𝜏̈

1

𝜇
𝑍̇ − 2𝜏̇

𝜍𝛽
2

𝜇
𝑍 = ((𝜐̇

1

𝜇
)̇ − 2𝜏̇

𝜍𝛽
2

𝜇
) 𝑍 + (𝜏̈ + 2𝜐̇)

1

𝜇
𝑍̇. 

Далі, продовжуємо перегруповувати доданки,  

𝑍: (𝜐̇
1

𝜇
)̇ − 2𝜏̇

𝜍𝛽
2

𝜇
− 2

𝛽

𝜇
(𝜂 + 2𝜒̇) ≡ (𝜐̇

1

𝜇
)̇ − 2𝜏̇

𝜍𝛽
2

𝜇
− 2

𝛽

𝜇
(−
1

2
𝜒̇ + 2𝜒̇) ≡ (𝜐̇

1

𝜇
)̇ − 2𝜏̇

𝜍𝛽
2

𝜇
− 3

𝛽

𝜇
𝜒̇ = −2

1

𝜇
, 

1

𝜇
𝑍̇: 𝜏̈ + 2𝜐̇ − 2𝛽𝜒 = 0 => 𝜐̇ = −

1

2
𝜏̈ + 𝛽𝜒 . 

Виключаємо 𝜂, 𝜐: 

−
1

2
(𝜏̈
1

𝜇
)̇ − 2𝜏̇

𝜍𝛽
2

𝜇
+
𝛽

𝜇
𝜒̇ − 3

𝛽

𝜇
𝜒̇ = −4

𝛽

𝜇
, 

(𝜂̇
1

𝜇
)̇ − 2𝜒̇

𝜍𝛽
2

𝜇
≡ −

1

2
(𝜒̈
1

𝜇
)̇ − 2𝜒̇

𝜍𝛽
2

𝜇
≡ −

1

2
(𝜏̈
1

𝜇
)̇ − 2𝜏̇

𝜍𝛽
2

𝜇
− 2

𝛽

𝜇
𝜒̇ = −4

1

𝜇
, 

або, 

{
 
 

 
 −

1

2
(𝜒̈
1

𝜇
)̇ − 2𝜒̇

𝜍𝛽
2

𝜇
= −2

2𝛽

𝜇

−
1

2
(𝜏̈
1

𝜇
)̇ − 2𝜏̇

𝜍𝛽
2

𝜇
− 2

𝛽

𝜇
𝜒̇ = −4

1

𝜇

=

{
 
 

 
 (𝜒̈

1

𝜇
)̇ +4

𝜍𝛽
2

𝜇
𝜒̇

(𝜏̈
1

𝜇
)̇ +4

𝛽

𝜇
𝜒̇ +4

𝜍𝛽
2

𝜇
𝜏̇

 

= 2 ∙ 4
𝛽

𝜇

= 2 ∙ 4
1

𝜇

 . 

Таким чином, отримуємо систему з двох лінійних неоднорідних диференціальних рівнянь 2-го 

порядку відносно функцій 𝜒̇, 𝜏̇. Запишемо цю систему у векторно-матричній формі: 

[
 
 
 

(

  

1

𝜇
0

0
1

𝜇

 

)

 (
𝜒̇
𝜏̇
)

.

]
 
 
 

.

+
4

𝜇
(
𝜍𝛽
2 0

𝛽 𝜍𝛽
2) (

𝜒̇
𝜏̇
) =

8

𝜇
(
𝛽
1
) , 

або, 

[
 
 
 

(

  

1

𝜇
0

0
1

𝜇

 

)

 (
𝜒̇
𝜏̇
)

.

]
 
 
 
.

+
4

𝜇
(

𝜍𝛽 0

1

2
 
𝛽

𝜍𝛽
𝜍𝛽
)

2

(
𝜒̇
𝜏̇
) =

8

𝜇
(
𝛽
1
) , 

де 
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(

𝜍𝛽 0

1

2
 
𝛽

𝜍𝛽
𝜍𝛽
)

2

= (

𝜍𝛽 0

1

2
 
𝛽

𝜍𝛽
𝜍𝛽
)(

𝜍𝛽 0

1

2
 
𝛽

𝜍𝛽
𝜍𝛽
) = (

𝜍𝛽
2 0

𝛽 𝜍𝛽
2). 

