ТРИБОТЕХНИЧЕСКИЕ, ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА И ТЕРМИЧЕСКАЯ СТАБИЛЬНОСТЬ НАНО- И МИКРОКОМПОЗИТНЫХ ПОКРЫТИЙ НА ОСНОВЕ Ti-Al-N

А.Д. Погребняк^{1,2}, А.А. Дробышевская³, М.В. Ильяшенко^{1,2}, Г.В. Кирик⁴, Ф.Ф. Комаров⁵, В.М. Береснев³, Н.А. Махмудов⁶, Ш.М. Рузимов⁶, А.П. Шипиленко^{1,2}, Ю.Ж. Тулеушев⁷

¹Сумской институт модификации поверхности, Украина ²Сумский государственный университет, Украина ³Научный физико-технологический центр МОН и НАН Украины (Харьков) Украина

⁴Концерн "Укрросметалл" (Сумы) Украина

⁵Белорусский государственный университет (Минск) Беларусь

⁶Самаркандский филиал Ташкентского университета информатики Узбекистан

⁷Институт ядерной физики НЯЦ республики Казахстан (Алматы) Казахстан

Поступила в редакцию 18.03.2010

В работе представлен краткий обзор результатов по исследованию нанокомпозитных комбинированных покрытий на основе Ti-Al-N/Ti- N/Al_2O_3 . С помощью методов: оже-электронной спектроскопии, ядерных реакций, резерфордовского обратного рассеяния ионов, рентгенодисперсного микроанализа, растровой электронной микроскопии, рентгено-фазового анализа, оптической микроскопии, нано- и микротвердости, испытаний на износ по схеме цилиндр-плоскость, а также коррозийных испытаний и термического отжига на воздухе до $900\,^{\circ}$ С обнаружено, что эти покрытия обладают высокими физико-механическими защитными свойствами. Показано, что эти многослойные покрытия можно использовать как для защиты от внешних воздействий (твердость, износ, коррозия, температура), так и для восстановления размера изношенных деталей, использующихся в производстве.

Ключевые слова: термическая стабильность, износостойкость, твердость, коррозионные свойства, многослойное покрытие.

У роботі представлений короткий огляд результатів по дослідженню нанокомпозитних комбінованих покриттів на основі Ti-Al-N/Ti- N/Al_2O_3 . За допомогою методів: оже-електронної спектроскопії, ядерних реакцій, резерфордівського зворотного розсіювання іонів, рентгенодисперсного мікроаналізу, растрової електронної мікроскопії, рентгено-фазового аналізу, оптичної мікроскопії, нано- і мікротвердості, випробувань на зношування за схемою циліндр-площина, а також корозійних випробувань і термічного відпалу на повітрі до 900 °С виявлено, що ці покриття мають високі фізико-механічні захисні властивості. Показано, що ці багатошарові покриття можна використовувати як для захисту від зовнішніх впливів (твердість, зношування, корозія, температура), так і для відновлення розміру зношених деталей, що використовуються у виробництві.

Ключові слова: термічна стабільність, зносостійкість, твердість, корозійні властивості, багатошарове покриття.

In the brief review the results of researches of nanocomposite combined coatings on the basis Ti-Al-N/Ti-N/Al $_2$ O $_3$ are presented. With the help of methods: auge-electron microscopy, nuclear reactions, rutherford back-scattering of ions, X-ray dispersion microanalysis, scanning electron microscopy, X-ray phase analysis XRD, optical microscopy, nano- and microhardness, wear tests under the scheme the cylinder-plane and also corrosion tests and thermal annealing on air up to 900 °C was shown that these coatings have high physical-mechanical protective properties. It was demonstrated that these multi-layer coatings can be used as for protection against external effects (hardness, wearing, corrosion, temperature) and for recovery of the size of worn-out parts operating in industry.

Keywords: thermal stability, wear stability, hardness, corrosion properties, multi-layer coating.

ВВЕДЕНИЕ

Как известно, нанокомпозитные покрытия на основе Ti-Al-N обладают высокими физикомеханическими свойствами наряду с высокой твердостью и модулем упругости. Но большие значения твердости формируются в покрытиях при малых размерах нанозерен.

В работе [1] мы показали, что конденсация покрытия из Ti-Al-N на толстое покрытие из Ni-Cr-B-Si-Fe приводит к улучшению физикомеханических свойств, однако значения твердости достигают всего $22\pm1,8$ ГПа, что связано, в первую очередь, с большими размерами нанозерен ($17\div22$) и ($34\div90$) нм. Осаждение тонкой пленки толщиной не более 3,5 мкм на толстое покрытие из Ni-Cr-B-Si-Fe проводили распылением сплавной мишени магнетрона Ti-Al.

