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Mathematical bases of the theory of N-point gravitational lenses.
Part 1. Elements of algebraic geometry

S.D. Bronza', A.T. Kotvytskiy?

Ukrainian State University of Railway Transport"’
V.N. Karazin Kharkov National University’

bronza_semen@mail.ua’ kotvytskiy@gmail.com’

In this paper we consider the theory of N-point gravitational lens from the standpoint of classical algebraic geometry. The first
section explains the physical statement of the problem and given the conclusion of the basic equation of the gravitational lens. In the
second - a brief discussion of the main objects of study in classical algebraic geometry, and justified its application to the theory of
N-point gravitational lenses. Then we give the definition of the central concepts of algebraic geometry - and the resultant theorems
related. The fourth section shows, a well-known, Bezout theorem on the number of solutions of polynomial equations of the system and
its corollary. In our approach, this theorem is needed to study the solutions of the gravitational lens. In the fifth section, we formulate
and prove a criterion of irreducibility of polynomials in several variables over the field of complex numbers. We do not know analogues
of this criterion for polynomials in several variables over a field of characteristic zero. The final section provides an overview of the
solutions of systems of polynomial equations and formulated a number of challenges and problems the solution of which, in our
opinion, it is advisable to apply the presented mathematical apparatus.
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second - a brief discussion of the main objects of study in classical algebraic geometry, and justified its application to the theory of
N-point gravitational lenses. Then we give the definition of the central concepts of algebraic geometry - and the resultant theorems
related. The fourth section shows, a well-known, Bezout theorem on the number of solutions of polynomial equations of the system and
its corollary. In our approach, this theorem is needed to study the solutions of the gravitational lens. In the fifth section, we formulate
and prove a criterion of irreducibility of polynomials in several variables over the field of complex numbers. We do not know analogues
of this criterion for polynomials in several variables over a field of characteristic zero. The final section provides an overview of the
solutions of systems of polynomial equations and formulated a number of challenges and problems the solution of which, in our
opinion, it is advisable to apply the presented mathematical apparatus.

Keywords

In this paper we consider the theory of N-point gravitational lens from the standpoint of classical algebraic geometry. The first
section explains the physical statement of the problem and given the conclusion of the basic equation of the gravitational lens. In the
second - a brief discussion of the main objects of study in classical algebraic geometry, and justified its application to the theory of
N-point gravitational lenses. Then we give the definition of the central concepts of algebraic geometry - and the resultant theorems
related. The fourth section shows, a well-known, Bezout theorem on the number of solutions of polynomial equations of the system and
its corollary. In our approach, this theorem is needed to study the solutions of the gravitational lens. In the fifth section, we formulate
and prove a criterion of irreducibility of polynomials in several variables over the field of complex numbers. We do not know analogues
of this criterion for polynomials in several variables over a field of characteristic zero. The final section provides an overview of the
solutions of systems of polynomial equations and formulated a number of challenges and problems the solution of which, in our
opinion, it is advisable to apply the presented mathematical apparatus.

Keywords

1. Physical formulation of problem replaced by asymptotes to hyperbola. Then the angle
When the light ray propagates near a point massive between the asymptotes is defined with the following
object (gravitational lens), its trajectory bends. In case expression [1,2]

when the minimum distance 5 (see fig.1) on which the ray 2y AR
approaches to the attracting body is much more than its o= £ _ — (1.1)
gravitational radius 7, the true light ray trajectory can be 5 c 5
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where M - mass of point lens, G - gravitation constant, ¢ -
speed of light in vacuum.

For the possibility of extension of a one-point
gravitational lens to a lens consisting of N point masses
situated in the lens plane in points with radius vectors &;
the formula for light-ray deflection angle (1) is written in
the vector form

(1.2)

where the direction of vector O coincides with the

(Z‘ = ). As the massive

direction of vector 5 (where

body “attracts” the light ray, it deflects to the body under
consideration. Hence, the expression for the deflection is

—
—

d=—a.
The formula (2) can be easily written for every M ;
mass included in the lens

L AW E-2)

=

(1.3)

where vector Ag ;= C_,E - f ; is directed from the point of

arrangement of i-th mass into the point of intersection of
the light ray with the lens plane (which is defined by vector

5 ). It is obvious that at 5 i -0 (point mass is situated

in the origin of coordinates) the formula (1.3) turns into
(1.2). The full deflection angle will be equal to the vector
sum of deflection angles from
every i-th mass

a=

M=

N
I
—

a; . (1.4)

In case of small deflection angles from fig.1 we have

n+Dya=n+g. (1.5)
On the other hand
n+s=Dp. (1.6)

Whereﬁzg/Dd.

Finally, from (5) and (6) we obtain the equation of
gravitational lens [3,4]

—

D -
Dj, -Dya (1.7)

n=

Specifically, for a one-point lens we have the

following lens equation

D, - _ 4 -
s -Dy

D, 22 g, (1.8)

At = 0, ic. when the light source is situated on

n=

the lens axis, we have equation on &

D, 404

g =0. (1.9)
Dd 02§2
The solution (9) is usually denoted as 50
464 -D, -D
& = R (1.10)
¢ D,

Thus, if the point source, point lens and observer are
situated on the same straight line, the observer will see a
circle with radius é:O' This radius is usually called
Einstein-Chwolson radius [5,6], and the circle itself -
Einstein-Chwolson ring. Introducing dimensionless
variables

(1.11)

the equation of one-point gravitational lens (8) becomes

. . X
y=x—-—.
x

(1.12)

The equation of N-point lens (7) can be written as

D, Z (5 5) (1.13)

llc

7_7’:

i

For writing (1.13) in the dimensionless form we take
into account that Einstein-Chwolson radius 50
determined from the full mass of the gravitational lens

M = ZM ; (though there is no Einstein-Chwolson
i
ring in case of N-point lens).
Rewrite (1.13) in the form
A6 ,D,M X M, /M

§0DSC 2. ( 5,) (1.14)

_¢
Dséo 60

2
Letusnote thatin (1.14) there is 6 0 / Cf (0 €xpression

before the summation symbol. Taking into account (1.11)
and also introducing m = M i / M — dimensionless

masses we obtain from (14)
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- _5;0 (f q): Z R 2(5/50—51./50).(1.15)
= A|E 8 =& /&)

Finally, the equation of N-point gravitational lens becomes

Zm 2 , (1.16)
X - ll.

—_

where Zi = 51- / §0‘ dimensionless radius vectors of point masses included into the lens. It is obvious

that Z m; =
i

For the further analysis let us rewrite the set of equations (1.16) in the coordinate form. Taking into account that the

vectors have the following components X = (xl , X ), y = ( Vi,Vs ), [ P = (al. ’bi) we receive the following system

=X Zm a; 2
Hab) . (1.17)

—b,
=X m; :
Ya 2 Z _ ( +(xx0 = )2
One of the main tasks of the theory of gravitational lens is the image construction from the specified source. That is,
from the known coordinates of the source | V', V', ) to find the images coordinates { X, X, ). The problem is that in the

general case we do not know a constructive or analytic algorithm for the solution of the system (1.17). The availability of
such an algorithm would make it possible to apply methods of symbolic programming. Currently, numerical methods
similar to the routing method are applied [7-9]. In this paper we develop an approach based on algebraic geometry. This
approach makes it possible to construct quasianalytic and, sometimes, analytic algorithms for the solution of a number of
problems. The beginning of this approach is initiated in [10].

2. Basic objects of study in classical algebraic geometry

The main direction of algebraic geometry is the study of the properties of algebraic varieties over an algebraically
closed field. Most often consider affine and projective variety over the field of real or complex numbers. Obvious reason
that studying the variety and not a vector space. If varieties properties do not depend on the structure of a vector space,
we can, the basic elements of space, regarded as points, and not as a vector. To study the affine n-dimensional space, it
is fixed in some basis (particularly selected origin of coordinates). Further, each S - family of polynomials K rings put in
correspondence the set points V(S) whose coordinates satisfy all polynomials of the set S. Obviously, the coordinates of a
set of points V{(S) are solutions of the system, which is composed of equations belonging to the family S.

It is known that the property of being a polynomial function does not depend on the choice of basis. On this basis,
we can speak of polynomial functions as a set of common zeros of V() of functions of the family S. The sets that can be
represented in the form V(S), called algebraic sets. On the other hand, any algebraic set can be uniquely represented as the
union of a finite number of disjoint algebraic varieties.

Thus, the main object of study of classical algebraic geometry, as well as in a broad sense and modern algebraic
geometry, are the set of solutions of algebraic systems, in particular polynomial, equations. This fact gives us the
opportunity to apply the techniques of algebraic geometry in the theory of N-point gravitational lenses.

In the late 1950s, Alexander Grothendieck gave a schema definition that the concept of an algebraic variety see [26].
This event is considered the beginning of modern algebraic geometry and the end of classical see. [27].

In algebraic geometry formed a number of directions. We mention some of them. Complex Algebraic Geometry. In
a separate direction is isolated, and the study of the real points of a complex manifold. This area is called, real algebraic
geometry. Complex Algebraic Geometry. In a separate area is isolated, and the study of the real points of a complex

8 BicHuk XHY, cepis «®isukay», sun. 26, 2017
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manifold. This area is called, real algebraic geometry.

Separate direction of studying features of complex algebraic varieties (including one dimension - Riemann surfaces)
and real algebraic varieties. Singularity Theory varieties naturally intersects with algebraic topology.

At the intersection of algebraic geometry and computer algebra we have computational algebraic geometry. Its basic
task - creation of algorithms and software for studying the properties of explicit algebraic varieties

The concepts and theorems set forth in this article, mostly apply to sections of algebraic geometry, known as
elimination theory and the theory of algebraic curves.

All results are set out in affine coordinates, including those that have been proven by using projective coordinates. We
managed to avoid the use of projective coordinates by applying the linear fractional transformations of affine coordinates.

We also paid attention an important concept of modern algebra - basis Grobner, which can be applied to the study
of systems of polynomial equations, in particular, for the construction of an efficient algorithm for answering the question:
is finite or infinite number of solutions? We are considering the system contain a small number of equations, that allows
you to answer these and similar questions, using other available means, such as a theorem of the resultant and the criterion
of irreducible polynomials.

