
18  

ISSN 2311-0872 Вісник Харківського національного університету імені В. Н. Каразіна. 

Серія «Радіофізика та електроніка», випуск 39, 2023. С. 18-26 

 

© Казанко О.В., Пєнкіна О.Є., 2023  
Open access. This article is licensed under a Creative Commons Attribution 4.0 https://creativecommons.org/licenses/by/4.0/ 

Оригінальна стаття 

https://doi.org/10.26565/2311-0872-2022-37-02 

УДК 535.37.421 

 

О. В. КАЗАНКО н. с. 

e-mail: a_kazanko@i.ua                  ORCID ID: https://orcid.org/0000-0001-9202-8008 

О. Є. ПЄНКІНА, старший викл. 

e-mail:  penkina@kart.edu.ua           ORCID ID: https://orcid.org/0000-0002-9804-6685  
Український державний університет залізничного транспорту, 61001,м. Харків, майдан Фейєрбаха, 7, 

Україна   

 

АНАЛІЗ ТА МЕТОДОЛОГІЯ ВИЗНАЧЕННЯ НОРМИ ВЛАСНИХ ФУНКЦІЙ   

ЯК ГРАНИЧНИЙ ПЕРЕХІД У СКАЛЯРНОМУ ДОБУТКУ   

В СПЕКТРАЛЬНІЙ ПРОБЛЕМІ ШТУРМА-ЛІУВІЛЛЯ ДЛЯ ФОТОННОГО 

ОДНОВИМІРНОГО КРИСТАЛА   
Актуальність. Останні десятиріччя (приблизно з 90-х років ХХ-го сторіччя) спостерігається стрімкий 

розвиток фотоніки. Тому, у першу чергу, злободенність теперішньої роботи пов’язана з актуальністю 
дифракційних задач для структур оптичного діапазону (фотонних кристалів). Задача про обчислення норми 

власних функцій проблеми Штурма-Ліувілля, зокрема, виникає при розв’язанні хвильових рівнянь методом 

розділення змінних, а також при здійсненні переходу від однієї повної до іншої повної ортогональної системи 

(при зведенні до спільного базису – метод Фур’є). Крім того значущість роботи справедливо пов’язувати з 

можливістю отримати аналітичну залежність, яка дає явний зв’язок між нормою та самою власною функцією.  

У роботі вибудовується підхід до визначення норми власних функцій спектральної проблеми Штурма-Ліувілля 

для двошарового нескінченного одновимірного фотонного кристала. В основу даного підходу покладається 

граничний перехід у відповідному скалярному добутку. Невизначеність, що виникає при граничному переході, 

розкривається за допомогою правила Лопіталя.  

Мета роботи – спростити отримане раніше граничне перетворення норми (перетворення, яке безпосередньо 

виникає при здійсненні граничного переходу у відповідному скалярному добутку). Досягається, головним 

чином, внаслідок того, що вдається знайти такий розв’язок лінійного неоднорідного диференціального 

рівняння (це неоднорідне рівняння отримується взяттям похідної від спектрального рівняння за спектральним 

параметром), котре задовольняє квазіциклічним умовам на періоді (умовам Флоке). Також автори мали на меті 

поставити наголос на перевагах теперішнього підходу до обчислення норми, адже останній дає зв’язок між 

нормою та самою власною функцією у явному вигляді. 

Матеріали та методи. Інтеграл, що визначає норму (точніше, скалярний добуток) береться на кінцевому 

проміжку, тому неоднорідне рівняння, що виникає за Лопіталем, розв’язується на кінцевому проміжку, тобто 

розв’язок цього неоднорідного рівняння відшукується як розв’язок граничної задачі з граничними умовами – 

умовами Флоке. Спектральне же рівняння в проблемі Штурма-Ліувілля розв’язується на необмеженому 

інтервалі (−∞,+∞), тому для того, щоб вписатися в умови самоспряженості, застосовується метод матриць 

перенесення (transfer matrix method). 

Результати. Було підібрано такий розв’язок, який задовольняє квазіциклічним умовам на періоді (умовам 

Флоке). Зазначений розв’язок вибирається з множини усеможливих розв’язків неоднорідного 

диференціального рівняння, яке за Лопіталем, виникає при граничному переході. В наслідок підстановки цього 

розв’язку вихідне граничне перетворення норми спрощується. 

Висновки. Інтерес до перетворення норми, отриманого у наслідок здійснення граничного переходу в 

відповідному скалярному добутку, справедливо пов’язувати з реалізованою можливостю отримати залежність 

між нормою та самою власною функцією в аналітичному вигляді. Основна увага приділяється випадку, коли 

вдається досягти виконання умов Флоке, при отримані розв’язку неоднорідного рівняння, потрібного для 

знаходження похідної у зв’язку з правилом Лопіталя. У такому разі граничне перетворення норми спрощується. 

КЛЮЧОВІ СЛОВА: фотонний кристал, розсіяння електромагнітних хвиль, норма функції, скалярний 

добуток, проблема Штурма-Ліувілля, власні функції.  
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ВСТУП 

Визначення норми власних функцій спектральної проблеми Штурма-Ліувілля, серед іншого, 

представляється важливою задачею у зв’язку із розв’язанням хвильових рівнянь методом розділення 

змінних. Також необхідність у визначені норми виникає при переході від однієї повної ортогональної 

системи функцій до іншої повної ортогональної системи функцій у Фур’є-розкладеннях [1]. В деяких 

випадках зручно або потрібно побудувати ортонормовану систему власних функцій для чого, звісно, 

потрібно мати норму.  