В работе [2] на стальные образцы осаждалось покрытие Ti-Al-N толщиной 2,5 мкм с помощью вакуумно-дугового источника в ВЧ разряде. В исследуемом покрытии была высокая твердость, которая достигала значений до $35 \pm 2,1$ ГПа, и при этом покрытие обладало высокой стойкостью к износу, задирообразованию и обладало более низким коэффициентом трения (по сравнению с TiN). В данной работе мы остановились на создании многослойного нанокомпозитного покрытия Ti-Al-N/Ti-N/Al₂O₃, осажденного несколькими технологиями, которое, по нашему мнению, должно обладать высокими физико-механическими, коррозионными свойствами и иметь высокую стойкость к температуре.

Таким образом, целью настоящей работы было создание многокомпонентных комбинированных покрытий на основе Ti-Al-N/Ti-N/Al $_2$ O $_3$ на подложке из стали, и исследование их структуры и физико-механических свойств.

ДЕТАЛИ ЭКСПЕРИМЕНТА И МЕТОДЫ ИССЛЕДОВАНИЯ

На образцы нержавеющей стали 321 толщиной $(2,5 \div 3)$ мм наносили покрытие с помощью плазменно-детонационной технологии на установке "Импульс-6" толщиной около 50 мкм (используя при этом порошок из α -Al₂O₃ с размерами фракции от 23 до 56 мкм). Покрытия шириной около 20 мм

осаждались за один проход, расход газов и емкость батарей была такая же, как в работе [3].

После очистки поверхности тлеющим разрядом на покрытия из Al_2O_3 в газовой среде N/Ar наносили TiN покрытие толщиной (1,8 \div 2,2) мкм при токе горения дуги титанового катода 100 A.

Затем, используя сплавной катод из TiAl, конденсировали покрытие из Ti-Al-N толщиной около $2,2 \div 2,5$ мкм также в среде N/Ar. Таким образом, толщина трехслойного многокомпонентного покрытия составляла (53 ÷ 56,5) мкм.

Для анализа структуры покрытия использовали методы: дифракции рентгеновских лучей (PCA), частично ПЭМ анализ, растровую электронную микроскопию с микроанализом (SEM с EDS). Для анализа состава применяли Резерфордовское обратное рассеивание ионов (используя при этом ионы $^4\text{H}^+$ с энергией 2,29 МэВ и протоны с E=1,001 МэВ). На отдельных образцах были проведены исследования с помощью оже-электронной спектроскопии. Коррозионные испытания проводили в стандартной ячейке [4-6], а тесты на стойкость к износу проводили по схеме цилиндр-плоскость.

На нескольких образцах были приготовлены поперечные и косые шлифы (под углом $(7 \div 10^\circ)$) для анализа элементов по глубине многослойного покрытия с помощью электронного микроскопа, микроанализа и XRD-анализа в точечном режиме, и для наноиндентации.

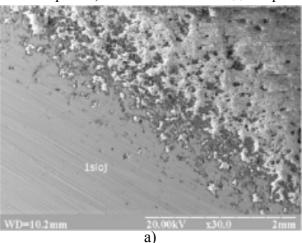
РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЯ

В табл. 1 представлены результаты расчетов нанотвердости H и модуля упругости E для каждого из слоев этой многослойной структуры. Как видно из этих данных, наибольшими твердостью $H=35\pm1,8$ ГПа и модулем упругости $E=327\pm17$ ГПа обладает слой Ti-Al-N. Оценки размеров зерен по Дебаю-Шереру показали, что размер зерен поверхностного слоя составляет $(10 \div 12)$ нм, размер зерен второго слоя покрытия из TiN несколько выше — $(20 \div 35)$ нм, а размер зерен покрытия из Al_2O_3 имеют широкий спектр разброса значений от единиц, десятков микрон до 25% зерен, имеющих размер меньше, чем 100 нм.

