УДК 621.785.53

О РАСПРЕДЕЛЕНИИ КОНЦЕНТРАЦИЙ АЗОТА ПО ГЛУБИНЕ СТАЛИ ПРИ КОМПЛЕКСНОМ МЕТОДЕ УПРОЧНЕНИЯ ПОВЕРХНОСТИ

В. А. Белоус, И. Г. Ермоленко, Ю. А. Заднепровский, Н. С. Ломино

Институт физики твёрдого тела, материаловедения и технологий ННЦ ХФТИ, Харьков

Поступила в редакцию 16.02.2016

Исследованы процессы комплексного модифицирования поверхности стальных деталей, при которых покрытия служебного назначения наносятся на предварительно упрочнённую основу с помощью азотирования в газовом разряде. В качестве покрытия, осаждаемого вакуумнодуговым способом, использован материал на основе нитрида молибдена. Оба этих процесса (азотирование + осаждение) совмещены в едином технологическом цикле. Методом рентгенофлуоресцентного микроанализа исследованы пространственные распределения концентраций азота по глубине стали.

Ключевые слова: газовый разряд, азотирование, покрытие, нитрид молибдена.

ПРО РОЗПОДІЛ КОНЦЕНТРАЦІЙ АЗОТУ ПО ГЛИБИНІ СТАЛІ ПРИ КОМПЛЕКСНОМУ МЕТОДІ ЗМІЦНЕННЯ ПОВЕРХНІ

В. А. Білоус, І. Г. Єрмоленко, Ю. О. Задніпровський, М. С. Ломіно

Досліджено процеси комплексного зміцнення поверхні сталевих деталей, при яких покриття службового призначення наносяться на заздалегідь зміцнену основу. Зміцнення основи здійснено при її азотуванні в газовому розряді. У якості покриття, що осаджується вакуумнодуговим методом, використано матеріал на основі нітриду молібдену. Обидва ці процеси (азотування + осадження) поєднані в єдиному технологічному циклі. Методом рентгено-флуоресцентного мікроаналізу досліджені просторові розподіли концентрацій азоту по глибині сталі. Ключові слова: газовий разряд, азотування, покриття, нітрид молібдена.

ABOUT DISTRIBUTION OF CONCENTRATIONS NITROGEN IN STEEL BY NITROCOAT COMBINED TREATMENT OF SURFASE

V. A. Belous, I. G. Ermolenko, Yu. A. Zadneprovskiy, N. S. Lomino

The processes of the nitrocoat combined treatment surface of steel details are research. Hardening of steel basis is carried out at nitriding in a gas discharge. Coating from nitride molybdenum, deposited by a vacuum-arc method, is used. Both these processes (nitriding + deposition) are combined in the single technological cycle. Spatial distributions of concentrations of nitrogen are investigational by method of *X*-ray-fluorescent microanalysis.

Keywords: gas discharge, nitriding, coating, molybdenum nitride.

ВВЕДЕНИЕ

Для повышения эксплуатационного ресурса деталей механизмов, подверженных износу, на их поверхности создают слои с повышенными служебными характеристиками. Одним из вариантов такой модификации может служить азотирование основы с последующим нанесением износостойких покрытий. Существующие технологии азотирования сталей достаточно разнообразны, и все они связаны с нагревом деталей до определённой температуры в присутствии азота. При этом в зависимости от вида используемой технологии давление азотной атмосферы может существенно

различаться: высоковакуумные условия для высоковольтных источников газовых ионов [1], низковакуумные условия для тлеющего разряда [2] и атмосферные условия для так называемого «печного» азотирования [3]. Определённый диапазон давлений характерен и для азотирования поверхности сталей с помощью азотной плазмы, создаваемой двухступенчатым вакуумно-дуговым разрядом (ДВДР) [4]. Двухступенчатый разряд организуют в установках вакуумно-дугового осаждения покрытий, используя источник металлической плазмы в качестве генератора электронов, которые в свою очередь выполняют в этом разряде функцию

активаторов газовой (азотной) компоненты. В таких установках после окончания процесса азотирования основы возможно проведение дополнительного этапа модифицирования поверхности путём осаждения покрытия [5].