Важко переоцінити вагомість промислової електроніки у сучасну добу інформаційних технологій. 

Зрозуміло, що подальший розвиток цієї галузі людської діяльності неможливий без розвитку її елементної 

бази. Тому, як наслідок, різні фізико-технічні аспекти функціонування окремих (найпростіших) 

електронних пристроїв продовжують залишатися предметом наукового інтересу [2]. 

А втім, наріжним каменем промисловості електроніки справедливо називати напівпровідникові 

матеріали – матеріали, які при певних характеристиках електромагнітного випромінювання працюють як 

провідники, а при інших характеристиках – як діелектрики. Відтоді як було винайдено радіоприймач 

(Попов А. С., Росія, 1895 р.) – подія, яка ознаменувала відчутний стрибок у розвитку електроніки, 

електронні інтегральні системи (чипи) розроблялися, впроваджувалися, і вдосконалюватися, але, схоже, 

сьогодні за прогнозами багатьох учених-аналітиків, ці системи вичерпують свій потенціал працездатності, 

принаймні у деяких напрямках. Згадуючи емпіричний закон Мура (з 1965 р. кількість транзисторів, 

розміщених на кристалі інтегральної схеми, подвоюється кожні 24 місяці), наукові аналітики намагалися 

вказати на тенденцію, яка, так чи інакше спостерігається з 1965 р. та, по суті, передрікає границю у 

можливостях нарощувати працездатність електронних чипів, тимчасом як потреба у збільшенні 

потужностей буде залишатися відкритою. Ця обставина, мабуть, й просувала загальну наукову думку в 

напрямок до необхідності працювати над пошуками нових радикальних технічних рішень.  

Отож, фотоні кристали стають своєрідним аналогом напівпровідникових матеріалів (ідея 

фотонного кристала уперше запропонована в 1987 р., E. Yablonovitch, університет UCLA, Каліфорнія, 

США [2]). Багато-які аналітики передрікають стрибок в галузі мікропроцесорної техніки саме шляхом 

впровадження пристроїв на основі фотонних кристалів. Річ у тому, що світло має певні переваги, а саме, 

світло розповсюджується значно швидше ніж електроні хвилі, володіє меншим тепловим розсіянням та 

здатне до перемикання [2]. 

У теперішній роботі продовжується розвиватися підхід до визначення норми власних функцій 

спектральної проблеми Штурма-Ліувілля для двошарового нескінченного одновимірного фотонного 

кристала. В основу даного підходу покладено граничний перехід у відповідному скалярному добутку: 

(𝑢, v) → ‖𝑢‖2 при v → 𝑢. Першим ґрунтовним результатам у цьому напрямку передувала доволі значна 

робота. Один з важливих комплексів питань був пов’язаний із визначенням похідної від розв’язку 

спектрального рівняння за спектральним параметром. Тут ключову роль відіграла знайдена можливість 

розв’язати неоднорідне диференціальне рівняння, яке відповідно отримується взяттям похідної від 

спектрального рівняння за спектральним параметром [4]. Своєю чергою, задача про визначення похідної 

запотребувало пошуку інших лінійно незалежних від самої власної функції розв’язків [1]. З’ясувалось, що 

інші лінійно незалежні розв’язки виражаються через саму власну функцію та її похідну. У роботі [1] 

здійснюється вищезазначений граничний перехід (𝑢, v) → ‖𝑢‖2 при v → 𝑢, у якому розкривається 

невизначеність виду [
0

0
] за правилом Лопіталя. 

Головним чином, робота спрямована на дослідження отриманого раніше [1] граничного 

перетворення та окремих членів, що входять у таке перетворення, виявленню залежностей або 

незалежностей цих членів від самої власної функції. До основних результатів може бути віднесена 

знайдена можливість здійснити деякі подальші спрощення граничного перетворення. Цікавим, на думку 

авторів, видається таке перетворення, коли для 
0
 – розв’язку неоднорідного диференціального рівняння, 

потрібного для визначення 
𝜕

𝜕𝛽
𝑍𝛽 (𝑍𝛽 – розв’язок спектрального рівняння, 𝛽 – спектральний параметр) – 

вдається досягти квазіциклічності, тобто Λ
0
(𝑧 − 𝑙) = 

0
(𝑧), (Λ – множник Флоке, 𝑧 – незалежна змінна, 

𝑙 – період фотонного кристала). 

 

ПОСТАНОВКА ДИФРАКЦІЙНОЇ ЗАДАЧІ  

Будемо розглядати дифракційну задачу для двошарового нескінченного одновимірного 

фотонного кристала з періодом 𝑙. Нехай 𝜀𝑗, 𝜇𝑗 – діелектрична та магнітна проникності відповідно першого 

й другого шарів (𝑗 = 1, 2), 𝑑 – розмір першого шару, 𝑙 − 𝑑 – другого шару. Уведемо прямокутну декартову 

систему координат ZOY таким чином, щоб періодичність структури була направлена вздовж вісі OZ. 