3. The resultant is the central concept of classical algebraic geometry. Fundamental theorems on the resultant
This section contains some well-known, definitions and theorems of classical algebraic geometry. These definitions
and theorems presented in a form that meets, in our opinion, the objectives of this article. Theorems are given without
proof, but are referenced to the appropriate sources.
The resultant is a central concept of classical algebraic geometry. The current literature [13-15] resultant usually
defined as follows:
Definition 3.1 Let K - arbitrary field, f (x) and g (x) - ring of polynomials K [x] The resultant R( f NY ) of

polynomials f (x ) and g (X ) is called an element field K , defined by the formula:

i=n j=m
R(f.@)=aby [T] (@ -5). (3.1
i=0 j=0
i=n ‘ j=m '
where  «,, ﬂj - roots of polynomials f (x)= Zaixn_l and g(x)= ijxm_j , correspondingly
i=0 j=0

with the highest coefficients, a,, b, such that a, # 0,5, #0 .

Assume us know the roots of polynomials f (x ) and g (X), to calculate their resultant, we can use the formula

(3.1). Assume that the coefficients of these polynomials only then to calculate the resultant can use the Sylvester matrix
for these polynomials. Sylvester matrix is a block matrix of the two blocks. Each unit has a banded matrix. We have a
definition of the Sylvester matrix. i=n ‘ j=m '
Definition 3.2. Matrix Sylvester for polynomials f (X) = Zaixn_l and g(x)= Zb X", we call a square
i=0 j=0
matrix S =S ( f,g ) of order n+m with elements s; defined by the formula:

a,;, J  0<j—i<n, i=l..m, j=l..n+m;

Si =0 iy J 0 j—itm<n, i=(m+l)..(n+m) j=L..n+m; G2
0, for othersi,
i.e. _ao al az 0 O ]
O ao al a2 .o e e O
n—lines
0O 0 O a a
S(7.g)=|s. |= nel T (3.3)
(f.g)=ls,] bbb, 0 0
0 b b b 0
m — lines o2
BicHuk XHY, cepia «®isunkay, sun. 26, 2017 I 0 0 0 bm—.l bm_ 9
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Sometimes Sylvester matrix is called the matrix:

a @ a, - - 00
n—lines .
0 0 - - - a., a , a, (3.4)
S , =15. |= ’ .
(f g) []] 0 0O - ... bn_2 bm—l bm
m — lines 0 0 bn_-z bm_.l bu 0
_bo by e e e 0 0_

see. e.g. [12], [19], [24].
Sylvester matrix that defined by (3.3) will be denoted by Sul( f R g), see. e.g., [24], and write

Sul(f, g) = S(f,g). Sylvester matrix that defined by (3.4) - denote by the Sul>(f, g), and write
Sul” ( 7.g)=5(f, g) . Superscript in the designation of the matrix reflects the location of the bands.

The Presentation matrices of Sylvester in various forms have rationale. Many important results are stated in terms

of the minors of these matrices.
The determinant of the matrix Sul/ >( f, g) is different from the determinant of the matrix Sul/ ( f , g ) only sign.

We have the following relation:

det Sul”(f, )= (= 1)" det sui( £, ). (3.5)
where |:n/ 2} the integer part of number 7 .

The resultant R( f g ) and matrix of Sylvester Sul ( f , g ) associated equation.

Theorem 3.1. The resultant R( f Y ) of the polynomials f and g is equal to the determinant of Sylvester matrix

these polynomials, i.e.

R(f,g)=detSul(f,g). (3.6)

Proof of Theorem 3.1., see. e.g., [13], [14].
Example 3.1. Calculate the resultant of the polynomials: f; = x° —3x+2 and f, =x” +1.

1 -3 2 0

0 1 -3 2
Solution. R(f,, f,) =det SUZ(fpfz)z =

1 0 1 0

0 1 0 1

Sometimes resultant R( f g ) determine the determinant of the Sylvester matrix Su/ ( f , g ), and equation (3.1)

proves, see. e.g. [13], [14].
Have the following
Theorem 3.2. Polynomials f and g have a common root if and only if

R(f,2)=0. (3.7)

The proof of Theorem 3.2. See, for example, in [19].

Example 3.2. Do polynomials f, = x* =1 and fr = x> =1 common roots?

10 BicHuk XHY, cepis «®isukay», sun. 26, 2017



S.D. Bronza, A.T. Kotvytskiy

10 0 -1 0
01 0 0 -1
Solution. R(f,, f,) =det Sul(f,, f,)=det Sul(x* ~1,x*~1)=[1 0 -1 0 0]=0,
01 0 -1 0
00 1 0 -1

Polynomials f; = x> —1 and f, = x* —1 have common roots.
You can determine the number of common roots of polynomials f and, if you use some of the concepts related to

the resultant R( f Y ) .
n
Definition 3.2. Let M be an arbitrary square matrix of order 72 . Innor M P 1<k < ‘:E} (in brackets is the

integer partE ), the matrix M is called the matrix obtained from the matrix A/ by deleting its elements which are in

K first and last rows and A the first and last columns. The matrix M is called the matrix of innor, see. [25].

Matrix of innor M is denoted by M,

Definition 3.3. Let S =35 ( f , g ) Sylvester matrix of the polynomials f and g, it inures will be denoted by
S, .

Definition 3.4. Determinants det S, will be denoted by R(k) and name subresultants resultant R( f g )

polynomials f and g .
Have the following
Theorem 3.3. The polynomials f (X) and & (x) have d common roots if and only if

R(f.8)=RV(f.&)=..=R""(f,2)=0,
where @ such that] < d < min (deg f(x) degg(x)).
Example 3.3. What are the common roots of polynomials, f, = x*—1 and fr= x> =17
Solution. We calculate subrezultantes RV (f;, £,) R (f,, f,)

1 0 0
RO, /)=0 =1 0|=120, RP(f,f)=|-1=0.
10 -1

Polynomials f; =x"—1 and f,=x"—1 have a common root, because the R(f,f,)=0 and
RO(f;, f,)=1#0 (In the first row subresultants R(f;, f,) RV (f,, f,) R (f,, f,) first subresultant, which is

not zero, have number 1).
The greatest common divisor deg (GCD( f ,g ) of the polynomials f (x ) and & (x ) can be computed using

Euclid’s algorithm, see. [12-14], [16], or by using subresultants, see. [12], [19], [25].
A special case of the resultant polynomial is the discriminant.
Definition 3.5. Let K - arbitrary field, f = f (x) - polynomial in the polynomial ring K [x]

The discriminant D( f ) of f = f (x) is called an element of K , defined as follows:

D(f)=a;"" T](A-4), (3.8)

1<j<i<n
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where 1 = deg f(X) - the degree of the polynomial f(X) ,a, - its leading coefficient, A,,..., 4, its roots, see [13].

Have the following
Theorem 3.4. Let f = f (X) - polynomial in the polynomial ring K [x], f "its derivative, then for the

discriminate D( f ) we have the relation:
n(n-1)

D(f)=(-1)" aiR<f,f'). 69)

The proof of Theorem 3.4 is given in [13].

From Theorem 3.2 follows

Theorem 3.5. The polynomial f has a multiple root if and only if, D( f ) =0.

The proof is given in [13-14], [24].

Similarly, as the subresultants some authors define subdiscriminant, see. [25]. Using concepts: innor, subresultants,
subdiscriminant etc. we can formulate and prove a number of theorems on the distribution of the roots of polynomials,
such as the criterion of Routh-Hurwitz, see. [19].

An important theorem is the theorem on the number of solutions of systems of polynomial equations. Bezout
Theorem is a theorem of this kind. Bezout Theorem is discussed in Section 4.

Many allegations of algebraic geometry begins with the assumption of irreducibility (or reducible) polynomial.

Under the irreducible polynomial f over K understands the impossibility of its representation in the form of a product

of two polynomials fl and f2 nonzero degree over the same field, i.e. f * fl . f2
Here for example one of them.

Theorem 3.6. Let f and g are polynomials with coefficients from the field K and the polynomial f is reducible,
ie. f = f1 . f2:, where fl and fzare not polynomials of degree zero over the field K . Then, to the resultant

R( f , g ) , equation holds:

R(f,g)=R(f,2)R(},,2). (3.10)

Theorem 3.6 allows us to reduce the number of operations in the calculation of the resultant.
Availability of convenient criterion is irreducible is an effective tool for studying systems of polynomial equations.
In Section 5, we formulate and prove a criterion for irreducible polynomials of several variables.

4. Bezout theorem on the number of solutions of a polynomial system of equations
This section contains several important theorems. One them - Bezout theorem on the number of solutions of
polynomial equations of the system, see for example [11]. From this theorem follows the basic theorem of algebra. The
wording of some theorems, we present only for special cases. This allows us to give them simple proofs.
We introduce the necessary notation.

Let f = f(x,y) be a polynomial in two variables over a field K, n=deg_f(x,y) - his degree in the
variable X, m =deg, f(x,y)- the degree of the variable ) and d =deg f(x,))- the degree of the set of

variables.
For our purposes, as the K field, unless otherwise stated, we choose the field of complex numbers C . A C [x ] will

denote the field of rational functions of x with coefficients in C .

Let f = f (X , y) and =€ (x , y) - polynomials two variables over the field of complex numbers C, and let the

polynomials are defined as follows:
i,j=n; i+j<n

ﬁzf(x,y)z Z aijxi / (4.1)

i,j=0
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i,j=m; i+j<m
r

g= g(x,y) = Z bl.jxi 7, (4.2)

i,j=0
If at least one of the senior coefficients, a;. i+ ] =1, of the polynomial f is not zero, then deg f =N ,andif

at least one of the senior coefficients, bif , I+ ] =M , of the polynomial g It is not zero, then degg =m .

Convenient to describe the theory is notion of eliminate polynomials.
Definition 4.1. Let f(x,y),g(x,y)eC[x,y] - of two polynomials variables over the field of complex

numbers C . The Eliminante of polynomials £ (x, y ) and g ( X, y) is called a polynomial X ( x) , the variable X , is
defined by the equation:
X(x)=R,(f(xy).2(xy)). (4.3)(4.3)
where R (f(x,y ).g(x, y)) - resultant polynomial f"(x, y ) and g (x, ) in the variable y .
Similarly, determined the second eliminante for polynomials of the system Y ( y) , Le.:
- Y(y)sz(f(x,y),g(x,y)). (4.4)
n(n-1

Following [19] the sign (—1) 2 in determining both eliminates will be ignored.

Also note that eliminantes is polynomials, and are defined up to a multiplicative constant from the field of coefficients.
Have the following
Theorem 4.1. (Bezout) Let the polynomials f and g are defined by (4.1) and (4.2), respectively. Let their

coefficients such thata,, # 0, a,, # 0, bOm #0, bm() #0 . Then eliminante X (x) , such that its degree

deg X (x)=deg f(x,y)xdegg(x,y)=nm .