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Настоящая работа посвящена исследованию особенностей поведения профилей залегания азота по глубине проазотированного слоя стальной основы, которые реализуются в комбинированных процессах вакуумно-дугового осаждения высокотвёрдого покрытия на основе нитрида молибдена на предварительно проазотированную поверхность стали. Образцы из жаропрочной релаксационностойкой стали ст. 25Х1МФ (суммарное содержание примесей (Ni, Si, V, Cr, Mn, Mo и С до 4 %), использованные в эксперименте, представляли собой пластины размером $10 \times 20 \times 3$ мм. Эти образцы помещались в вакуумную камеру установки для проведения процесса азотирования основы при её ионно-плазменной обработке в двухступенчатом разряде с последующим осаждением двухслойного покрытия: Мо (~2 мкм) и МоN (10 мкм). Тонкий слой молибдена осаждался для повышения адгезионных характеристик нитридного слоя по отношению к основе. Для второй группы образцов выполняли только первую стадию упрочнения — азотирование основы. На приготовленных поперечных шлифах образцов обоих групп были измерены распределения концентраций азота с помощью рентгено-флуоресцентного микроанализа на электронном микроскопе.

На рис. 1 приведены распределения относительного содержания азота и твёрдости по глубине шлифа для двух образцов — проазотированного и проазотированного с последующим осаждением покрытия. Глубина упрочнения была исследована на поперечных шлифах модифицированных образцов при помощи методики наноиндентирования на приборе Nanoindentor G200.

Согласно приведенным на рис. 1 распределениям концентраций азота в стальной подложке, в результате проведения процесса азотирования основное количество азота сосредоточено в приповерхностном слое

толщиной до 20 мкм, а глубже, вплоть до глубин ~80–100 мкм, проникновение азота ограничено на уровне не более 2,5 ат. %. Азот, растворённый в стали, находится в состоянии твердого раствора и обеспечивает зарегистрированное в эксперименте увеличение твёрдости в приповерхностном слое.

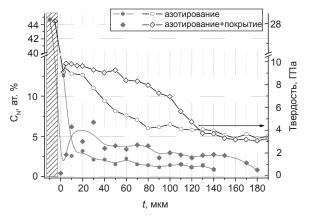


Рис.1. Профили концентрации азота и твердости по глубине азотирования. (Штриховкой обозначена область, относящаяся к MoN-покрытию)

Высокое (до 45 атом. %) содержание азота в осаждённом МоN-покрытии связано с синтезом соответствующих фаз нитрида молибдена, и присутствие этих фаз объясняет повышенный уровень твёрдости в осаждённом нитридном слое. В промежуточном слое молибдена, осаждённом без напуска азота в условиях более высокого вакуума ($P \sim 10^{-5}$ Topp), присутствия азота не зарегистрировано. Однако, как следует из рис. 1, пространственная протяжённость провала на кривой $C_{N}(t) \sim 10$ мкм превышает толщину слоя молибдена. Это, возможно, связано с процессами деазотирования поверхности стали при её нагреве на стадии ионной бомбардировки, которую проводят перед осаждением прослойки молибдена.

Из рис. 1 также следует, что содержание азота и глубина его проникновения в материал подложки для образцов с различными условиями обработки существенно отличаются: на проазотированных образцах с покрытиями и концентрация азота, и глубина его залегания выше, чем для образцов, прошедших только стадию азотирования.

Для объяснения таких различий было выдвинуто предположение о продолжении процесса азотирования стальной основы

и на стадии осаждения покрытий, которая осуществляется в азотной атмосфере $(P = 5.10^{-3} \text{ Торр})$ в условиях нагрева подложки. Проверка этого предположения была проведена при исследовании профиля залегания азота на поперечном шлифе образца с покрытием. Образец не проходил стадии предварительного азотирования, но после осаждения покрытия был подвергнут плазменному воздействию ДВДР в режиме ионного азотирования. Результаты микрозондового рентгенофлуоресцентного анализа, отнесённые к поведению содержания основной компоненты материала подложки — Fe и к концентрациям компонент, участвующим в процессе синтеза покрытий — молибдену и азоту, представлены на рис. 2.