Таблица 1 Значения твердости и модуля упругости, размеры слоев трехслойного нанокомпозитного комбинированного покрытия, осажденного на нержавеющую сталь

Состав покрытия	Н, ГПа	Е, ГПа	Размер зерен, нм	Размер слоев, нм
Ti-Al-N	35 ± 1.8	327 ± 13	10 ÷ 12	2,2 ÷ 2,5
Ti-N	22 ± 6	240 ± 16	20 ÷ 35	$1,8 \pm 0,2$
Al_2O_3	16 ± 20	194 ± 8	$10^4 \div 10^5$	48 ± 52
Steel				

Таким образом, получается, что третий слой покрытия, состоящий из керамики $\mathrm{Al_2O_3}$, есть дисперсно упрочненный, а не наноструктурный.


На рис. 1. представлены спектры обратного рассеяния (POP) ионов (a) и протонов (б), полученных для многослойного покрытия $\text{Ti-Al-N/Ti-N/Al}_2\text{O}_3$. Из этих спектров видно, что в покрытии имеются следующие элементы: N, O, Al, Ti, небольшая концентрация атомов Nb и совсем немного Ta (последние присутствуют со стенок камеры источника).

2000 1800 $E_{\rm He}$ = 2.297 MeV 1600 $\Theta = 170^{\circ}$ 1400 1200 <u>=</u> 1000 800 600 400 Nb Ta 200 200 400 600 800 1000 Channel number 3000a) 2500 2000 1500 $E_{\rm n}$ = 1.001 MeV Θ = 170° 1000 500 400 700 500 600 800 300 Channel number б)

Рис. 1. Экспериментальные спектры обратного рассеянных ионов, полученные для многослойного покрытия Ti-Al-N/Ti-N/Al $_2$ O $_3$: а) — ионов гелия с энергией 2,297 МэВ; б) — протонов с энергией 1,01 МэВ.

Стехиометрия предполагаемого соединения, полученная из спектров по формулам [3], близка к ($\mathrm{Ti}_{60}\mathrm{Al}_{40}$)N. Имеется также и небольшое количество TiN со второго слоя и даже "слегка" захватывает протонами третий слой из $\mathrm{Al}_2\mathrm{O}_3$ (граница которого не видна на спектре).

На рис. 2 представлен косой шлиф, на котором показан 1^{ii} слой (а) и $2-3^{ii}$ слои (б). Этот шлиф сделан для того, чтобы можно было провести микроанализ этих слоев, а также все измерения, связанные с наноиндентором.

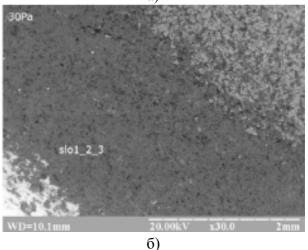
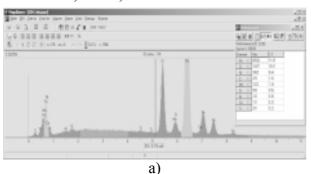
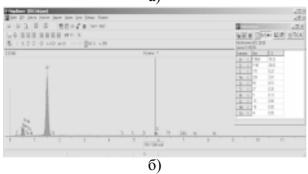




Рис. 2 Изображение участка "косого шлифа" под углом $(7 \div 10)^\circ$ многослойного нанокомпозитного покрытия на основе Ti-Al-N/Ti-N/Al $_2$ O $_3$: а) -1 слой нанокомпозитного покрытия, б) -2 и 3 слои покрытия.

На рис. За, б, в представлен элементный состав подложки (321 стали) с небольшими добавками (а) за счет диффузии во время осаждения плазменной струей и последующего оплавления покрытия без порошка. На изображении элементного состава точка в слое из Al_2O_3 имеет соотношение Al и O (70% и 20%) соответственно, что указывает на то, что часть Al входит в состав Толстого покрытия из Al_2O_3 , а часть в состав Ті-Al-N, однако Ті меньше, чем 0,2 вес.%.

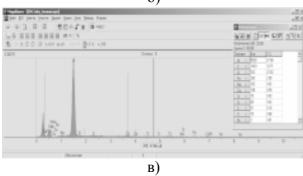


Рис. 3. Энергодисперсионные спектры, полученные с участков "косого шлифа" многослойного покрытия: а) — поверхность межфазной области покрытия из Al_2O_3 (подложка); б) — второй слой TiN; в) — третий (верхний) слой TiAlN.