The proof of the theorem see, e.g., [19].
Similar assertion holds for eliminate Y(y) ,ie.,deg Y(y) =nm.

In order to state the next theorem we recall the definition of an algebraic curve.

Definition 4.2. An algebraic curve f is the set of points (a coordinate space), the coordinates of which satisfy the

equation:
f(x,y)=0. (4.5)

Equation (4.5) is called the equation of the curve f (x, y).

The polynomial in the left side of the equation (4.5) can be considered over the field of real numbers. In this case,
the algebraic curve f is, for example, the curve in the affine plane or in a projective space, i.e. the graph of the function
f . If the equation (4.5) is considered over the field of complex numbers, the algebraic curve is a one-dimensional
complex manifold in the space (CZ . This curve also can be regarded as the graph of a function, or as the Riemann

surface of an algebraic function given by equation (4.5).

Have the following

Theorem 4.2. (Bezout) Let the curves are determined by the equations f (x, y) =0 and g (x, y) =0 . If they
have more than 7771711771 points in common, they have a common component, i.e. degGCD(f(x,y), g(x,y)) =0 .

The proof of Theorem 4.2 is given in [15].
Corollary of Theorem 4.2. From Theorem 4.2 it follows that if the system of equations
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0
4.6
0 (4.6)

has more than 7Mm solutions, the polynomials f and g have a common component.
From Theorem 4.2 obviously follows

Theorem 4.3 Let the polynomials f f and g g have no common components i.e. degGCD ( 7, g) =0 , then the
number of solutions of (4.6) does not exceed 1M .
In [19] are examples showing that this bound is attained.

Theorem 4.4. The polynomials f and g have a common component /A , positive degree, i.e.,

deg GCD( f',g)=deg(h)# 0 ,ifandonlyifatleastone of eliminante X (x) =R, (f.g) orY(y)=R,(f.g)
, is identically zero, or that, too, R (f, g) ZRy (f, g) =0.

Proof. Necessity. For definiteness, let eliminante Y( y) =0 , then the polynomials f and g , such that,
R.(f,g)=0 .Fromequation R (f,g)=0 follows: forany fixed y=y, , holdsR(f(x, ¥).g(x, yo)) =0,
therefore, the polynomials f and g have common roots. But then it, by virtue of the freedom to choose ) , polynomials
f and g coincide in an infinite number of points and, according to Theorem 4.2., have a common component.

Sufficiency. Let the polynomials f and g have a common component / , positive degree, i.e. deg ( h) #0,
then f = f,h andg =g,/ . Applying Theorem 1.3., we have:

R (f.g)=R.(fih.gh)=R.(f .&h)R, (h.gh)=

=RX (ﬁ Dgl)sz (]F1 ’h)sz(h ’gl)sz (h ’h) :

Given the identity R (A ,h)=0 ,wehave R (f,g)=0 andY(y)=0 .

The theorem is proved.
Corollary theorem 4.4. If eliminante X (x) polynomials f(x,y), g (x,y) ,such that X (x) =0 , then all of

its coefficients is zero, i.e. .:
di

- X(x)=0,i=12,...,m. (4.6)

where m = degX(x) .
As X(x) =R, (f(x, y),g(x, y)) =0 , we have the following relations:
di
ERy(F(x,y),f(x,y)):O,i:1,2,...,m. (4.7)
The criterion of irreducibility
5. The irreducibility criterion for polynomials in several variables

This section is formulated and proved criterion of irreducibility for polynomials of several variables in a weakened
form (for polynomials with real or complex coefficients). We are unaware of other criteria for polynomials in several
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variables over a field of characteristic 0.
We give the necessary definitions.
Definition 5.1. Polynomial n-form (or n-form in the polynomial basis) of the variables

X, [ =1,...k over a field K is a formal sum G = Z g,llz_._,kxflxéz ...x,i" , neN e G -a
0l +hL+.. 4l <n
polynomial of degree n in the variables Xx,,/=1,...k with coefficients - of
fieldK .
In particular, the /-form of variable X, ,=1,...k overafield K isa linear form. 2-formon - quadratic form.

The polynomial f* (x, y) in two variables x and y, the degree n, with complex coefficients is the n-shape of the variables
X and y over the field of complex numbers C. The expression “function will be sought in the form of n-form” is

generally understood as a procedure for determining the undetermined coefficients given n-form

In the proof of the following criteria will be used

Theorem 5.1. Polynomial in several variables over a field K is identically equal to zero, if and only if all its
coefficients are zero, see. [20].

Occurs

Theorem 5.2. Let FF = F (x, y) a polynomial in the variables x and y over the field of complex numbers C and

d d
d=degFl (x, y) - its extent, let 7 = ‘:E (in brackets is the integer part the number of E ),and let G - n -form in

the variables X and y over the field of complex numbers C, i.e.

0<i+j<n

G(x,y)= Z gx'y’

i,j=0
The polynomial F' is decomposable the variable of X , if and only if, the system equations

R (F(x,y),G(x,y))‘y:0 =0

d , i=12,...,m; where m=degR (F,G) , (5.1)

o (F(x2),G(xy)) =0

(The system (5.1) is solved with respect to indeterminate coefficients g; n-form G, as a relatively unknowns) have

not zero solution.
Proof. Necessity. Let the polynomial F' is decomposable the variable X .

Then F canbe expressedas F'= fi%f, ,were f = f/(x,y) and f, = f,(x,y) such thatdeg  f, # 0

degF =d

. deg, f, #0 ,anddeg, f +deg, f, =deg F .From the condition of implies that

degf, < [i

d
min(degf,,degf,) < [— } =n
1 ’ 2 . Let degfl =m , then fl

2:| . Let degfl < degfz , then

polynomial can be written as 0<i+j<m,
— — i1,
fi=hilxy)= 2 exy,
i.j=0
where notall ¢; for 1<i+j<m, are equal zero.

We denote by
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c.,0<i+j<m
by=4. " I (5.2)
70, m <i+j<n

and we show that

g =by (53)

the non-zero solution of system (5.1).

LetG = f, . The polynomials F' and f, , as follows from condition of the theorem, have a common component

f1 and, according to Theorem 4.4 of the resultant R _ ( F, f ) = ( . Consequently, the resultant R, (F > G) =0 ’

and then, in accordance with Theorem 5.1, all the coefficients are zero simultaneously. Consequently, there is a system of
equations for ¢ s and, consequently, relatively, bl.j . Thus, the ratio (5.3) is a solution of (5.1).

The resulting solution is not zero, as bl.j , that certain system of equations (5.2), are not all zero. The necessity is

proved.
Sufficiency. We prove first that (5.1) has a zero solution. Indeed, G is not only the form of n-variables X and y ,

G(x,y) = G(x, v, gl./.)

but also linear form for its coefficients. Consequently, we can write: . Because relation holds:

G (x, y,1g i ) =tG (x, V> & ) , n-form G is a homogeneous function of its coefficients g, and the resultant

R (F(x,y),G(x,y)) =R, (F(x,y),G(x,y, g )) ,
is a homogeneous function of the variables g, T degree d = degFd = degF . Indeed:

R, (F(x,y),G(x, y,tgl.j)) =t'R, (F(x,y),G(x,y,gij )) .

But then, all the coefficients of resultant, as the polynomial of variable ¥V, also are homogeneous functions of the
variables g, degreed , and d # 0. Thus, all of the system (5.3) are homogeneous functions of the variables g .
nonzero of degree d Homogeneous function nonzero of degree ¢ in the variables g; is zero, if everyone 8 =

. Consequently, the system (5.1) has a zero solution.
Let the system (5.1), except for the zero solution is still nonzero. Each a nonzero solution of system (5.1) completely
determine the undetermined coefficients g, n-form G . Because solution is a nonzero, not all the coefficients g, zero.

Let us denote G, n-form G with coefficients g, -as defined, to some, a non-zero solution of the system (5.1).

We will prove that the resultant R, (F’ Gl) =0

. Indeed, the resultant R (F , Gl) is a polynomial in the
variable y . All coefficients of this polynomial is zero, since, by assumption, we have the system of equations (5.1).
Consequently, polynomial, he same resultant R_ ( F, Gl) is identically zero. From the identical vanishing of the
resultant, follows that the polynomials, F , and G1 , in accordance with Theorem 4.4, have a general component for the
variable X . Consequently, the polynomial /' a decomposable to the variable X.

The theorem is proved.
From Theorem 5.2 follows
Theorem 5.3 (The reducibility criterion). Let F = F (x, y) polynomial in the variables X and ) over the field

d
of complex numbers C and d =deg F’ (x, y) - its degree, let 1 = |:E and G is an n-form in the variables X and
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y over the field of complex numbers C, i.e.
O<itj<n
G(x’y) = Z gijxly_/
i,j=0
The Polynomial, F is reducible if and only if at least one of the systems of equations

R, (F(x.7),G(x.y)) =0

ly=0
i Ci=12.....m: (5.4)

WRX (F(x,y),G(x,y))lv:O =0

where m = degR_(F,G) ,

R, (F(xy).G(x.y)) =0

‘x:()
di , i=1,2,...,h (5.5)
E y(F(X,J’)aG(an’))‘X:O :0

h=degR (F,G)

where

(System is considered relatively of indeterminate coefficients g, n-form G, as a relatively unknowns) has a
nonzero solution.

It has the assertion, converse to the opposite assertion of the previous theorem

Theorem 5.4 (The irreducibility criterion). Let F = F ( X, y) polynomial in the variables X and y over the field

d
of complex numbers C and d =deg F ( X, y) - its degree, let 1 = {E and G is an n-form in the variables X and

y over the field of complex numbers C, i.e.

O<itj<n
i,j=0
The Polynomial, F' is reducible if and only if for each of the two variables X1 =12 , the systems of equations
in (F(%2),G(x»))=0, i=12,..,m (5.6)
dx,

where m = deng/ ( F ,G) , (systems is considered relatively of indeterminate coefficients g, n-form G, as a

relatively unknowns, and in equations of systems, the variables with index is not equal /, we equated to zero) have only
the zero solution.

Corollary of Theorem 5.4. To determine the irreducibility of polynomials in two variables it is sufficiently rational
operations over a field of its coefficients. If a polynomial in two variables, over the field of complex numbers C reducible,
then to determine it’s of the irreducible components, of the rational operations, generally speaking, is not enough. To
determine its irreducible components is enough to add a method for calculating of the roots for polynomials of degree n
in one variable.