Скалярне хвильове рівняння плоских монохроматичних E-поляризованих коливань для двовимірного 

середовища, заповненого даним кристалом, має наступний вигляд (модифіковане рівняння Гельмгольца):  

Δ𝜇𝑢 + 𝑘
2𝒏2𝑢 = 0, (1) 
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тут ∆𝜇 = 𝜇∇
1

𝜇
∇ – модифікований оператор Лапласа, 𝑢 = 𝑢(𝑧, 𝑦) – шукана скалярна функція, 𝑧, 𝑦 (−∞, +

∞), 𝒏(𝑧) = √𝜀𝜇 – коефіцієнт заломлення – кусково-стала функція, 𝜀 = 𝜀(𝑧) – діелектрична проникність, 

 𝜇 = 𝜇(𝑧) – магнітна проникність – кусково-сталі: 

𝜀(𝑧) = {
𝜀1, 𝑧 ∈ ( 𝑑

2
−𝑙+𝑚𝑙, −𝑑

2
+𝑚𝑙]

𝜀2, 𝑧 ∈ (−𝑑
2
+𝑚𝑙,   𝑑

2
+𝑚𝑙]

,  𝜇(𝑧) = {
𝜇1, 𝑧 ∈ ( 𝑑

2
−𝑙+𝑚𝑙, −𝑑

2
+𝑚𝑙]

𝜇2, 𝑧 ∈ (−𝑑
2
+𝑚𝑙,   𝑑

2
+𝑚𝑙]

, 

𝑚 – ціле, 𝑙  – період шаруватого середовища, 𝑘 =
𝜔

𝑐
 – хвильове число, 𝜔 – циклічна частота плоского 

монохроматичного коливання, 𝑐 – швидкість світла у порожнечі [5].  

Згідно з методом розділення змінних, загальний розв’язок рівняння (1) представляється у вигляді 

ряду Фур’є  

𝑢 =∑𝑌𝛽𝑛𝑍𝛽𝑛

∞

𝑛

 , (2) 

де 𝑌𝛽𝑛 = 𝑌𝛽𝑛(𝑦) – розв’язок звичайного лінійного диференціального рівняння 2-го поряду 𝑌̈𝛽𝑛 + 𝛽𝑛
2𝑌 = 0, 

має вигляд, 𝑌𝛽𝑛(𝑦) = 𝐶𝛽𝑛𝑒
𝛽𝑛𝑦 + 𝐷𝛽𝑛𝑒

−𝛽𝑛𝑦, 𝐶𝛽𝑛  , 𝐷𝛽𝑛 – довільні константи, {𝑍𝛽𝑛}𝑛=0,±1,…
 – повна 

ортогональна система функцій, причому, 𝑍𝛽𝑛 = 𝑍𝛽𝑛(𝑧) задовольняє рівнянню 𝜇(
1

𝜇
𝑍̇)̇ + (𝑘2𝒏2 + 𝛽𝑛

2)𝑍 = 0 

[6]. 

Як відомо, побудова повної ортогональної системи функцій, кожен елемент якої задовольняє 

лінійному диференціальному рівнянню 2-го поряду – проблема Штурма-Ліувілля – може здійснюється 

шляхом розв’язання наступної спектральної проблеми  

L𝑍 = −𝛽2𝑍, 

де 𝛽 – спектральний параметр,  L𝑍 ≡ 𝜇(
1

𝜇
𝑍̇)̇ + 𝑘2𝒏2𝑍 – лінійний диференціальний оператор 2-го поряду 

[6]. 

ОГЛЯД 

У теперішній роботі розглядається спектральна проблема Штурма-Ліувілля у зв’язку із 

розв’язанням хвильового рівняння (1) методом розділення змінних. Власні функції відшукуються як 

елементи гільбертового функціонального простору зі скалярним добутком  

(𝑢, v) = ∫  
1

𝜇
𝑢v̅ d𝑧

d
2

d
2

-𝑙

 , 

тут 𝜇 = 𝜇(𝑧) – магнітна проникність – періодична кусково-стала функція. Позначимо цей простір через H. 

Торкнемося деяких питань розв’язності проблеми Штурма-Ліувілля. Взагалі кажучи, строге математичне 

обґрунтування умов розв’язності проблеми Штурма-Ліувілля є предметом доволі чималої теорії [6-8]. 

Зокрема, обґрунтування ортогональності та повноти розв’язків проблеми Штурма-Ліувілля стає можливим 

завдяки залученню таких понять як простір Гільберта, самоспряженість та цілком неперервність 

(компактність) лінійного оператору, соболєва диференційованість. Говорячи про розв’язність проблеми 

Штурма-Ліувілля, варто також згадати теореми Гільберта-Шмідта та Стєклова [6-8]. Зупинимось коротко 

на одному із перелічених аспектів розв’язності проблеми Штурма-Ліувілля – умова самоспряжені 

диференціального оператора L. Отож, за визначенням, маємо: 

(L𝑢, v) = (𝑢, Lv), 
𝑢, v ∈ H0. Диференціальний оператор L буде самоспряженим (симетричним) у просторі функцій 𝑢 ∈ H0 

таких, що  
1

𝜇
𝑢̇ – неперервна, Λ𝑢(𝑧 − 𝑙) = 𝑢(𝑧), ΛΛ̅ = 1 (Λ – деяке невідоме комплексне число). Позначимо 

цей простір через H0. Але чи буде рівняння L𝑍 = −𝛽2𝑍  мати розв’язки в H0? Існування розв’язків у 

просторі H0 передбачається теоремою Флоке [7-8]. Теорема Флоке для лінійного диференціального 

рівняння з періодичними коефіцієнтами (рівняння Хіла) передрікає існування розв’язку такого, що 

Λ𝑢(𝑧 − 𝑙) = 𝑢(𝑧), Λ – множник Флоке [7-8]. Проте, взагалі кажучи, число Λ за теоремою Флоке 