На рис. 4 представлены дифрактограммы, полученные на многослойном нанокомпозитном покрытии Ti-Al-N/Ti-N/Al $_2$ O $_3$ в исходном состоянии. Как видно, в покрытии присутствуют такие фазы: Al $_2$ O $_3$, TiN, AlTi $_3$ N (AlTi)N; возможно присутствие фазы $Cr_{0,19}Fe_{0,7}Ni_{0,11}$ от подложки. После отжига 600 °C, фазовый

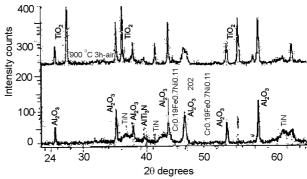
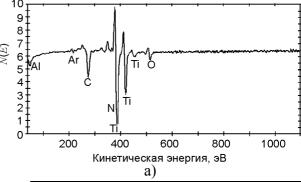



Рис. 4. Участки дифрактограмм, снятые для многослойного нанокомпозитного покрытия Ti-Al-N/Ti-N/Al₂O₃ после осаждения (через несколько недель) и после отжига при 900° C на воздухе в течение 3-х часов.

состав покрытия не менялся. Однако отжиг при 900 °C в течение 3^x часов на воздухе (см. рис. 5 и дифрактограмму на рис. 4 верхняя кривая) приводит к формированию TiO_2 , а фаза Al_2O_3 стала более микрокристаллической и состояла только из α - Al_2O_3 . Т.е. в результате 3^x часового отжига, при температуре 900 °C в воздушной среде происходит полное окисление Ti и Al, твердость покрытия также резко уменьшилась и стала равной $H = (8, 8 \div 12)$ ГПа. Таким образом, верхние 2 слоя окисляются (полностью только 1-й и часть второго), а в слое из Al_2O_3 не происходит

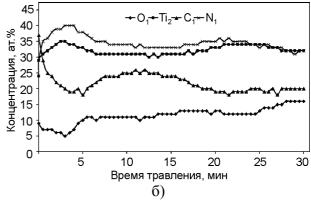
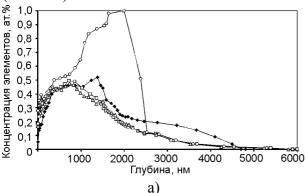



Рис. 5. Энергетические оже-спектры: а) — снятые с поверхности многоэлементного покрытия; б) — профили концентрации элементов по глубине (толщине) многослойного покрытия.

переход из α -фазы (может быть из-за того, что переход в γ -фазу начинается при температурах свыше 950 °C).

На рис. 5а, б представлены результаты ожеанализа покрытия. Как видно из этих результатов, в покрытии есть Ti, N, Al, C, и О (последний в небольшом количестве, по сравнению с концентрацией Ti и N). После травления в течение $(5 \div 7)$ минут концентрация N и Ti выравнивается $(32 \div 35)$ ат.%, а после 20 минут профили концентраций этих элементов совпадают, что говорит об определенной стехиометрии.

Дополнительные исследования с помощью метода ядерных реакций (который имеет более высокий предел обнаружения, по сравнению с РОР анализом), позволили определить профили концентрации всех элементов по глубине покрытия почти до 6 мкм (6000 нм).

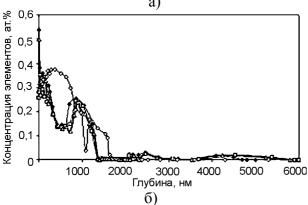


Рис. 6. Распределение элементов, составляющих нанокомпозитное многослойное покрытие по глубине, полученное с помощью ядерных реакций в исходном состоянии и после отжига.

Из рис. 6 а, б очень хорошо видна толщина верхнего покрытия, которая составляет 2,5 мкм, хотя наблюдаются "хвосты", полученные элементами, которые достигают глубины свыше 4 мкм.

На рис. 7 представлены результаты РОР анализа для всех основных элементов, входящих в состав покрытия до и после отжига образцов с покрытиями. Из этих результатов следует то, что в покрытии происходят значительные изменения. Во-первых, концентрация Ті (пиковая) уменьшается, происходит "размытие" профиля Ті, образуется соединение ТіО2, значительно уменьшается концентрация N, кроме того, происходит перераспределение Al и изменение его состояния, т.е. часть Al образует окисел Al₂O₃. Данные результаты хорошо согласуются с результатами XRD анализа до и после отжига в воздухе при температуре 900 °C в течение 3 часов (рис. 4).

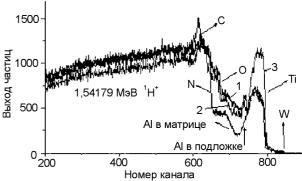


Рис. 7. Спектры обратного рассеяния ионов (водорода), полученные с многослойного покрытия Ti-Al-N/Ti-N/Al $_2$ O $_3$ для разных режимов: 1 — термический отжиг при $T=600\,^{\circ}$ C в вакууме в течение 3 часов, 2 — обработка сильноточным электронным пучком (СЭП), 3 — исходное состояние после осаждения.