From the theorems proved above follows:

Theorem 5.5 (The irreducibility criterion for polynomials in several variables).
Let KK - the field of real or complex numbers, F = F (xl,xz,...,xk ) =F ()T ) - polynomial in X variables

, with coefficients from K and d = deg F (f) - its degree, let p = [i} ((in brackets is the integer

2

XpsXgseoos Xy

X5 Xyseens Xy

d
part the number of E ) and let G - n-form in Kk variables ,1.e.
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- L1 /
G=G(X)= Z g XX xf, neN

0 +L+.. + <n

Let
— Nl 312 Tk
R = E Vo X1 X560, neN,

t
0<r+ry +.. 41, <m,

Lexical-graphical representation in increasing powers of the resultant R ( F (3?) ,G ()T)) = R ,in the alphabet

+t

X5 Xyses X, |5 X,

. - .
of variables 27 %k Jand let m, = degR, - its degree.

The Polynomial, F s irreducible (in the expansion of K [xl I S ] field coefficients), if, and only if, for any

t=1....k

. b .
of the variables " *’ system of equations

{’%rz,...,rk =0, i=12,....m;

to

I<n+rn+..+1n,<m, (5.7)
where m, = degRt (system is being considered relatively undetermined coefficients &, n-formG , as

unknowns) has only the zero solution.
In the statement of the theorem, we consider that k= 2,3,. .. fork=1 the question of the reducibility of

polynomials is solved in accordance with the fundamental theorem of algebra and its consequences.

Corollary of Theorem 5.5. To determine the irreducible polynomial in several variables it is sufficiently rational
operations over a field of its coefficients.

The following examples illustrate the criteria.
In the examples, polynomial n - form G is denoted by O (x,) -

_ 2 2
Example 5.1. Prove irreducible polynomial F (x, y ) =x"+y 1 .

Solution. The degree of the polynomial £ (X, y) , deg (F (x, y)) =deg(x’+y* —1)=2 , the degree of the

deg(F (x.y))

polynomial O(x,y), dég){ y( R ))= >

2
= {5} =1 . Dividers polynomial F (x, y) we will

be sought in the form of a I-form O (x, ) = ax + by + ¢ . We calculate the resultant R =R, (F(x,y), (. ))

B xR (FRY, §. ))ax fple =1, + + )=
1 y -1
=det|a by+c 0 :(by+c)2+a2(y2—1)=(a2+b2)y2+2bcy—a2+ ’
0 a by+c

S

From the assumption the decomposition of the polynomial F (x, y) according to Theorem 5.4, we have:
R =0 ,and

(ﬁ2+b2)y2+2bcy—a2+ *=0. (5.8)
According to Theorem 5.1, all the coefficients of the polynomial on the left side of the equation (5.8) are equal to
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zero. We have a system of equations:

i+ =0
2bc=0 (5.9)
a’+b>=0
The system (5.9) decomposes into two systems:
@'+ *=0 al|-iA*+ *=0
b=0 , c=0
a’+b*=0 a+b*=0

Each of the systems has a unique solution: d = O,b = O, c=0 , and this solution is zero.

Thus, the system (5.9) has only the zero solution. Consequently, according to Theorem 5.2, the polynomial
x>+ y*> =1 irreducible variable X .

Because of the symmetry of variables in the polynomial xt+ y2 —1, ifin the resultant R..R.. replaced variable,

the resultant Ry , the result, obviously, does not change. Is therefore, the polynomial x*+ y2 —1 irreducible and other
variable and, therefore non-trivial irreducible.

Example 5.2

Prove: the
to the variable y .

polynomial F(x, y) =y’ —3yx—2x° is

irreducible

Solution. The degree of the polynomial ¥ (x,y) , deg (F (x, y)) = deg(y® —3yx—2x?) =3 , the degree of

the polynomial ©(x, ¥) P (x, ), ébg)(y( ’ )): deg(Fz(x,y)) _{3

2} =1 . Dividers polynomial F(x,¥)

F(x,v) we will be sought in the formO(x,y)zax+by+c )
We calculate B?y;;]j;y(F()gy), ( s )) , and have:

1 0 R, =3‘§9(y3%,%/x A, ax DBy + )3 2x2

o px+y 0 0 3 0 Bx+y 3xa 2x'a B
0 a fx+y 0 0 a fPx+y 0
0 0 a px+yl |0 0 a px+y

:(,Bx+7)3—2x2053 =3xa’ (fx+y)=

=By’ -|—(3,827—2a3 —3a2ﬂ)x2 +(3ﬂ27—3a27)+7/3 ,

and then we have:

By’ +(3ﬂ27—2a3 —3052,8)):2 +(3ﬁ2}/—3a2y)+7/3 =0 .

(5.10)
Equating the coefficients of equation (5.10) to zero, we have a system of equations to determine the & , ﬁ Vo

g =0

2 3 2 a=0
3°y—2a -3a"f=0

) ) =:p=0 (5.11)
3°y-3ay=0

y=0

y’'=0
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Thus, the system (5.11) has only the zero solution, and therefore a polynomial y3 —3yx—2x

® s irreducible to
the variable y .

Example 5.3. Explore: will be whether the polynomial irreducible?
F(x,y)=x"=-x>+(*-Dx—»" +1.
Solution. The degree of the polynomial r (x, Y ) ,

deg(F(x,y)):deg(x3 X +(y2—1)x—y2+1):3 :

. deg(F(x,
the degree of the polynomial O (x,). &g){ y( , )) = M = ‘:%} =1 . Dividers polynomial

F(x,y) we will be sought in the form O(x.y)=ax+by+e :

We calculate the resultant &) = &,

(F(xy), ()
B =R (FR, £. )= Xf S Tt b)) e P41+ +
1

-1 =1 —y*+1

_det| @ by+c 0 0
a by+c 0
0 a by+c
by+c 0 -1 —y*+1
=det| a by+c —a et by+c 0 |=
0 a by+c a by+c
=(by+c)3+a((by+c +a*(y* 1)+a by+c (Y’ -1)=

:y3(a2b+b3)+ (a +a’c+ab® +3bc? )-I- ( 2b+2abc+3bc)

+(—a —a c+ac +c )

From the assumption reducibility of a polynomial F (x, y) according to Theorem 5.2, we have

R =0 ,and

y’ (c22b+l73)+y2 (a3 +a’c+ab’ +3bcz)+y(—a2b+2abc+3bcz)+

+(—a3—azc+acz+c3)50 (5.12)

According to Theorem 5.1, all the coefficients of the polynomial on the left side of the equation (5.12) equal to
zero. We have a system of equations:

—a’—d*c+ac’+c =0
—a’b+2abc+3bc* =0
, (5.13)
a’+a*c+ab*+3bc* =0
a’b+b* =0
20
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and transforming the system (5.13), have:
(a2 —cz)(a+c) =0 =0
b(—a2 +2ac+3cz) =0

@’ +a’c+ab® +3bc* =0

b(a*+b*)=0
The system decomposes into eight sub-systems:

a=c a=c
b =0 b =0

a’+a’c+ab’ +3bc” =0 ’ @’ +a’c+ab® +3bc* =0’
b=0 a’+b> =0
a=c =c

—a” +2ac+3c” =0 { —a*+2ac+3c¢> =0

a’+a’c+ab® +3bc* =0 @ +alc+ab* +3bc* =0
b=0 a’+b*=0
a=—c —-C
b =0 % =0

a’+a’c+ab’ +3bc” =0 a’+a c+ab2+3bc =0’
b=0 a’+b>=0
a=—c —c

—a’ +2ac+3¢> =0 % —a* +2ac+3c¢> =0

a’ +a’c+ab® +3bc* =0 a’+a’*c+ab® +3bc* =0
b=0 a’+b*=0

For the first, we have:

a=c a=c a=c

@’ +a’c+ab> +3bc* =0=<a’ +a’c=0=> az(a+c):O:>
b=0 b=0 b=0

The system decomposes into two subsystems, deciding that we have:

a=c a=0
a*=0={b=0
b=0 c=0

a=c a=c a=0

a+c=0=>Ja=—c =>1b=0
b=0 b=0 c=0
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System has only the zero solution.
For the system:

a=c¢ a=c¢ a=c¢
—@? +2ac+3¢ =0 —a*+2ac+3c¢=0  |d4at=0 |27
a3+azc+abz+3bcz=O:> a+a‘c=0 - 2a3=0$ b=0
b=0 b=0 poo 70

System has only the zero solution.
For the system:

a=—c
a=-c
b =0
3 2 2 2 -
a +ac+ab” +3bc” =0
az(a+c)=0
b=0
The system decomposes into two subsystems:
a=-—c a=-c
b=0 ; b=0
a’=0 a+c=0
-, b=0

System have a solution: a=

O(x,y)=a(x-1)

Solution of the system corresponds to the divisor ,tme a #0 .
For the system:
—a’ +2ac+3c® =0 —a’ +2ac+3c® =0 =—c
3 2 2 2 = 3 2 ’
a’ +ac+ab”+3bc” =0 a+ac=0 b=0
b=0 b=0

we have this same solution.
Similarly, we find solutions to other systems. They have only the trivial solution.

Finally, we have one nonzero solution: d = —C,b =0 , which determines the divisor (x — 1) .

Thus polynomial F(x,y ) is decomposable:
X =x+(=D)x—y* +1 :(x—l)( X+’ —1) ,and F(x,) :(x—l)( X'+ —1)

This example illustrates the case: if the divisor (even trivial) includes a variable, then on it the polynomial is
reducible. In this case, by the resultant of the variable produces a system of equations this is non-zero solution.
Example 5.4. Explore: will be whether the polynomial irreducible to the variable y ?

F(x,y)=x"-x"+("-Dx—»"+1 .
Solution. The degree of the polynomial F (x, y)
deg(F(x,y)) :deg(x3 -+’ —l)x—y2 +1)=3,

) deg(F (x,
the degree of the polynomialé (x, y) ,dbg)( y( , )) = eg(+xy)) = {%} =1 . Dividers polynomial
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F(x,y) we will be sought in the form O(x.y)=ax+by+e :

We calculate the resultant &) = B ( F(x,y), (., )) .
l@y;\:&y(F@c,y)r, (y, ))A,: y((x—l) 2+(ax—1[)j Zc—l), + o+ ):
(x=1) 0 (x=1)(x*-1)

=det| b ax+c 0 =
0 b ax+c

:(x—l)((ax+c)2 +b%(x* —1)) =(x—1)((a2 +b2)x2 +2acx—b2)=0

2 2 2 2 .
We have: (Cl +b )x +2acx-b"=0 where we have a system of equations:

-b*=0 b*=0 a=0
2c=0 = <{2ac=0=> b=0.
a’+b> =0 a’=0 c=0

The system has only the zero solution, so the polynomial £ (x, y) is irreducible variable y .