виявляється залежним від спектрального параметра 𝛽:  Λ = Λ𝛽. Втім, добре відомо, що досягти бажаної 

незалежності від параметра 𝛽 (досягти самоспряженості оператору L) вдається з наступних міркувань. Річ 

у тому, що оператор, який розв’язку 𝑢(𝑧) ставить у відповідність розв’язок 𝑢(𝑧 − 𝑙) є лінійним оператором, 

що діє у двовимірному просторі розв’язків диференціального рівняння L𝑍 = −𝛽2𝑍  [9], тож, задається 

квадратною матрицею 2-го порядку, а шукані множники Флоке Λ1, Λ2 виявляються власними числами 

такої квадратної матриці. Отже, Λ1, Λ2 можуть відшукуватися шляхом розв’язання квадратного рівняння. 

Своєю чергою, теорема Вієта (для квадратного рівняння) дозволяє пов’язати добуток цих власних чисел 

Λ1, Λ2 та підібрати їх так, щоб виконувалась рівність  Λ = Λ1 = Λ2
̅̅̅̅ , Λ1Λ2 = 1.  
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У багатьох роботах [7-8, 10-14], зокрема, роботі [12] підтримується та розвивається методика 

(transfer matrix method, abr. TMM), що дозволяє вказати множники Флоке Λ1, Λ2 саме такими які 

забезпечуватимуть самоспряженість диференціального оператора L у просторі функцій H0. 

Використовуючи нормальну систему фундаментальних розв’язків 𝑢1, 𝑢2, автори роботи [12] будують 

матрицю оператору T: 𝑢(𝑧)  → 𝑢(𝑧 − 𝑙), (𝑢 – розв’язок спектрального рівняння L𝑍 = −𝛽2𝑍 ) та 

розглядають власні числа Λ1, Λ2 як на розв’язки квадратного рівняння det (T − ΛI) = 0 (I – одинична 

матриця, Λ = Λ𝛽, T = T𝛽). Внаслідок того, що система фундаментальних розв’язків 𝑢1, 𝑢2 є нормальною 

системою, вільний член квадратного рівняння det (T − ΛI) = 0 виявляється рівним одиниці. Тож, Λ1Λ2 =
1 (теорема Вієта). Далі, покладається Λ1,2 = 𝑒

±𝑖 𝑙,  – блохівське хвильове число, тобто невідома Λ 

фіксується й тепер вважається відомою Λ = Λ1,2, а значення спектрального параметра 𝛽 такі, що det (T𝛽 −

Λ1,2I) = 0 вважаються шуканими. Оцим значенням спектрального параметра 𝛽 = 𝛽𝑛 (𝑛 = 0, ± 1,…) 

відповідають 𝑍𝛽𝑛 – розв’язки спектрального рівняння L𝑍 = −𝛽𝑛
2𝑍, та оскільки Λ1 = Λ2

̅̅̅̅ , Λ1Λ2 = 1, то 

розв’язки 𝑍𝛽𝑛 є власними функціями диференціального оператору L у просторі H0.  

Говорячи про повноту системи 𝑍𝛽𝑛 (𝑛 = 0, ± 1,…), природно напрошується запитання: з якої 

властивості оператору L випливає повнота системи 𝑍𝛽𝑛, або, чи випливає повнота системи 𝑍𝛽𝑛 із 

вищесказаного (ортогональність системи 𝑍𝛽𝑛 випливає безпосередньо з умови самоспряженості). На цей 

рахунок треба зазначити наступне. Перше, повнота є ключовою концепцією, яка лежить на шляху до 

розуміння того, що у (2) отримується саме загальний розв’язок рівняння (1), а не частковий. Друге, зробити 

висновок про повноту й ортогональність системи 𝑍𝛽𝑛 у просторі H0 можна, посилаючись на спектральну 

теорію лінійних операторів – в рамках цієї теорії доводяться теореми про ортогональність та повноту 

системи власних функцій лінійних операторів з певними властивостями. І, насамкінець, зазначмо, що 

диференціальний оператор (необов’язково оператор L) не є обмеженим лінійним оператором. Тому 

безпосереднє застосування спектральної теорії до обґрунтування повноти системи 𝑍𝛽𝑛 стрічає труднощі. 

Хоча повнота є ключовою концепцією у методі побудови загального розв’язку рівняння (1) у вигляді (2), 

більш глибоке осмислення цієї властивості власних функцій потребує щонайменше залучення окремого 

математичного апарату. Тож, умова самоспряженості є лише складовою умовою розв’язності проблеми 

Штурма-Ліувілля, іншою мовою, повнота безпосередньо не випливає з умови (L𝑢, v) = (𝑢, Lv), 𝑢, v ∈ H0. 

В підсумку, у роботі [12] здійснюється перехід від дисперсійного рівняння det (T𝛽 − Λ1,2I) = 0 до 

системи двох наступних еквівалентних рівнянь (теорема Вієта) Λ1Λ2 = 1, Λ1 + Λ2 = −𝑎(𝛽), де 𝑎(𝛽) є 

другим членом квадратного рівняння. Звідки маємо залежність від спектрального параметра 𝛽:  

 2 cos 𝑙 = 𝑢1(𝑧0 − 𝑙) +𝑢̇2(𝑧0 − 𝑙), (3) 

де  – блохівське хвильове число, 𝑢1, 𝑢2 – нормальна система розв’язків, тобто 𝑢1(𝑧0) = 1, 𝑢̇1(𝑧0) = 0, 

𝑢2(𝑧0) = 0, 𝑢̇2(𝑧0) = 1, T = ( 
𝑢1|𝑧0−𝑙 𝑢2|𝑧0−𝑙
1

𝜇
𝑢̇1|𝑧0−𝑙

1

𝜇
𝑢̇2|𝑧0−𝑙

 ) – матриця перенесення (матриця оператору T). 