Тож, маємо наступне матричне рівняння  

[ 
1

𝜇
IХ̇ ]

∙

+
4

𝜇
2Х = 8

1

𝜇
F, (10) 

тут  

  = (
𝜍𝛽 0

1

2
 
𝛽

𝜍𝛽
𝜍𝛽
) , F = (

𝛽
1
) , I = (

1 0
0 1

) , 

Х – шукана матриця. За аналогією зі скалярним рівнянням, останнє має два матричні (фундаментальні) 

розв’язки (точніше, відповідне однорідне рівняння має два матричні розв’язки). Безпосереднім 

підставленням переконуємось, що такі розв’язки матимуть наступний вигляд: 

Х1(𝑧) = cos 2(z + 𝑑

2
) , Х2(𝑧) = 𝜇−1 sin(z + 𝑑

2
). (11) 

Розв’язки самого матричного рівняння (10), як розв’язки лінійного неоднорідного диференціального 

рівняння, можуть відшукуватися за методом варіації (проглядається очевидна аналогія зі скалярним 

рівнянням, яке відповідно, розв’язувалося при пошуку 1-ї похідної [7-9]). Запишемо розкладення 

матричних функцій, що входять до розв’язків Х1, Х2, у степеневий ряд (при цьому, матрицю  вважаємо 

сталою – кускова сталість матриці  та диференціальні якості функцій, до складу яких входить ця матриця 

, враховуються після отримання розкладень): 

cos2(z + 𝑑

2
) = ∑(−1)𝑛

2𝑛

(2𝑛)!
22𝑛(z +

𝑑

2
)2𝑛

∞

𝑛=0

, 

sin2(z + 𝑑

2
) = ∑(−1)𝑛−1

2𝑛−1

(2𝑛 − 1)!
22𝑛−1(z +

𝑑

2
)2𝑛−1

∞

𝑛=1

. 

Нижче отримуємо розкладання останніх матричних функцій. Безпосереднім перемноженням матриць 

встановлюємо парні степені:  

2𝑛 = (
𝜍𝛽
2𝑛 0

𝑛𝛽𝜍𝛽
2(𝑛−1) 𝜍𝛽

2𝑛
) = 𝜍𝛽

2𝑛 (
1 0

𝑛
𝛽

𝜍𝛽
2 1) , 𝑛 = 0, 1, 2… . 

Звідки,  

cos 2(z + 𝑑

2
) = ∑(−1)𝑛

2𝑛

(2𝑛)!
22𝑛(z +

𝑑

2
)2𝑛

∞

𝑛=0

=∑(−1)𝑛
𝜍𝛽
2𝑛

(2𝑛)!
(
1 0

𝑛
𝛽

𝜍𝛽
2 1)2

2𝑛(z +
𝑑

2
)2𝑛

∞

𝑛=0

 . 

З останнього стає зрозумілим вигляд діагональних елементів – такі являють собою скалярне 

розкладення функції косинус: cos 2𝜍𝛽(z +
𝑑

2
), один з недіагональних є нуль, а інший недіагональний 

елемент обчислюється наступним чином:  

𝛽

𝜍𝛽
2∑(−1)𝑛 𝑛

𝜍𝛽
2𝑛

(2𝑛)!
22𝑛(z +

𝑑

2
)2𝑛

∞

𝑛=0

= 0|
𝑛=0

+
𝛽

2
 
1

𝜍𝛽

1

𝜍𝛽
∑(−1)𝑛 2𝑛

𝜍𝛽
2𝑛

(2𝑛)!
22𝑛(z +

𝑑

2
)2𝑛

∞

𝑛=1

 

= −
𝛽

2
 
1

𝜍𝛽
∑(−1)𝑛−1 2𝑛

𝜍𝛽
2𝑛−1

(2𝑛)!
(2𝑛−1)!