Example 5.5. Investigated for an irreducible polynomial
F(x,y)zxzy2 —2x"—y* +2

with respect to X .

Solution. The degree of the polynomial r (x, Y ) ,

deg(F(xay)) =deg, (F(x,y))=deg, (3’ -2)x* - (" -2)) =2,

deg( F(x, )
the degree of the polynomlal dkg)( y ) {M} = {E} =1 . Dividers polynomial

F(x,y) we will be sought in the form O(x,y)zax—!—by—!—c .
We calculate the resultant B?X q&(F(x,y), ( s )) :

B =R (FR». (x))% (-2 °-(’-2)=
:(y2—2)(b2y2—2bcy+cz—a2):
=b’y* —2bcy’ +(c’ —a’)y* —2b*y* +4by —2c% +2a° =

b*y* =2bcy’ +(c* =2b* —a*)y* +4by —2c* +2a° =0
According to Theorem 5.1, all the coefficients of the polynomial on the left side of the equation equal to zero. We
have a system of equations:

b*=0 .
—2bc =0
NPT RPN bc=0 . b=0 N b—O.
¢t =2b*—a*=0 ct—a*=0 c=ta
4b=0 2220
—2¢*+2a* cTes
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The system has two non-zero solutions (,0,a) and (a,0,—a), which correspond to the divisors
O, (x,y)=ax+a=a(x+1)and O, (x,y)=ax—a=a(x-1) .

Is therefore, the polynomial F (x,y) reducible with respect to x, and

F()c,y):()c—l)(x+1)(y2 —2).

6. General scheme of solution of systems of polynomial equations

When solving systems of polynomial equations (in particular, the equations of N-point gravitational lenses) we
believe the best the following algorithm:

1. Check each equation of the system, whether a it is reducible. If it is reducible, the system decomposes into
subsystems, each of which we are solving separate.

2. Select one of the equations and one unknown therein. Exclude this unknown of other equations, if possible. If you
cannot perform a simple substitution, then eliminate the unknown using the resultant. Exclude selected variable from the
other equations, if it is there.

Go to the new system of equations, which will consist of selected equations and calculated resultants, equal to zero.
This system of equations is equivalent to the initial one.

However, if the system of two equations with two unknowns to a system of equations of the two resultants is equal
to zero, then this transition, generally speaking, is not equivalent. The resulting solution in such a transition cannot be
solutions of the original system of equations, see. E.g. [19].

4. The built in system of claim 3, consider a subsystem consisting of resultants, equal to zero. The subsystem will
contain at least one equation and one less unknown. None of the resultants cannot be identically zero (except in the case
when the equations are the same), because each polynomial is irreducible on the right side of equations. In the case that
one of the matching equations remove from the system. The subsystem will contain less at least one equation and one
unknown.

To this subsystem apply the process from 1-4.

5. After a finite number of steps we obtain the resultants to be polynomials in one variable. Imagine every one of
them as a product of polynomials with multiple roots. Each of these polynomials we associate a polynomial with non-
multiple roots, which is equal to the original roots of the polynomial

6. Thus, it remains to find the roots of the polynomial on the condition that they are
all different. Note that up to this point, we only had a finite number of rational operations.

Therefore, before this stage of the algorithm can be considered as constructive and analytical. Such an algorithm can be
implemented using a symbolic programming. We can use the packages of general purpose applications such as REDUCE,
MACSYMA, MATHEMATICA, MAPLE, AXIOM, MuPAD, algorithmic basis of which are operations on polynomials
and rational functions.

7. The Calculation of the roots of a polynomial in one variable is a standard procedure. It can be performed with
any precision. Note that the final procedure of the algorithm is, the computation of roots of polynomials. Therefore, the
accuracy of calculation of the roots of one polynomial will not affect the accuracy of calculating the other.

Below are a few examples of solutions of systems of polynomial equations.

Example 6.1. Solve the system of equations

f(x,y)=4x2 ~Txy+y* +13x-2y-3=0

, 6.1
g(x,y):9x2—14xy+y2+28x—4y—5:0 (6.1)

Solution. Compose the eliminationX (x) = R, (flxe,y )glx,y))X(x) = R, (f(x,y ). gl(x,v)):

f(xy)=y +(-Tx=2)y+(4x* +13x-3) =0,
g(x.y)=y" +(~14x—-4)+(9x* +28x-5)=0 ,
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1 -7x-2  4x*+13x-3 0
0 | ~Tx=2 4x* +13x-3
X(x): g g g =24(x4 —x' —4x’ +4x).
0 1 —14x-4 9x* +28x -5
1 —14x-4 9x*+28x-5 0

We find eliminante rootsX(x) .Wehave:x, =0, x, =1, x,=2,x,=-2.

Each found the root of the substitute in (6.1). For x; =0 , we have:

f(xy)=y"=2y-3=0

(6.2)
g(xy)=y"-4y-5=0

The equations (6.2) have a common root ¥, =0 .
Similarly, substituting the other found in the roots of the system (6.1). We have the solution of the system: (
1, 2);(2,3) ;(O,—l);(—Z,l), By the theorem of Bezout (the number of solutions of polynomial equations) solutions

must be four as degf (x, y) =2 and degg (x, y) =2 . Consequently, we find all solutions.

Example 6.2. Solve the system of equations

f(x,y)=x2—2xy+y2—1=0
(6.3)
g(x,y)zxz—y2+2x+1:0
Solution. Both eliminanty X (x) =0, Y( y) =0 , hence the equations system (6.3) have a common component.
Really:
{xz—2xy+y2—1:0:> (x=»)*-1=0 N (x=y+1)(x—y-1)=0
Xy 42x+1=0 | (x+1)=p*=0  |[(x-y+1)(x+y+1)=0
and the system (6.3) decomposes into four systems::
x—y+1=0 |[x—y+1=0 [x—y—-1=0 [x—y-1=0
{x—y+l:O’{x+y+l:O’{x—y+120’{x+y+1:0

The first system has an infinite number of solutions: (a,a +1) for any o € C . The second - a unique solution:

(-1.0), which satisfies the first system. The third system solution in affine coordinates is not. A fourth system has a unique
solution (0, -1).

Note that instead of four systems can be considered one - fourth and one equation X — ) + 1=0 . In both cases, the
set of solutions (in affine coordinates) obviously coincides.

The geometric meaning of the set of solutions (in affine coordinates) the following: algebraic curves f° (x, y) =0
and g (x, y) =0 have acommon branch — direct Y= X +1 and additionally point (0, -1)

In [19] there is an interesting example in which there is a “false” solution.
Example 6.3 Solve the system of equations:

f(x,y):xy—lzo

g(xy)=xy+x-2=0" (4

Solution. Each of the system eliminant
Y(y) =—2y(y—1) , Y(x) = 2x(x—1)

It has “extra” root, the result generated by the “false” solution (O, O).
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There is given the following explanation:

«The reason for the effect is the same as in the previous
example (in the previous example: In the explanation of
the fact of the appearance of “extra” roots eliminants draw
attention to the fact that at x = 0 degree polynomials fand g
are reduced, and this effect is manifested in the construction
eliminant as a determinant of the matrix».

And later in [19] it is proposed: to monitor such
cases it is necessary to check the suspicious values of the
variables, i.e., those that reduce the extent of the original
equations.

From our point of view a simple reason for the
emergence of “false” solution is in technology and
computing is clear: no system of equations is equivalent to
the system eliminant are equal to zero.

To find out of deeper reasons we pay attention to the
number of solutions of (6.4). By Theorem Bezout them,
counting multiplicities, must be greater than one (the
system is not linear), and we have only one x =1 ,) = 1.

It is natural to ask: where are the other solutions?

2
Some solutions may not belong to C® and should

. m2 ..
be sought in the space C” . Such decisions are easy to find

if we use a fractional-linear transformation of vpriables,
such as the inversion of one of the variables: y = — . After
t

the System transformation (6.4) we have the system of
equations:

x—t=0
X 4+xt=2t=0"

Where we have solutions for Bezout’s theorem, there
must be two solutions, and these solutions x =0 , =0

and x=1 ,¢ =1 .By making the inverse transformation,

we obtain the solution: X = O,y =0 Similarly, we

obtain another solution of the system (6.4): X =0, ) = 0
. Thus, the system of equations (6.4) has a (Cz , at least

three different solutions.

The solution (0.0) is the solution of system of
equations consisting of eliminant equal to zero. Each of
eliminant, is a polynomial in one variable. Decision of such
a system will have a direct multiplication of sets of their
roots. In this set included (0,0), and one zero belongs to the
improper initial decision system, and the second the other.

N o t e
also that the system of equations (6.3) (. See example 6.2)

. 2
has another solution C~ | namely:

X=00,y=00.
Research the solutions of (6.4) and (6.3), can be carried

26

out differently, for example, if you go to the homogeneous
coordinates, but the transition to the homogeneous
coordinates is beyond the scope of this paper.

7. Stakes and challenges. Solved and set

The above theorems and algorithms allow to solve a
number of problems in the theory of N-point gravitational
lenses, namely,

- Finding the source of the images in the plane
gravitational lens (the problem is reduced to finding the
solutions of the lens equation - the variety is an algebraic
set), see [10].

- Finding the of extended images in the source plane
(the problem is reduced to finding the one-dimensional
submanifolds of a manifold is an algebraic set);

- The distribution of images in plane gravitational
lens(the problem reduces to the problem of the distribution
of the roots of a polynomial in one variable);

- Calculation of critical curves and their research;

- Computation of caustics and their research;
- Calculation of the light curves and their research;

- Study of the lens equation, including the study of its
fixed points, multiple points, and other local features;

- The study of harmonic component of the lens
equation and its complexification;

-Calculating the type multiplicity lens equations
of (the problem is reduced to the special case the solved
problem, see [17]);

- Classification of the point of gravitational lenses
on the basis of features of the lens equation (arithmetic
classification).
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Coherent emission from a stack of long Josephson junctions
based on low-temperature superconductors

Alexander Grib’, Ruslan Vovk’, Volodymyr Shaternik”™

“Physics Department, Kharkiv V. N. Karazin National University, Svobody sq. 4, 61022, Kharkiv, Ukraine
“G.V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Boulevard, UA-03142 Kyiv, Ukraine

The theory of coherent emission of intrinsic Josephson junctions was applied for calculations of IV-characteristics and ac power
of emission of a stack of two inductively coupled long junctions with high density of critical currents (10 A/m?) which were based on
low-temperature superconductors (MoRe films). Barriers were made of the mixture of Si and W. Barriers had thickness of about 15
nm. Randomly distributed clusters of tungsten in the thick silicon barrier provided weak links between superconducting MoRe films.
The critical temperature of the MoRe superconducting films was 9 K. Calculations were made for the system at the temperature 7.7 K.
Random spread of critical currents along the junction leaded to the formation of the zero-field step in the IV-curve. The same zero-field
step appeared when edges of the homogeneous junction were loaded by the resistance, the capacitance and the inductance. In the stack
of two junctions, strong coherent emission appeared at the zero-field step which corresponded to the in-phase mode of oscillations of
voltages.