Дисперсійне рівняння (3) пов’язує умови розв’язності проблеми Штурма-Ліувілля з множниками 

Флоке Λ1,2 = 𝑒
±𝑖 𝑙 і ( – блохівське хвильове число), тобто зазначені незалежні від спектрального 

параметра 𝛽 множники Флоке Λ1,2, за даним методом (MMП), остаточно визначають простір H0 – простір, 

на якому диференціальний оператор L є самоспряженим – з одного боку, а з іншого боку теорема Флоке 

відповідає на поставлене раніше запитання: чи буде рівняння L𝑍 = −𝛽2𝑍  мати розв’язки в H0. З 

урахуванням виведеного дисперсійного рівняння (3) побудованого функціонального простору H0 

проблема Штурма-Ліувілля записується у наступному вигляді:  

L𝑍 = −𝛽2𝑍, 𝑍 ∈ H0. (4) 

Спектральне рівняння у проблемі (3) еквівалентно наступному однорідному диференціальному 

рівнянню (рівняння Хіла): 

(
1

𝜇
𝑍̇)∙ +

𝜍𝛽
2

𝜇
𝑍 = 0 , (5) 

тут 𝜍𝛽
2(𝑧) = 𝑘2𝒏2(𝑧) + 𝛽2. 

Втім, постає природне питання, чому саме ці умови Λ𝑢(𝑧 − 𝑙)  = 𝑢(𝑧) мають бути вибрані для 

розв’язання вихідної дифракційної задачі? Адже, наприклад, однорідні умови Діріхле 𝑢 (
𝑑

2
), 𝑢 (

𝑑

2
− 𝑙) = 0 

або прості циклічні умови 𝑢(𝑧 − 𝑙) = 𝑢(𝑧), також забезпечують самоспряженість диференціального 

оператора L, а отже приводять до розв’язності проблеми Штурма-Ліувілля (4) та, як наслідок, до існування 

розв’язків хвильового рівняння (1) у вигляді (2). Річ у тому, що ці умови можуть використовуватися на 

кінцевих проміжках. У цьому випадку дослідник має змогу пожертвувати диференціальними якостями 

розв’язку при виході на границю. Звісно, що такої змоги немає у разі, коли мова йде про розв’язання 

диференціального рівняння на нескінченому проміжку. Тому застосовують підхід (MMП) з використанням 
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лінійного оператору, що розв’язку 𝑢(𝑧) ставить у відповідність розв’язок 𝑢(𝑧 − 𝑙), будують матрицю цього 

оператору з подальшими пошуками власних чисел Λ1, Λ2 таких, що Λ1, = Λ2̅̅ ̅, Λ1Λ2 = 1. 

За визначенням, норма функції 𝑢 є (𝑢, 𝑢) = ‖𝑢‖2, тож, маємо 

‖𝑍𝛽𝑛‖
2
= ∫

1

𝜇
|𝑍𝛽𝑛|

2

d
2

d
2
-l

𝑑𝑧 = ∫
1

𝜇
𝑍𝛽𝑛𝑍𝛽𝑛
̅̅ ̅̅̅

d
2

d
2

-l

𝑑𝑧. 

Нехай 𝑍𝛽𝑛 – власна функція, що відповідає значенню спектрального параметра 𝛽𝑛, та нехай 𝑍𝛽 – 

розв’язок спектрального рівняння L𝑍 = −𝛽2𝑍 (при 𝛽 = 𝛽𝑛 функція 𝑍𝛽 є власною функцією), тоді (𝑍𝛽, 

𝑍𝛽𝑛) → ‖𝑍𝛽𝑛‖
2
, при 𝛽 → 𝛽𝑛. Для скалярного добутку двох будь-яких функцій 𝑍𝜌, V𝛾, що є розв’язками 

спектрального рівняння L𝑍 = −𝛽2𝑍, яким відповідають значення спектрального параметра 𝛽 = −𝜌2 та 𝛽 

= −𝛾2, можливе перетворення, вільне від знаку інтеграла [1]: 

(𝑍𝜌, V𝛾) = ∫
1

𝜇
𝑍𝜌V𝛾̅̅ ̅

d
2

d
2

-l

𝑑𝑧 =
1

𝛾2 − 𝜌2
 (
1

𝜇
𝑍̇𝜌V𝛾̅̅ ̅ − 𝑍𝜌

1

𝜇
V̇𝛾
̅̅ ̅)|

d
2
−𝑙

d
2

, 

тут 𝜇 = 𝜇(𝑧) – магнітна проникність – кусково-стала функція. Застосовуючи останнє перетворення до 