22𝑛(z +
𝑑

2
)2𝑛

∞

𝑛=1

 

= 2
𝛽

2𝜍𝛽
(z +

𝑑

2
)∑(−1)𝑛−1  

𝜍𝛽
2𝑛−1

(2𝑛 − 1)!
22𝑛−1(z +

𝑑

2
)2𝑛−1

∞

𝑛=1

= −
𝛽

𝜍𝛽
(z +

𝑑

2
) sin 2𝜍𝛽(z +

𝑑

2
). 
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Висилаючи на кускову сталість функції 𝜍𝛽, та відповідно, враховуючи диференціальні властивості 

матриці , отриманий при підсумовуванні елемент системи (10) слід модифікувати наступним чином 

(додати множник 𝜇 – у правомочності модифікації переконуємося безпосереднім підставленням у 

рівняння): 

𝜏̇ = −𝛽
𝜇

𝜍𝛽
(z +

𝑑

2
) sin 2𝜍𝛽(z +

𝑑

2
). 

Тож, маємо  

Х1 = (

cos 2𝜍𝛽(z +
𝑑

2
) 0

−𝛽
𝜇

2𝜍𝛽
(z +

𝑑

2
) sin 𝜍𝛽(z +

𝑑

2
) cos 2𝜍𝛽(z +

𝑑

2
)
) . 

Аналогічно встановлюємо непарні степені матриці  (𝑛 = 1, 2,… ):  

2𝑛−1 = 2𝑛−1 = (
𝜍𝛽
2𝑛 0

𝑛𝛽𝜍𝛽
2(𝑛−1) 𝜍𝛽

2𝑛
)
1

𝜍𝛽
(

1 0

−
1

2
 
𝛽

𝜍𝛽
2 1) =

1

𝜍𝛽
(

𝜍𝛽
2𝑛 0

𝑛𝛽𝜍𝛽
2(𝑛−1) −

1

2
 
𝛽

𝜍𝛽
2 𝜍𝛽

2𝑛 𝜍𝛽
2𝑛) 

=
1

𝜍𝛽
(

𝜍𝛽
2𝑛 0

(𝑛 −
1

2
)𝛽𝜍𝛽

2(𝑛−1) 𝜍𝛽
2𝑛
) , 

тут −1  – обернена матриця: −1 = I, тобто, 

(

𝜍𝛽 0

1

2

𝛽

𝜍𝛽
𝜍𝛽
)
1

𝜍𝛽
(

1 0

−
1

2
 
𝛽

𝜍𝛽
2 1) = (

1 0
0 1

). 

Звідки маємо, 

sin 2(z + 𝑑

2
) 

= ∑(−1)𝑛−1
2𝑛−1

(2𝑛 − 1)!
22𝑛−1(z +

𝑑

2
)2𝑛−1

∞

𝑛=1

=
1

𝜍𝛽
 ∑

(−1)𝑛−1

(2𝑛 − 1)!
(

𝜍𝛽
2𝑛 0

𝛽(𝑛 −
1

2
)𝜍𝛽
2(𝑛−1) 𝜍𝛽

2𝑛
)22𝑛−1(z +

𝑑

2
)2𝑛−1

∞

𝑛=1

. 

Знов дістаємось висновку про вигляд діагональних елементів, один з недіагональних є нуль, а інший 

недіагональний елемент вичислюється наступним чином:  

𝛽

𝜍𝛽
∑

(−1)𝑛−1

(2𝑛 − 1)!
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1

2
)𝜍𝛽
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2
)2𝑛−1

∞
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𝛽
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∑
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(2𝑛 − 1)!
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𝑑

2
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𝑛=1

 

=
𝛽

2𝜍𝛽
2 (z +

𝑑

2
)∑

(−1)𝑛−1

(2𝑛 − 1)!
(2𝑛 − 1)𝜍𝛽

2𝑛−1 22𝑛−1(z +
𝑑

2
)2𝑛−2

∞

𝑛=1

=
𝛽

2𝜍𝛽
2 (z +

𝑑

2
)𝜍𝛽 cos 2𝜍𝛽(z +

𝑑

2
) . 