На рис. 8а, б и рис. 9а, б представлены изображения поверхностных покрытий до и после отжига в воздухе до 600 °C, а также протравленные шлифы (поперечные). Из этих изображений следует, что особенных изменений в структуре покрытия и его элементном составе не происходит. Видна четкая граница покрытия, осажденного с помощью вакуумно-дугового источника, а именно слой (Ti-N), слой Ti-Al-N и слой толстого покрытия из Al₂O₃, полученного с помощью плазменно-детонационной технологи. Микроанализ, проведенный как раз в нескольких точках покрытия с поверхности и по шлифу, показал, что не наблюдается значительных изменений в элементном составе, кроме увеличения концентрации С, О и небольшого

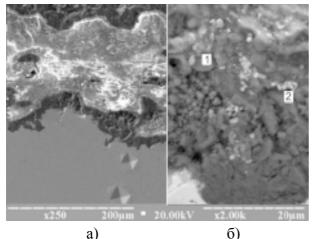


Рис. 8. Структура поперечного шлифа многослойного нано-микрокомпозитного — а) и вид поверхности — б) в исходном состоянии после осаждения (через 3 месяца).

уменьшения концентрации N (азота). Таким образом, можно сказать, что термический отжиг трехслойного нанокомпозитного покрытия даже на воздухе до температуры 600 °C не влияет на элементный и структурный состав покрытия, чего нельзя сказать об отжиге с помощью электронного пучка (до плавления).

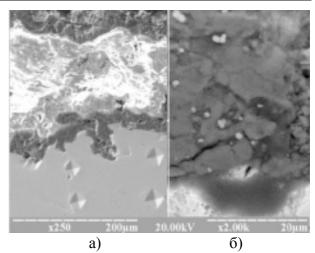


Рис. 9. Изображение структуры поперечного шлифа многослойного нано-микрокомпозитного покрытия — а) после отжига при 600 °C и изображение поверхности этого покрытия — б).

В табл. 2 представлены все виды и параметры фаз решеток, составляющих композицию покрытия после осаждения (до отжига). Как видно из этой таблицы и рисунков, а так же параметров решеток, которые получены из рентгенограмм (см. рис. 4), значительных отличий мы не видим, кроме как возможных макронапряжений в покрытии и возможных

Таблица 2 Параметры решеток, вид решеток элементарных ячеек, фаз, составляющих нано-микрокомпозитное покрытие

Фаза	α-Al ₂ O ₃	γ-Al ₂ O ₃	TiN	Cr
Тип решетки	$R\overline{3}c$ [211]	Fd3m [255]	Fm3m [211]	<i>Im3m</i> [211]
Номер группы Федорова	167 [262]	227 [262]	225 [262]	229 [262]
Вид элементар- ной ячейки				
Количество атомов в ячейке, N	30	53,3 (56)	8	2
a, Å	4,77	7,90	4,25	2,88
c, Å	12,88	_	_	_
<i>V</i> , Å ³	253,43	493,04	76,87	23,86
HKL	104	400	111	110
20, град.	35,2	45,9	36,6	44,5
$P(\theta)_{ m HKL}$	19,14	10,60	17,78	11,42
F_{HKL}	80,67	196,55	45,69	33,4
P _{HKL}	6	6	8	12
$I_{ m HKL}$, mm	157	64	37	25

микронапряжений в решетках фаз, составляющих покрытие.

На рис. 11 представлены результаты испытаний по износу поверхности покрытия при истирании ее по схеме плоскость-цилиндр.

Рис. 11. Зависимости износа материала при трении цилиндра по поверхности образцов: 1 – исходное состояние; 2 – покрытие из Al_2O_3 ; 3 – покрытие из Ti-N/ Al_2O_3 ; 4 – многослойное нанокомпозитное покрытие из Ti-Al-N/Ti-N/ Al_2O_3 .

Как видно из этих результатов, самой большой износ происходит при истирании цилиндра по поверхности подложки (кривая 1). Затем, после нанесения покрытия из Al_2O_3 плазменно-детонационной технологией (кривая 2), наблюдается уменьшение износа. Уменьшение износа видно также после осаждения покрытия TiN, по сравнению с Al_2O_3 . Наименьший износ обнаружили при истирании многослойного нанокомпозитного покрытия $Ti-Al-N/Ti-N/Al_2O_3$. Верхний слой покрытия $Ti-Al-N/Ti-N/Al_2O_3$. Верхний слой покрытия (или другими словами "сендвич" из Ti-Al-N/Ti-N) дает значительное уменьшение износа.