функцій 𝑍𝛽, 𝑍𝛽𝑛, матимемо, 

(𝑍𝛽, 𝑍𝛽𝑛) = ∫
1

𝜇
𝑍𝛽𝑍𝛽𝑛
̅̅ ̅̅̅

d
2

d
2
-l

𝑑𝑧 =
1

𝛽𝑛
2 − 𝛽2

( 
1

𝜇
𝑍̇𝛽𝑍𝛽𝑛
̅̅ ̅̅̅ − 𝑍𝛽

1

𝜇
𝑍̇𝛽𝑛
̅̅ ̅̅̅ ) |

d
2
−𝑙

d
2

=
1

𝛽𝑛
2 − 𝛽2

W𝛽|
𝑑
2
−𝑙

𝑑
2

= {𝛽 = 𝛽𝑛} =  [
0

0
] , 

або,  

‖𝑍𝛽𝑛‖
2
= lim

𝛽→𝛽𝑛
 

1

𝛽𝑛
2 − 𝛽2

( 
1

𝜇
𝑍̇𝛽𝑍𝛽𝑛
̅̅ ̅̅̅ − 𝑍𝛽

1

𝜇
𝑍̇𝛽𝑛
̅̅ ̅̅̅ ) |

d
2
−𝑙

d
2

= lim
𝛽→𝛽𝑛

 
1

𝛽𝑛
2 − 𝛽2

W𝛽|
𝑑
2
 −𝑙

𝑑
2

=  [
0

0
]. (6) 

Таким чином, при переході до границі маємо невизначеність виду [
0

0
]. У роботі [1] розвивається 

підхід до розкриття такої невизначеності за допомогою правила Лопіталя, згідно з яким шукана границя є 

відношенням границь відповідних похідних [19]. Тож, для усунення невизначеності у (6) необхідно знайти 

похідну чисельника W𝛽|𝑑
2
−𝑙

𝑑

2 , зокрема, похідну від 𝑍𝛽 – розв’язку спектрального рівняння L𝑍 = −𝛽2𝑍 за 

спектральним параметром 𝛽, тобто знайти 𝑍𝛽
′ =

𝜕

𝜕𝛽
𝑍𝛽 (похідна знаменника обчисляється безпосередньо: 

(𝛽𝑛
2 − 𝛽2)′ = −2𝛽). Своєю чергою, похідна 𝑍𝛽

′   відшукується як розв’язок лінійного неоднорідного 

диференціального рівняння 2-го порядку [1]:  

(
1

𝜇
̇)∙ +

𝜍𝛽
2

𝜇
 = −2

𝛽

𝜇
𝑍𝛽 , (7) 

де  – шукана функція (останнє рівняння отримується шляхом диференціювання спектрального 

диференціального рівняння за спектральним параметром). Загальний розв’язок  відшукується як сума 

загального розв’язку рівняння (5) та деякого розв’язку (часткового) рівняння (7):  = 𝐶𝛽1 +𝐷𝛽2 + 0, 

С𝛽, 𝐷𝛽 – скаляри, 
1
 = 𝑍𝛽, а 

2
 – 2-й лінійно незалежний від 

1
 розв’язок, представляється у вигляді 

2
 

= 𝜂𝑍𝛽 + 𝜒𝑍̇𝛽, тут 𝜂 = −
1

2
𝜗 + 𝜂0, (𝜂0 – константа), 𝜒 = 

-
d

2

 𝜗, 𝜗 – розв’язок рівняння 

(
1

𝜇
𝜗̇)̇ + 4

𝜍𝛽
2

𝜇
𝜗 = 0 , (8) 


0
= −

1

2
𝜉̇𝑍𝛽 + 𝜉𝑍̇𝛽 – частковий розв’язок рівняння (7), 𝜉 = 

- 
d

2

 𝜙, 𝜙 – розв’язок рівняння 

(
1

𝜇
𝜙̇)̇ + 4

𝜍𝛽
2

𝜇
𝜙 = 4

𝛽

𝜇
 . (9) 

У роботі [1] здійснюється граничний перехід (𝑍𝛽, 𝑍𝛽𝑛) → ‖𝑍𝛽𝑛‖
2
 при 𝛽 → 𝛽𝑛  й, таким чином, 

отримується аналітична формула для норми власної функцій проблеми Штурма-Ліувілля:  

‖𝑍𝛽𝑛‖
2
= −

1

2𝛽𝑛
{ 𝐷𝛽𝑛 (

1

𝜇
𝜂̇ −

𝜍𝛽
2

𝜇
𝜒)

̇
|
𝑑
2
 −𝑙

𝑑
2

−(
1

2

1

𝜇
𝜙̇ +

𝜍𝛽
2

𝜇
𝜉)|

𝑑
2
 −𝑙

𝑑
2

 } |𝑍
𝛽𝑛,

𝑑
2
|
2

, (10) 
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тут 𝜇 = 𝜇(𝑧) – магнітна проникність – кусково-стала функція, 𝜂, 𝜒, 𝜙, 𝜉 – функції, що входять до складу 


2
 – лінійно незалежного від 𝑍𝛽 розв’язку та 

0
 – часткового розв’язку рівняння (7), через який 

виражається похідна 𝑍𝛽
′ =

𝜕

𝜕𝛽
𝑍𝛽, 𝐷𝛽𝑛 – константа – може знаходитися з умови, що Λ𝑍𝛽

′ (𝑧 − 𝑙) = 𝑍𝛽
′ (𝑧), Λ – 

множник Флоке.  

ОСНОВНА ЧАСТИНА 

Перетворимо член 
1

𝜇
𝜂̇ −

𝜍𝛽
2

𝜇
𝜒, що входить у (10), інтегруючи рівняння (8): 

−
𝜍𝛽
2

𝜇
∫𝜗(𝜏)𝑑𝜏

𝑧

−
𝑑
2

=
1

4

1

𝜇
𝜗̇ −

1

4

1

𝜇
𝜗̇|

− 
𝑑
2

. 