Keywords: Josephson junctions; coherent emission; synchronization; zero-field steps.

Teopito korepeHTHOT emicii BHYTpilHixX KOHTaKTiB J[)ko3e(coHa 3aCTOCOBAHO /10 PO3PaXyHKIB BOJIBT - aMIIEPHHUX XapAKTEPUCTHK
Ta MOTY)KHOCTI eMiCil MTauky 3 JABOX IHAYKTHUBHO IIOB’S3aHUX OJWMH 3 OZHUM JOBIMX KOHTAKTiB 3 BHCOKOIO T'yCTHHOI KPUTHYHUX
crpymiB (1o 10° A/M?) Ha OCHOBI HU3BKOTEMIIEPATYPHHUX HaANPOBiqHHUKIB (1u1iBok MoRe). Bap’epu Gynu 3pobieni 3 cymimi Si Ta W.
Bap’epn Manu ToBmuHy 6nm3pko 15 HM. BrunaaxoBo po3nozineni kiactepy Bob(ppaMy y TOBCTOMY 0ap’epi KpeMHilo 3a0e31edyBain
cnabi 3B’s3KH MK HaampoBiTHUMU TutiBKaMu MoRe. Kputnuna temmneparypa Haamposigaux miiBok MoRe Oyna 9 K. Pospaxynku
Oynu 3pobieHi i cucteMu npu Temmeparypi 7.7 K. Bumaakosuii po30ir KpUTUYHUX CTPYMIB B3JOBXK KOHTAKTY IPHUBIB 10 MOSBU
CXOJIMHKHU HYJIbOBOTO I10JIS1 HA BOJIBT - aMIICPHiil XapaKTePUCTULIl KOHTAKTY. Ta 5K CXOAMHKA HYJIbOBOTO T10JI1 BUHUKAE, SIKIIO HA KPasX
KOHTAKTY 3 OJJHOPITHMM PO3IIO/IIJIOM KPUTUYHHUX CTPYMIB € HABAHTAXKEHHS 3 eJIEKTPUYHOIO OIIOPY, KOHIEHCATOopa Ta iHAyKTHBHOCTI. B
aylli 3 IBOX KOHTAKTIB CUJIbHA KOTEPEHTHA EMICisl BUHHMKIIA HA CXOAWHII HYJIbOBOTO IOJISI, sIKa Bi/IMOBiae CHH(a3Hii MO/ OCIHIISIIIN
HapyTH.

Kuarwouosi ciioBa: koHTakTn [I)k03edcona; KorepeHTHa eMicisl; CHHXPOHI3aIlis; CXOAMHKU HYJIbOBOTO ITOJIS.

Teopust KOrepeHTHON SMUCCUM BHY TPEHHHUX KOHTaKTOB [lK03e()coHa IPUMEHEHa JUIs pacyéTa BOJIBT - aMIIEPHBIX XapaKTEPUCTHK
1 MOIIHOCTH YMUCCHH TTAYKH JIBYX WHJYKTHBHO B3aUMOJIEHCTBYIOLIHUX JIPYT C JAPYTrOM JUTMHHBIX KOHTAKTOB C BHICOKOW IUIOTHOCTBIO
kpuTnueckoro Toka (10° A/M) Ha OCHOBE HM3KOTEMIIEPATYPHBIX CBEPXMpPOBOAHMKOB (IIEHOK MoRe). Bapbepbl ObutH clienaHbl U3
cmecu Siu W. Oxn umenu TommuHy okono 15 am. CiydaifHo pacnosiokeHHBIE KI1acTepsl BOIb(pama B TOJICTHIX Oapbepax U3 KPeMHUS
obecrieunBany crabble CBSI3W MEXKIY CBEpXIPOBOASAIINME MieHkaMi MoRe. Kpurudeckas Temneparypa CBEpXIpOBOISIINX [UICHOK
MoRe 6puta 9 K. Brruncnenus ObutH cieNaHbl AJsl CHCTEMBI, Haxomsmeiics npu Temmneparype 7.7 K. CaydaiiHoe pacmpeneneHue
KPUTHYECKUX TOKOB B JUIMHHOM KOHTAKTE IPUBEJIO K 00pa30BaHUIO CTYIIEHBKH HYJICBOTO MOJIS HA BOJIBT - aMIIEPHOIT XapaKTePUCTHKE.
Ta ke cTyneHbKka BO3HMKAET, €CIM Ha KpasX JUIMHHOTO KOHTAaKTa C OJHOPOIHBIM pacIpeleseHHEeM KPUTHYECKHUX TOKOB UMEETCs
Harpyska U3 CONPOTHBIICHHUS, EMKOCTH U MHAYKTUBHOCTH. B mauke W3 IByX KOHTAKTOB CHJIbHAsI KOT€PEHTHAsl YMUCCHUS BO3HHUKIIA Ha
CTYIIEHBKE HYJICBOTO I10JIs, KOTOpasi COOTBETCTBYET CHH(A3HOI MOJIe OCIMIUISINI HAIIPSHKCHNSI.

KuroueBble cj10Ba: KOHTaKTHI J[Ko3e()COHA; KOTePEHTHASI SMHUCCHUS; CHHXPOHU3ALHS; CTYIEHBKU HYJICBOTO TOJIS.

Introduction

The increased attention to mechanisms of
synchronization of large number of Josephson junctions
is caused by the experimentally found coherent emission
from more than six hundred intrinsic Josephson junctions
in high-temperature superconductors [1]. The found effect
allowed obtaining power of emission up to microwatt
in the sub-THz region [2]. Following experimental

and theoretical investigations allowed to reveal the
new mechanism of synchronization which is supposed
to produce in-phase locking of voltage oscillations in
stacks of intrinsic junctions in mesa structures of high-
temperature superconductors [3-6]. Because in the present
paper we will apply this mechanism to another type of
superconductors, we describe it in details. The inductive
interaction between superconducting layers is possible
in the stack of junctions. Due to this interaction, normal
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modes of electromagnetic waves appear in the system [7,
8]. For example, in the system of two inductively coupled
junctions, there appear the in-phase mode and anti-phase
mode which have different velocities of propagation [7].
Normal modes can be revealed due to the so-called zero-
field steps in IV-characteristics [5, 6]. These steps are
formed without applied external magnetic field. It is well
known that due to some longitudinal perturbations the
standing wave of electromagnetic field can be formed
in the long solitary Josephson junction [9]. This wave
produces some distribution of ac voltage over the junction.
If the distribution of critical currents along the junction is
symmetrical, zero-field steps appear in the [V-characteristic
of the junction at voltages of even Fiske steps as a result
of the interaction between Josephson generation and the
standing wave [9]. These voltages are equal to
<V >= @ cs ’
D

(M

where the sign <...> means averaging over time that is
much longer than the period of Josephson oscillations, D is
the length of the junction, @ is the quantum of magnetic
flux, € is the velocity of light in the junction and s =1,2...
is an integer. In the system of two inductively coupled
junctions there are two zero-field steps in the IV-
characteristic which correspond to two velocities of the
propagation of light for different normal modes. In the
system of K inductively coupled junctions there are K
normal modes and therefore, there is the bunch of K zero-
field steps. Among these steps there is the zero-field step
that corresponds to the in-phase mode in which all junctions
oscillate coherently (the step at highest voltage in the bunch
[7]). Thus, to obtain in-phase synchronization of junctions
in the stack it is necessary to induce the standing wave in
the stack and to measure the zero-field step at highest
voltage in the bunch.

The described above mechanism of synchronization
can be applied also to the stack of junctions made of low-
temperature  superconductors. The application of
underdamping junctions with high values of the McCumber
parameter is not effective for our aim because the subgap
steps in the IV-curve can not be revealed properly in ranges
of the current-biased scheme which is usually applied in
calculations. We consider here the stack of overdamped
long junctions. In the present paper we calculated IV-
characteristics and power of ac emission for the separate
long Josephson junction and the stack of two Josephson
junctions. Parameters of calculations were taken for
junctions with high density of critical currents (up to 10° A/
m?) made of MoRe films with 45% Re and the barrier made
of the mixture of Si and W with the concentration of W up
to 10% [10]. Clusters of tungsten provide weak links in the
barrier. It was proven that at temperatures near the critical
temperature (7, ®9 K for the given system) and if the
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length of the weak link is smaller than the length of
coherence, dynamics of the weak link can be described by
the resistively-shunted model of the Josephson junction
(RSJ-model) [9, 11]. We modeled the mentioned system at
7.7 K in the ranges of RSJ-model taking into account
capacitances of junctions. We calculated IV-curves for
these systems and ac power of emission into the load and
discussed obtained results.