Коррозионные испытания, которые были проведены в электрохимической лаборатории (Салоники, Греция) по международным стандартам в растворе $0.5~\mathrm{M}~\mathrm{H_2SO_4}$ и простым микровзвешиванием после определенного времени (время выдержки в течение $(3 \div 6)$ месяцев) в растворах NaCl и HCl, показали высокую стойкость покрытия по сравнению с растворением подложки из стали 321 (стандарт Европейский).

ВЫВОДЫ

Таким образом, полученные многослойные нано-микрокомпозитные покрытия на основе Ti-Al-N/Ti-N/Al₂O₃ обладают термической стабильностью на воздухе до температуры 900 °C. Кроме того, они обладают высокой стойкостью к износу при трении цилиндра по поверхности и высокой коррозионной стойкостью в среде NaCl, H₂SO₄. Однако отжиг при температуре 900 °C на воздухе приводит к окислению верхнего слоя из Ti-Al-N полностью, и второго слоя из Ті-N частично. Твердость покрытия резко уменьшается более, чем в 2 раза. В тоже время, импульсный пучок электронов (без оплавления поверхности) не уменьшает значения твердости, возможно, из-за кратковременного воздействия, однако приводит к перераспределению примесей (элементов, входящих в состав покрытия) на межфазных границах многослойного покрытия.

Работа выполнялась в рамках проекта МНТЦ К-1198 и частично НАН Украины "Наносистемы, нанокомпозиты и наноматериалы" и госбюджетной НИР в соответствии с кординационным планом МОН Украины № госрегистрации 0110U001258.

БЛАГОДАРНОСТИ

Авторы признательны сотрудникам Сумского института модификации поверхности, института ядерной физики Национального ядерного центра Казахстана за помощь в проведении экспериментов, а также Dr. F. Noly, prof. P. Misailidis (from Thessaloniki, Greece) за коррозионные испытания.

ЛИТЕРАТУРА

- 3. Погребняк А.Д., Дробышевская А.А., Береснев В.М., Кылышканов М.К., Кирик Г.В., Дуб С.Н., Комаров Ф.Ф., Шипиленко А.П., Тулеушев Ю.Ж. Нанокомпозитные защитные покрытия на основе Ti-Al-N/Ni-Cr-B-Si-Fe, их структура и свойства//ЖТФ.—2010.—Вып. 7.
- 4. Береснев В.М., Погребняк А.Д., Турбин П.В., Дуб С.Н., Кирик Г.В., Кылышканов М.К., Швец О.В., Грищенко В.И., Шипиленко А.П. Трибологические и механические свойства нанокомпозитных покрытий из Ti-Al-N, осажденных ионно-плазменным методом// Трение и износ. 2010. Вып. 2.
- Pogrebnjak A.D., Kravchenkoa Yu.A., Kislitsynb S.B., Ruzimovc Sh.M., Nolid F., Misaelidesd P., Hatzidimitrioud A. TiN/Cr/Al₂O₃ and TiN/Al₂O₃ hybrid coatings structure features and properties

- resulting from combined treatment//Surf. And Coat. Tech. 2006. –Vol. 201. P. 2621-2632.
- 6. Погребняк А.Д., Дробышевская А.А, Даниленок М.М., Береснев В.М., Кирик Г.В., Жуковский П.В., Тулеушев Ю.Ж. Исследования структуры и физико-химические свойства нанокомпозитных комбинированных покрытий на основе Ti-Cr-N/Ni-Cr-B-Si-Fe//Известия высших учебных заведений. Физика. 2010. Вып. 12. С. 61-69.
- 7. Азаренков Н.А., Береснев В.М., Погребняк А.Д. Структура и свойства защитных покрытий и модифицированных слоев. Харьков: XHY, 2007. 560 с
- 8. Погребняк А.Д., Шпак А.П., Азаренков Н.А., Береснев В.М. Структура и свойства твердых и сверхтвердых наноструктурных покрытий //Успехи физических наук. − 2009. № 179, П.1. С. 35-64.

© Погребняк А.Д., Дробышевская А.А., Ильяшенко М.В., Кирик Г.В., Комаров Ф.Ф., Береснев В.М., Махмудов Н.А., Рузимов Ш.М., Шипиленко А.П., Тулеушев Ю.Ж., 2010