Тобто, з урахуванням 𝜒 = 
-
d

2

 𝜗, маємо  

(
1

𝜇
𝜂̇ −

𝜍𝛽
2

𝜇
𝜒)|

𝑑
2
 −𝑙

𝑑
2

= (−
1

2

1

𝜇
𝜗̇ +

1

4

1

𝜇
𝜗̇ −

1

4

1

𝜇
𝜗̇|

−
𝑑
2

)|
𝑑
2
 −𝑙

𝑑
2

= −
1

4

1

𝜇
𝜗̇|
𝑑
2
 −𝑙

𝑑
2
. 

Далі, інтегруючи рівняння (9), аналогічно, перетворюється член  
1

2

1

𝜇
𝜙̇ +

𝜍𝛽
2

𝜇
𝜉: 

𝜍𝛽
2

𝜇
∫𝜙(𝜏)

z

−
d
2

𝑑𝜏 = −
1

4

1

𝜇
𝜙̇ +

1

4

1

𝜇
𝜙̇|

−
𝑑
2

+
𝛽

𝜇
(𝑧 +

𝑑

2
) , 

тобто, 

−(
1

2

1

𝜇
𝜙̇ +

𝜍𝛽
2

𝜇
𝜉)|

𝑑
2
 −𝑙

𝑑
2

= −(
1

2

1

𝜇
𝜙̇ −

1

4

1

𝜇
𝜙̇ +

1

4

1

𝜇
𝜙̇|

− 
𝑑
2

+
𝛽𝑛
𝜇
(𝑧 +

𝑑

2
))|

𝑑
2
 −𝑙

𝑑
2

= −
1

4

1

𝜇
𝜙̇|

𝑑
2
 −𝑙

𝑑
2

−
𝛽

𝜇
(𝑧 +

𝑑

2
)|
𝑑
2
 −𝑙

𝑑
2

 . 

Таким чином, норма власної функції спектральної проблеми Штурма-Ліувілля для фотонного 

одновимірного кристала набуває вигляду: 

‖𝑍𝛽𝑛‖
2
= −

1

2𝛽𝑛
{ 𝐷𝛽𝑛

1

𝜇
𝜗̇|
𝑑
2
 −𝑙

𝑑
2

−
1

4

1

𝜇
𝜙̇|

𝑑
2
 − 𝑙

𝑑
2

−
𝛽𝑛
𝜇
(𝑧 +

𝑑

2
)|
𝑑
2
 −𝑙

𝑑
2

  } |𝑍
𝛽𝑛, 

𝑑
2
|
2

, (11) 

Знайдемо константу 𝐷𝛽𝑛 з умови, що похідна від розв’язку 𝑍𝛽  за спектральним параметром 𝛽 

задовольняє умові Флоке:  

Λ𝑍𝛽
′ (𝑧 − 𝑙) = 𝑍𝛽

′ (𝑧), 

Λ𝑍𝛽
′ |𝑑
2
−𝑙
= 𝑍𝛽

′ |𝑑
2

    С𝛽 (𝑍𝛽|𝑑
2

− Λ𝑍𝛽|𝑑
2
−𝑙
) 

⏟          
=0

+ 𝐷𝛽 ( 2|𝑑
2

− Λ
2|𝑑
2
−𝑙
 ) = −(

0|𝑑
2

− Λ
0|𝑑
2
−𝑙
), 

або, 

𝐷𝛽=𝛽𝑛 = −


0|𝑑
2

− Λ
0|𝑑
2
−𝑙


2|𝑑
2

− Λ
2|𝑑
2
−𝑙

 . 

 Звідки видно, що існування розв’язку 
0
, який задовольнятиме умові Λ0(𝑧 − 𝑙) = 0(𝑧), приводить до 

обернення в нуль константи 𝐷𝛽: 𝐷𝛽 = 0 (при умові Λ2(𝑧 − 𝑙) ≠ 2(𝑧)), тож, граничне перетворення (11) 

спрощується та набуває вигляду: 

‖𝑍𝛽𝑛‖
2
=

1

2𝛽𝑛
{ 
1

4

1

𝜇
𝜙̇|

𝑑

2
 −𝑙

𝑑

2

+
𝛽𝑛
𝜇
(𝑧 +

𝑑

2
)|
𝑑

2
 −𝑙

𝑑

2

  } |𝑍
𝛽𝑛,

𝑑
2
|
2

, (12) 

де 𝜙 – розв’язок граничної задачі для неоднорідного рівняння (9) з граничними умовами 𝜙 (
𝑑

2
− 𝑙) =

𝜙(
𝑑

2
), 𝜉 (

𝑑

2
− 𝑙) = 𝜉(

𝑑

2
), 𝜉 = 

-
d

2

 𝜙. Розв’язок 𝜙 існує як розв’язок граничної задачі для неоднорідного 

лінійного диференціального рівняння 2-го поряду [9], причому, існування цього розв’язку можливе для 

будь-якого значення спектрального параметра 𝛽. Варто, однак, зазначити, що суттєвим є вибір проміжку 
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інтегрування – (
𝑑

2
− 𝑙,

𝑑

2
). Кінці проміжку припадають на границю розділу середовищ кристала. Зрозуміло, 

що Λ
0
(
𝑑

2
− 𝑙) = 

0
(
𝑑

2
)  𝜙 (

𝑑

2
− 𝑙) = 𝜙(

𝑑

2
), 𝜉 (

𝑑

2
− 𝑙) = 𝜉(

𝑑

2
)  𝐷𝛽𝑛 = 0 (Λ – множник Флоке). 