Тут, як й вище, слід модифікувати, враховуючи диференціальні властивості матриці , отриманий 

при сумуванні елемент системи (10) слід модифікувати наступним чином (додати множник 𝜇 – у 

правомочності модифікації переконуємось безпосередньою підстановкою у рівняння. Тож, маємо:  

Х2 = 𝜇−1 sin 2(z +
𝑑

2
) =

1

𝜍𝛽
(

1 0

−
1

2
 
𝛽

𝜍𝛽
2 1)

𝜇

𝜍𝛽
(

sin 2𝜍𝛽(z +
𝑑

2
) 0
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𝜇
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)
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= (

sin 2𝜍𝛽(z +
𝑑

2
) 0

−
1

2
 
𝛽

𝜍𝛽
2 sin 𝜍𝛽(z +

𝑑

2
) − 𝛽

𝜇

2𝜍𝛽
(z +

𝑑

2
) cos 𝜍𝛽(z +

𝑑

2
) sin 2𝜍𝛽(z +

𝑑

2
)
) . 

Таким чином було виписано розв’язки однорідного матричного рівняння, що відповідає 

неоднорідному рівнянню (10). Розв’язки неоднорідного рівняння можуть відшукуватися за методом 

варіацій як розв’язки лінійного неоднорідного диференціального рівняння [6].  

 

ВИСНОВКИ  

Теоретичне та чисельне дослідження як у цілому, так й окремих членів дисперсійного рівняння, 

записаного для плоского двошарового одновимірно-періодичного фотонного кристала (необмеженого 

вздовж періодичності), являє важливість для побудови фотонних заборонених зон, пошуку власних чисел 

проблеми Штурма-Ліувілля (знаходження коренів відносно спектрального параметра) а також для 

виявлення характеру впливу хвильового частотного числа 𝑘 =
𝜔

𝑐
 (𝜔 – частота, 𝑐 – швидкість світла) на ці 

члени та впливу інших параметрів падаючої хвилі та кристала.  

Один зі шляхів, що допомагає розвивати апарат кількісного розуміння властивостей дисперсійного 

рівняння лежить через розуміння поведінки функції 𝑍𝛽 – розв’язка спектрального рівняння у проблемі 

Штурма-Ліувілля (як функції спектрального параметра 𝛽). У роботі було визначено та показано, що 2-га, 

як й 1-ша похідні від цього розв’язку 𝑍𝛽 представляються лінійно через саму функцію та свою похідну, 

але за просторовою змінною: 𝑍′ = −
1

2
𝜉̇𝑍 + 𝜉𝑍̇, 𝑍′′ = 𝜂𝑍 + 𝜒𝑍̇, тут 𝜂 = 𝜂(𝑧), 𝜒 = 𝜒(𝑧), 𝜉 = 𝜉(𝑧) – знайдені 

функції. Запропонованою у роботі підстановкою було розв’язано лінійне неоднорідне диференціальне 

рівняння 2-го порядку, при здійснені чого був задіяний апарат матричного числення. Власне, розв’язком 

такого рівняння і є шукана похідна.  

Значущість теперішньої роботи, зокрема, виявляється у тому, що між скалярним рівнянням (5), 

відомим з попередніх робіт (робіт з пошуків 1-ї похідної) та рівнянням (8), отриманим у цій роботі, не 

вдається вбачати пряму аналогію. Але між матричним рівнянням, яке отримується шляхом використання 

запропонованої підстановки, та щойно зазначеним скалярним рівнянням, вже проглядається очевидна 

аналогія. У зв’язку з можливістю вбачати таку аналогію зрозумілим стає й вигляд розв’язків матричного 

рівняння. Втім, на відміну від скалярного рівняння останнє містить матричні функції. У роботі вдається 

отримати розкладення у степеневі ряди цих матричних функцій та мати скалярну форму розв’язку. Також 

у роботі неодноразово звертається увага на те, що лінійні представлення, записані відповідно для 1-ї та 2-

ї похідних, дозволяють отримати рівняння відносно розв’язка 𝑍𝛽 (точніше, отримати лінійне однорідне 

диференціальне рівняння 2-го порядку). Подальші роботи у цьому напрямку можуть орієнтуватися на 