The model

The model of calculations is described in details in
Refs. [6, 12 - 15]. Here we give only the brief description
of the model. Each of the K=2 wide junctions with the
index i = 1,2 is divided into n segments. Segments are
numbered by the index j=1...n. It is supposed that the
‘elementary junction’ is placed in the center of each
segment. These ‘elementary junctions’ are divided by the

distance § =+/CCL , where C is the velocity of light in
the junction, L is the inductance of the segment and C is the
capacitance of the segment (we suppose all the capacitances
are equal to each other). The system of equations which
describes the high-frequency scheme of the stack of
junctions includes current conservation conditions for
‘elementary junctions’ and flux quantization conditions:

o, Ccd¢, o, do,
+
27 dt*  2zR dt , )
. _ R R
+Ici,j smg, ;= Ib _Ii,j—l,j T Ii,.iaj+1

where i =12, j=2..n—1,
)
LI f/—l,j —L,1 2R,j—1,j +2_7;(¢1, Py ) =0, (3
where j=2...n,
)
j +L12R,j—l,j +2_7;(¢2,j—1 _¢2,j) =0, 4

R
i,j-1j

R
~L,1

Lj-Lj

where j=2..n,1 is the current in the loop between

two segments with indices j-1 and j, ]Cl.’ ; and R are the

critical current and the resistance of the segment (we
suppose that R = const), ¢, ; is the difference of the phase

of the order parameter across the junction which is
contained in the segment, L ;1 the mutual inductance

between two adjacent cells of the ‘elementary stack’, ¢ is
time. Equations (2)-(4) can be solved by means of the
method of Runge-Kutta. The result of calculations in this
case is the IV-characteristic of the system. We can also
attach additional contours containing the resistance, the
inductance and the capacitance to the edges of junctions. In
this case we can calculate power of ac emission extracted to
the load. In the following consideration we will use both
the system with loads at edges and the system without
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loads. To take into account loads, we mark them as fictive
segments with indices j=0 and j=n+1 added to edges of
junctions. Kirchhoff rules for these segments are as follows:

2
9 %, 9 Za’(/ﬁ,,ﬂ
Tdrt Y dt Cej =

L

where j=0,n+1, and g, is the charge flowing through
the inductance Lej , Cej and Rej are the capacitance and
the resistance of the additional contour. In the present paper
=L and R, =R . The value

of mutual inductance between ‘elementary junctions’ in the

we assume C, =C, L,

stack was defined as L = al , where a is dimensionless

parameter. Eqgs. (2)-(5) were solved for different bias
currents. ['V-characteristics were obtained in calculations.
The voltage over the system of two junctions was calculated

as d
Vo) = (33 s},

i=l j=1
For the comparison of IV-curves for the stack of two
junctions and those for one separate junction we will use

the value <V> = <V >/ K , where K is the quantity of

system

(6)

27m

long junctions in the system, i.e. K=1 for the separate
junction and K=2 for the stack.

The value of emitted ac power at the left end of the
system was calculated as follows:

po (S @af de_(ds,
KR\ |5\ 27\ dt dt

The same expression with j=n was used for the
calculation of emitted power from the right end of the
system.

For calculations we used values of parameters for
superconducting layers made of MoRe films with 45% Re
and the barrier made of the mixture of Si and W with the
concentration of W up to 10% [10]. The critical temperature
of this system is 9 K. To satisfy conditions of the application
of the RSJ model to this system, we calculated parameters
for the temperature 7.7 K. At first, we stated values of
critical currents at temperatures 7<<7 which we defined
from experimental data [10]:  (T<<T) = 10 mA, V (T<<T)
~3 mV and density of critical currents was equal to J =10°

(7

A/m?. Dimensions of long layers were 250x40x0.05 cubic
micrometers and the thickness of each of the barrier was 15
nm. Then we divided the long junction to n=30 segments
and calculated the critical current of the segment and its
resistance R. We supposed that the velocity of light in the

junction was E(T < TC)= c/ \/E where ¢ is the light

velocity in vacuum and € =12 is permittivity of silicon,

) F(T << TC) ~8.87-10" m/s. For the calculation of
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dependences of parameters on the temperature we used the
method developed in Ref. 6. For the determination of the
value of the critical current at the given temperature we
used the plot of the dependence of critical current on the
reduced temperature for the weal link in the dirty limit [9].

For the temperature 7= 7.7 K parameters of the long
junction were as follows: /. = 2.5 mA, V_ = 0.75 mV,

c(T=77K)=6.14-10"mss, S, =1024. The
Josephson depth of penetration of magnetic field was
A, =86.2- 10" m. After the definition of parameters we

calculated IV-curves and ac power of emission for one
separate long junction and for the stack of two inductively
coupled junctions with @ =0.3. We would like to note
that such parameters of our model as the velocity of the
propagation of electromagnetic waves in the long junction
and the depth of penetration of magnetic field in the
junction and temperature dependences of their values were
calculated on the base of plausible assumptions and it is of
great interest to investigate them experimentally.

Results and Discussion

We discuss at first the electrical properties of the
separate long junction without loads at edges. The IV-
characteristic of the separate homogeneous long junction is
shown in Fig. la. It is the typical hysteretic curve which is
characteristic for the junction with the finite value of the
McCumber parameter 3. . The switch from the hysteretic
branch to the zero-current branch appears at 0.38x/ that
corresponds exactly to the switch in the solitary junction of
the negligible size with . =10.24 in the range of the
RSJ-model [16]. The I'V-curve in Fig. l1a does not contain
any particularities connected with geometrical dimensions
of the system. Analogous results were obtained in Ref. 15
for intrinsic junctions.

Now we consider the [V-curve of the inhomogeneous
long junction without loads at edges (Fig. 1b, crosses).
Inhomogeneity is created by spread of critical currents of
about 102%. There is a step in the IV-curve in the hysteretic
region at <VS':1> ~ (.43 mV. After the step there is the
jump of voltage to the value 0.55 mV. It is shown in Ref. 15
that this behaviour of the [V-curve is caused by the resonant
interaction of Josephson generation with standing wave
that appears in the inhomogeneous junction. Due to
inhomogeneity of critical currents along the junction, there
arise longitudinal excitations [15]. They reflect from edges
of the junction (it is the so-called Fulton-Dynes mechanism
of reflection [17]). The standing wave appears when the
even number of halves of wavelengths of the excitation
becomes equal to the length of the junction. Just this
condition is written in Eq. (1). The standing wave interacts
with Josephson generation the same way as the external
periodical signal, so zero-field steps appear in the [V-curve.
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Fig. 1. (a)- the IV-characteristic of one separate long homogeneous junctions without loads at edges. (b)- IV-
characteristics of one separate long junction with spread of critical currents 102% without loads at edges (crosses) and

the same for the homogeneous long junction with loads at edges (circles). Positions of voltages < V. _, > and < VS':1 >

are marked by arrows. (c)- the I'V-characteristic of the stack of two inductively coupled long junctions with loads at

edges. The position of voltage <V_; > is shown by an arrow. (d)- dependences P,(<V>) for the solitary long

junction with the load at edges (stars) and for the stack of two inductively coupled long junctions with loads at edges.

Positions of voltages < V,_; > and <V,_, > are shown by arrows.

Just this step appears in the [V-curve shown in Fig. 1b.
According to Eq. (1), the value of <VS:1>= 0.51 mV. It is

shown by an arrow in Fig. 1b. Due to the ambiguity of the
IV-curve in the region of the hysteresis, the full height of
the step can not be obtained in the range of the current-
biased scheme, so the step is interrupted at the value

(V!,)~0.43mv.

Let us consider now the IV-curve of the fully
homogeneous junction with loads at edges (Fig. Ib,
circles). It is seen that the zero-field step is reproduced in
full despite the junction now is homogeneous. Standing
waves in this case are excited due to the influence of the
loads at edges. [15]. Loads violate homogeneity of the
junction, so perturbations propagate along the junction and
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at some frequencies produce standing waves.

The IV-characteristic of the stack of two long
junctions with loads at edges is shown in Fig. lc. It is
known that due to the inductive coupling of layers
the zero-field step is split into two

steps at voltages <V, , >=<V_, >/\/1+0{ and
<V, >=<V_ >/\/l—a [6, 13-15]. However, in
Fig. lc there is only one step near <V_ >~ 0.51 mV.

The step at <V_, , >~ 0.45 mV is not seen. The split

appears due to the formation of normal vibrations in the
system of coupled layers. At < VS:L 4 > Voltages over
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junctions in the ‘elementary stack’ oscillate anti-phase, and
at <V _, > there are in-phase oscillations of voltages

over junctions in the ‘elementary stack’. Just this mode of
in-phase oscillations is used for producing of coherent
emission from the stack. To prove this we calculated the
dependence of averaged over time ac power emitted in the
load at the left end of the solitary junction P, on voltage

(Fig. 1d, stars) as well as the dependence P,(< V >) for
the stack (Fig. 1d, diamonds). The dependence Pz(< 14 >)

for the solitary junction has the maximum at the voltage
<VS':1> ~0.45 mV. The dependence P,(< V >) for the

L) = 0.60
mV. This value corresponds to the in-phase mode of
oscillations of voltages over junctions. The maximal value

stack has the maximum at the voltage <V'

of emitted ac power P at <V;=Lu> for the stack of two

junctions is equal to 39.54 nW whereas the maximal value
of P at <VS':1> for the solitary junction is equal to 11.46

nW. The relation of these values is 3.45 that means nearly
full phase locking with the constant phase shift (the relation
is equal to 4 for the zero phase shift [16]). This result proves

that the zero-field step at <VS'=1u> ~ (.60 mV in the stack

of two long junctions corresponds to the in-phase normal
mode.

Finishing the discussion we note that in the junctions
MoRe with the barrier made of silicon and tungsten phase slip
phenomena can appear [10]. Zero-field steps appear often
in junctions with phase slip processes [9]. Investigations of
phase locking including phase slip processes becomes of
great interest for the theory of synchronization.

Summary

In the present paper for synchronization of emission
from a stack of long Josephson junctions we applied the
mechanism of synchronization which was earlier used
for the explanation of phase locking of intrinsic junctions
in high-temperature superconductors. Parameters of
calculations were taken for low-temperature junctions with
high density of critical currents (up to 10° A/m?) made of
MoRe films with 45% Re and the barrier made of the mixture
of Si and W with the concentration of W up to 10%. The
layers had dimensions 250x40x0.05 cubic micrometers and
the thickness of the barrier was 15 nm. The main advantage
of this system is the small McCumber parameter (it is about
10.24 at the given temperature). We calculated IV-curves
and emission to the RLC-load for one long junction and for
the stack of two inductively coupled long junctions at the
temperature 7.7 K that is close to the critical temperature.
We showed that standing waves could be excited in such a
system if it had the inhomogeneous distribution of critical
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currents along the junctions or if there were loads attached
to edges of the system. We obtained zero-field steps in V-
curves of long junctions with standing waves and showed
that these steps were produced by the resonant interaction
of standing wave with Josephson generation. We proved
that the zero-field step in the IV-curve of the stack was
split and obtained strong coherent emission at the upper
zero-field step which corresponds to the in-phase mode of
oscillations of voltages.
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Introduction

Undoubtedly, one of the biggest discoveries of
the XXI century is the gravitational wave detection. On
September 14, 2015 at 09:50:45 UTC the two detectors of
the Laser Interferometer Gravitational Wave Observatory
(LIGO) placed in the United States simultaneously
observed a transient gravitational wave signal [1]. A century
after the fundamental predictions of Einstein [2, 3] and
Schwarzschild [4], the first direct detection of gravitational
waves and the first direct observation of a black hole system
merging to form a single black hole were reported [1].
In our opinion, by value this discovery can be compared
with well-known Hertz’s experimental confirmation of
the Maxwell’s electromagnetic wave existence prediction
only. Other hand, the black hole merger discussed is very
strong-field and powerful, unique ultra-wideband process
[5]. According the so called non-linear paradigm [6],
been formulated by one of the authors of this paper in the
last 1980%, all processes in open, non-linear, dynamical
systems are very complex, non-linear, ultra-wideband,
fractal ones. The black hole merger system is one of them.
Therefore, it seems to be interesting, actual and useful to

check the fractal property existence for the experimental
gravitational wave signals, obtained by LIGO [1].