ВИСНОВКИ 

Інтерес до методики знаходження норми, як наслідок граничного переходу у відповідному 

скалярному добутку (граничне перетворення), справедливо авторами пов’язується з можливістю отримати 

аналітичну залежність між шуканою нормою та самою власною функцією. Основна увага у роботі 

приділяється випадку, коли 
0
 – розв’язок неоднорідного рівняння, потрібного для знаходження похідної 

за правилом Лопіталя, задовольняє квазіциклічним умовам на періоді (умовам Флоке), тобто Λ
0
(𝑧 − 𝑙) =


0
(𝑧), (Λ – множник Флоке). Причому, існування цього розв’язку 

0
 показується, не залучаючи розв’язок 

відповідного однорідного рівняння. У такому разі граничне перетворення норми спрощується.  

Отже, шукана норма представляється у вигляді добутку, один з множників якого, являє собою 

такий член |𝑍𝛽𝑛(
𝑑

2
)|
2
. Інший множник не залежить від власної функції. Така обставина, своєю чергою, 

наводить на думку, що, взагалі кажучи, власна функція 𝑍𝛽𝑛 не обертається в нуль при 𝑧 = 𝑑

2
+𝑚𝑙 (𝑚 – ціле). 

Змінивши границі інтегрування з ( 𝑑
2
 − 𝑙,  𝑑

2
 ] на (− 𝑑

2
 , − 𝑑

2
+𝑙 ], за аналогією, дістаємось висновку, що власна 

функція 𝑍𝛽𝑛 не обертається в нуль також й при 𝑧 = − 
𝑑

2
+𝑚𝑙 (𝑚 – ціле). Тож, виведена аналітична залежність 

наводить на думку, що власна функція 𝑍𝛽𝑛 закономірно не обертається в нуль на межі розподілу середовищ 

фотонного кристала. Це, мабуть, означає, що для даного значення спектрального параметра 𝛽𝑛 існує одна 

та лише одна власна функція 𝑍𝛽𝑛 (кратність власного числа дорівнює 1). Хоча, взагалі кажучи, у випадку 

лінійного диференціального оператора 2-го порядку одному власному числу може відповідати не більше 

двох лінійно незалежних власних функцій. 
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Relevance The last of the decades (approximately from the 90s of the 20th century) to rapid grow of 

photonics. That's why, firstly, relevance this work is related to relevance diffraction problems for the 

structures of optics ranges (photonic crystal). The problem of calculating the norm of eigenfunctions 

Stourm-Louvile problem, in particular, raised when a waves equations is solved by separating variables 

method, as well as when making the transition from one complete to another complete orthogonal system 

(when reducing to a common basis – the Fourier method). In addition, the significance of this work should 

be associated with the possibility of obtaining an analytical dependence, which gives a clear connection 

between the norm and its eigenfunctions. 

The paper develops an approach to determining the norm of the eigenfunctions of the spectral Stourm-

Louvile problem for a two-layer infinite one-dimensional photonic crystal. This approach is based on the 

limiting transition in the corresponding scalar product. The uncertainty arising at the limit transition is 

revealed using Lopital's rule. 
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The purpose of the work – Simplify the previously obtained marginal transformation of the norm (the 

transformation that directly occurs when the marginal transition is carried out in the corresponding scalar 

product). It is achieved mainly due to the fact that it is possible to find such a solution of a linear 

inhomogeneous differential equation (this inhomogeneous equation is obtained by taking the derivative of 

the spectral equation with respect to the spectral parameter) that satisfies the quasi-cyclic conditions on the 

period (the Floquet conditions). Also, the authors aimed to emphasize the advantages of the current 

approach to the calculation of the norm, because the latter gives the connection between the norm and the 

eigenfunction itself in an explicit form. 

Materials and methods. The integral defining the norm (more precisely, the scalar product) is taken on a 

finite interval, therefore the inhomogeneous equation arising according to Lopital's is solved on a finite 

interval, that is, the solution of this inhomogeneous equation is sought as a solution of a boundary value 

problem with boundary conditions – by the conditions of Floquet. The spectral equation in the Stourm-

Louvile problem is solved on an unlimited interval (-∞, +∞), therefore, in order to fit into the conditions of 

self-conjugation, the transfer matrix method is used. 

Results. A solution was chosen that satisfies quasi-cyclic conditions on the period (Floquet conditions). 

The specified solution is selected from the set of all possible solutions of the inhomogeneous differential 

equation, which, according to Lopital's, arises at the limit transition. As a result of the substitution of this 

solution, the original marginal transformation of the norm is simplified. 

Conclusion. The interest in the transformation of the norm, obtained as a result of the implementation of 

the limit transition in the corresponding scalar product, is rightly associated with the realized possibility of 

obtaining the dependence between the norm and the eigenfunction itself in analytical form. The main 

attention is paid to the case when it is possible to achieve the fulfillment of the conditions of Floquet, when 

obtaining the solution of the inhomogeneous equation required for finding the derivative in connection with 

Lopital's rule. In this case, the marginal transformation of the norm is simplified 

 

KEYWORDS: photonic crystal, scattering of electromagnetic waves, norm of function, scalar product, 

Sturm-Liouville problem, eigenfunctions. 
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