виведення та спроби вивчати зазначене рівняння. 
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Actuality. Recent decades have seen a rapid development of photonics. Therefore, scientific interest in the optical 

range of electromagnetic radiation continues to be relevant. As a result, the problem of the scattering of 
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electromagnetic waves (diffraction problem) on such objects as photonic crystals is presented as an urgent 

problem. It is about the solution of the wave equation with the subsequent application of the method of separation 

of variables and the transition to the Sturm-Liouville problem on the unbounded interval (−∞, + ∞). For the 

diffraction structures considered in the paper, the specified method of separation of variables allows obtaining the 

solution of the wave equation (which in this case turns out to be an equation with periodic coefficients) in an 

explicit form. Another method - the method of the transfer matrix for the wave equation with periodic coefficients 

makes it possible to take into account the specificity of its solution on the unlimited interval (−∞, + ∞) and to 

achieve the fulfillment of the component condition for the solvability of the Sturm-Liouville problem - the 

condition for the self-conjugation of the differential operator in this problem. Therefore, the transfer matrix method 

involves the construction and solution of the so-called dispersion equation - the equation that connects the 

parameters of the diffraction problem with the solvability conditions of the Sturm-Liouville problem. As a result, 

there is a need to study the components of such a dispersion equation. Namely, there is a need to understand the 

behavior of the solution of the spectral equation in this Sturm-Liouville problem depending on the spectral 

parameter. Therefore, according to the authors, the search for derivatives of this solution is relevant, since the 

derivative apparatus as a whole plays a rather important role in the study of any functional dependencies. 

The purpose of the work. Determine the first and second derivatives of the spectral parameter from the solution 

of the spectral equation in the Sturm-Liouville problem for a flat two-layer one-dimensional periodic photonic 

crystal. And also show that each of the specified derivatives is linearly expressed through the solution itself and 

its derivative, but in terms of a spatial variable, and as a consequence, the possibility of having two linear 

dependencies, which makes it possible to obtain a linear homogeneous differential equation of the 2nd order with 

respect to of this solution. Further research of the specified equation in some perspective may serve the 

development of an alternative apparatus for understanding the behavior of this solution as a function of the spectral 

parameter. 

Методи і методологія. Умова про самоспряженість диференціального оператора у проблемі Штурма-

Ліувілля (складова умова розв’язності проблеми Штурма-Ліувілля) для плоского двошарового 

нескінченного одновимірно-періодичного фотонного кристала досягається шляхом застосування методу 

матриці перенесення (Transfer matrix method). Спираючись на принцип невизначених коефіцієнтів, автори 

використовують підставлення (що запропоновано у роботі) та здійснюють перехід від лінійного 

неоднорідного диференціального рівняння 2-го порядку, розв’язком якого є шукана похідна (2-га похідна), 

до системи рівнянь, котра розглядається як матричне рівняння. Для розв’язання матричного рівняння 

використовується метод варіації.  

Methods and methodology. The condition for the self-conjugation of the differential operator in the Sturm-

Liouville problem (a constituent condition for the solvability of the Sturm-Liouville problem) for a flat two-layer 

infinite one-dimensional periodic photonic crystal is achieved by applying the transfer matrix method. Based on 

the principle of undetermined coefficients, the authors use substitution (which is proposed in the paper) and make 

the transition from a linear inhomogeneous differential equation of the 2nd order, the solution of which is the 

sought derivative (2nd derivative), to a system of equations, which is considered as a matrix equation. The 

variational method is used to solve the matrix equation. 

The results. In this work, the second derivative of the spectral parameter is determined from the solution of the 

spectral equation in the Sturm-Liouville problem for a flat two-layer one-dimensional periodic photonic crystal 

(unlimited along the periodicity). The defined derivative is linearly expressed in terms of the solution itself and its 

derivative, but in terms of the spatial variable. Also, in the work, a linear inhomogeneous differential equation of 

the 2nd order is solved, thus, in fact, the desired derivative is obtained. Such an equation can be solved on the basis 

of research and the results of previous works - works on the definition of the corresponding 1st derivative. 

However, it should be noted that a direct analogy between the method of determining the 1st and 2nd derivatives 

cannot be seen in this, in particular, and the meaningfulness of this paper is expressed. 

KEY WORDS: photonic crystal, scattering of electromagnetic waves, derivative of the spectral parameter, 

Sturm-Liouville problem, spectral equation, dispersion equation, eigenfunction, photon forbidden zone. 
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