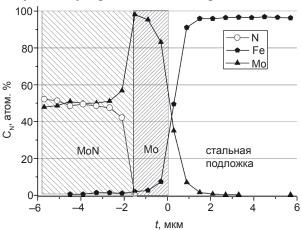


Рис. 2. Распределение содержания компонент Мо, N и Fe на поперечном шлифе образца со слоями Мо (\sim 2 мкм) и MoN (4,5 мкм)

Обращает внимание распределение компонент в переходном слое, относящемся частично к поверхности основы толщиной ~2 мкм и частично — к осаждённому на ней Мо-слою (толщина ~1 мкм). В этом слое представлены как распределение концентрации атомов Fe — основной компоненты подложки, так и атомов осаждаемого молибдена. Существование такого слоя можно объяснить с привлечением процессов ионного перемешивания, происходящих при бомбардировке поверхности стали ионами молибдена.

Эта стадия осуществлялась в условиях увеличения потенциала смещения, прикладываемого к образцу до значения ~1 кВ, что приводит к частичному распылению атомов материала основы,

их ионизации в приповерхностном слое и возврату на поверхность под воздействием приложенного к ней отрицательного потенциала, т. е. к так называемому ионному перемешиванию. Однако при этом проведение процесса азотирования в стандартных условиях ионно-плазменного воздействия ДВДР (температура и время) не приводит к проникновению азота в стальную основу через осаждённые на его поверхности покрытия.

выводы

Таким образом, осаждённый Мо-слой является преградой для выхода азота, уже поглощённого поверхностью основы на стадии азотирования. С другой стороны, поскольку при осаждении покрытий продолжается связанный с этим процессом нагрев образцов, происходит пространственное перераспределение концентрации атомов азота, сосредоточенных в поверхностном слое, вглубь образца.

ЛИТЕРАТУРА

- 1. Риссел X. Ионная имплантация / X. Риссел, И. Руге. М.: Энергия, 1975. 97 с.
- 2. Лясников В. Н., Муктаров О. Д., Исследование влияния ионной имплантации азота при создании наномодифицированной поверхности титановых имплантов // Вестник СГТУ. 2012, № 2 (66), вып. 2. С. 97–103.
- 3. Бабад-Захрянин А. А., Кузнецов Г. Д. Химико-термическая обработка в тлеющем разряде. М.: Атомиздат, 1975. 175 с.
- 4. Лахтин Ю. М., Коган Я. Д., Шпис Г. И. и др. Теория и технология азотирования. М.: Металлургия, 1991. 320 с.
- 5. Андреев А. А., Шулаев В. М., Саблев Л. П., Азотирование сталей в газовом дуговом разряде низкого давления // ФИП. 2006. Т. 4, № 3–4. С. 191–197.
- Sun Y. and Bell T. Plazma surface engineering of low alloy steel // Material Science and Engenering. — 1991. — Vol. A 140. — P. 419–434.
- 7. Sun Y. and Bell T. Combined Plasma Nitriding and PVD Treatments // Transaction Inst. of Met. Finishing. 1992. Vol. 70(1). P. 38–44.

LITERATURA

- 1. Rissel H. Ionnaya implantaciya / H. Rissel, I. Ruge. M.: Energiya, 1975. 97 p.
- 2. Lyasnikov V. N., Muktarov O. D., Issledovanie vliyaniya ionnoj implantacii azota pri sozdanii nanomodificirovannoj poverhnosti titanovyh implantov // Vestnik SGTU. 2012. No. 2 (66), vyp. 2. P. 97–103.
- 3. Babad-Zahryanin A. A., Kuznecov G. D. Himiko-termicheskaya obrabotka v tleyuschem razryade. M.: Atomizdat, 1975. 175 p.
- 4. Lahtin Yu. M., Kogan Ya. D., Shpis G. I. i dr. Teoriya i tehnologiya azotirovaniya. M.: Metallurgiya, 1991. 320 p.

- 5. Andreev A. A., Shulaev V. M., Sablev L. P., Azotirovanie stalej v gazovom dugovom razryade nizkogo davleniya // FIP. 2006. Vol. 4, No. 3–4. P. 191–197.
- Sun Y. and Bell T. Plazma surface engineering of low alloy steel // Material Science and Engenering. — 1991. — Vol. A 140. — P. 419–434.
- 7. Sun Y. and Bell T. Combined Plasma Nitriding and PVD Treatments // Transaction Inst. of Met. Finishing. 1992. Vol. 70(1). P. 38–44.