The purpose of the paper is to investigate the fractal
and multi-fractal properties of the gravitational wave
signals with usage of modern fractal and multi-fractal
analysis methods.

Fractal Definition and Fractal Classification

The term ‘fractal’ (from the Latin ‘fractus’, meaning
‘broken’) has been proposed by American mathematician
Benoit Mandelbrot in 1975 [7]. Mandelbrot defined a
fractal to be a set with Hausdorff dimension strictly greater
than its topological dimension [7].

Nevertheless, now there are many different definitions
of the fractal introduced in the last forty years by different
researchers (see, for example, [8 — 11]), as well as the
fractal concept developed rapidly in these years. But on
our opinion, the most adequate of them is following one,
proposed by K. J. Falconer in 1990 [8]. According to this,
when we refer to a set F as a fractal, we will typically have
the following in mind.

1. F has a fine structure, i. e. detail on arbitrarily small
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scales.

2. F is too irregular to be described in traditional
geometrical language, both locally and globally.

3. Often I has some form of self-similarity, perhaps
approximate or statistical.

4. Usually, the ‘fractal dimension’ of F (defined in

some way) is greater than its topological dimension DT .
5. In most cases of interest F' is defined in a very

simple way, perhaps recursively.

Some later, a self-similarity requirement was
generalized and replaced by the self-affinity one [12].

The fractals can be classified in different ways. One
hand, all fractals can be separated on mathematical and
real, or physical, ones. First of them are a mathematical
idealization only, and second of them are really existing
natural objects, such as, for example, trees, heaven, mounts
et al. The ways of describing of these two fractals types are
slightly different [13].

All mathematical fractals can be separated on the
deterministic (algebraic and geometric) fractals and
stochastic fractals. The properties of self-similarity and
self-affinity for the stochastic fractals are considered not in
a literal sense, but in a statistical one. It means that fractal
properties are shown not by the stochastic object as such,
but by its deterministic numerical characteristics [8 — 13].

General difference between mathematical and
physical fractals is in following. Strictly speaking, the
physical fractals don’t satisfy the fractal definition listed
above as well as the minimal scale of mathematical
fractals vanishes by the definition, but the minimal scale
of physical fractal has a finite, non-zero limit. As the result,
the self-affine property of physical fractal exists in limited
range of scales only [8 — 13]. This is another real difference
between the true world (physical fractals) and one of its
models (mathematical fractals). Nevertheless, the physical
fractals can be divided into deterministic and stochastic
ones deter too, as well as their non-stochastic numerical
characteristics have namely such properties.

Other hand, there are so called mono-fractals and
multi-fractals. To describe a mathematical mono-fractal, it

is enough to use the Hausdorft dimension D i as a fractal
dimension [) ' [7—9] It is important to point, that only

one value of this dimension is able to characterize a mono-
fractal as the self-similar (or self-affine) structure. At the
same time, to describe a physical mono-fractal, instead of

the Hausdorff dimension ) i the Minkowsky dimension
D 2y 1s usually applied [14]. All existing algorithms
allowing to estimate a fractal dimension D p of the object

investigated, in particular, as a mathematical, as a physical
fractal, are included in so called fractal analysis, which can
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be named more accurately as the mono-fractal analysis too.
Multi-fractal is a fractal, which is not principally
allowed to be described with usage of one value of a fractal

dimension ) ' only. To do this, it is necessary to use a set
of fractal dimension values. Such approach is well known
as the multi-fractal analysis [15, 16].

Being as natural, as artificial origin, many real
signals and processes in nature have fractal properties
and, therefore, are the physical fractals [7 — 16]. Using
fractal and multi-fractal analyses, these properties having
statistical sense can be investigated. The gravitational
wave signals listen above are real signals, which require
to solve the problem: whether these signals are mono-
fractal or multi-fractal or not. If they are, it is necessary to
estimate their characteristics. Namely these questions will
be answered below.

Fractal Analysis Method

To apply the fractal analysis (more precisely, the
mono-fractal analysis) to a real physical signal (or process)
investigation, it is necessary [10]:

1) to identify the presence of the self-affinity (or self-
similarity) properties of this signal;

2) if they are, to define the scale range (or multiple
ranges), in which this happens;

3) using the Minkowski dimension D, . to estimate
the fractal dimension [) 2 value (or some fractal dimension

values, if multiple ranges were found) of the signal
investigated.
Oddly enough, but there are many different

approximations of the Minkowski dimension D , which

are usually estimated for the real physical fractal analysis
in practice. In particular, there are the cluster dimension

D K [17], the capacity (or box, or fractional) dimension
DC [14], the pointwise dimension D p and the averaged
the pointwise dimension < D P > [18, 19], the correlation
dimension DG [19], the information dimension D T
[19], the internal (or hidden) dimension D p [9], the mass

dimension Dm [18] and other.
In this paper, we use direct calculation of the capacity

dimension DC and apply another well-known method of
the fractal dimension [) o estimation (more precisely, of
course, of the Minkowski dimension DM estimation),

which is based on the Hurst exponent H calculation.
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Following the Generalized Brownian Motion Model, the

Hurst exponent H and fractal dimension DF are
connected with the relation 1) P = 2—H [9].

To estimate the Hurst exponent of the signal X (t) ,
two different ways can be used. Being proposed by H.
Hurst in 1951 [20], the first way is the oldest, is known as
the Rescaled Range Method or RS-method [9] and is
considered as the ‘classical’ way. The second way is based
on the wavelet analysis, namely on the investigation of rate
of increasing of mean values of the wavelet coefficient
module squares [21].

Then if these dependences obtained in both cases and
plotted in the double logarithmic coordinates can be
successfully approximated in some scale range with a
linear function (for example, with usage of the least square
method), the Hurst exponent H in this scale range can

obtained. For fractals the Hurst exponent value H should
be limited in the range 0 << H < 1. Otherwise the

signal analyzed is appeared to be not self-affine and,
therefore, is not fractal [9]. If the condition 0 < H < 1
was successfully satisfied, then we can believe that the
signal investigated has mono-fractal properties in this
range. It is quite possible that for the same signal some
different scale ranges with different Hurst exponent values
will be obtained [9].

Meanwhile, the real physical processes, special being
in open, non-linear, dynamical systems [6], are appeared to
be non-stationary ones. Moreover, their fractal properties
can vary with time too. So, the Hurst exponent H should

be estimated for some limited, slide time window W(t) ,
but not for all signal X (t) at once. In this case, the Hurst
exponent becomes a function of the time H=H (t)

[22]. In our opinion, it is convenient to connect these Hurst
exponent values with corresponding time locations of the

center of the slide time window W(t) used. Namely such
way is applied in this paper.

Some experienced authors (see, for example, [10,
21]) believe, that fractal analysis is closely connected with
wavelet analysis, in particular, with continuous wavelet
transform (CWT). Therefore, investigations of CWT
spectral density function (SDF) of the signal analyzed and
of its skeleton are a part of fractal analysis. In our opinion,
this is really appeared to be very important and useful
addition to usual fractal analysis tools.

Multi-Fractal Analysis Method

If the process analyzed is appeared to be multi-
fractal, the abilities of the mono-fractal analysis will be
quite insufficient. Of course, the application of mono-
fractal analysis to the multi-fractal signal investigations
can not be completely forbidden, but the results, which
would be obtained, will relate to the so called multi-fractal
support only [16]. The multi-fractal support is considered
as a mono-fractal, which makes the greatest contribution
in the multi-fractal considered [16]. May be, it seems to be
interesting for the researcher too, but to describe the multi-
fractal much more complete, another approach named as
the multi-fractal analysis must be used.

There are two basic multi-fractal analysis methods,
which are usually applied to the signal analysis. First of
them is called as the Wavelet Transform Module Maxima
(WTMM) method and is based on the CWT [21]. Being the
basic informational characteristics of the multi-fractal

analysis, the multi-fractal spectrum f(a) of the signal

investigated is connected with the CWT SDF of the signal.
Traditional shapes of the multi-fractal spectrum f(Oé ) of

the signal are shown on the fig. 1, where two experiment
registrations of the gravitational waves discussed above
were presented. The (¢ value is known as the Holder
exponent (see, for example, [15, 16]).

Suddenly, WTMM method has one significant
disadvantage. It doesn’t allow to consider the non-
stationarity of the signal investigated as well as in this
method the signal is investigated at once. At the same time,
itis reasonable to predict that all multi-fractal characteristics
of a non-stationary signal can significantly vary with time.

f(Ot) T T T T T T T f(Ob) T T T T T T T
1.0 F 110 F 9
09 4 09 F -
08 r 41 08 F -
0.7 1 07 | 4
06 1 06 | 4
05 F 4 05 F .
0.4 1 1 1 1 1 1 1 0.4 1 1 1 1 1 1 1

04 05 06 07 08 09 10 o 04 05 06 07 08 09 10 «

O min Ot* X nax Y min Oix O nax

Fig. 1. Multi-fractal spectra f(a ) of the gravitational wave signals registered in Hanford (a) and in Livingston (b).
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Thus, it is necessary to apply another method, which is free
from this disadvantage.

Appearing relatively recently, the second basic
multi-fractal analysis method known as the Multi-Fractal
Detrended Fluctuation Analysis (MF DFA) is appeared to
be convenient to the non-stationary signal investigations in
slide time window [23]. As well as the gravitational wave
signals are expected to be non-stationary ones, namely MF
DFA was chosen in this paper as the main investigation
tool.

Let’s consider the basic idea of the MF DFA method

[23]. Basing on the signal multi-fractal spectrum F (OL)
analysis (the multi-fractal spectrum of the whole signal was
denoted above as f(Oé)) and the slide time window
W(t) application, the time dependences of location
(minimal A in (t) and maximal O ax (t) values of
) and of width (Aa(t), Ao = a0 — oo
) of the multi-fractal spectrum can be obtained. Special

*
attention should be paid to the location ¢ of the multi-
fractal spectrum maximum, given by the requirement

F(OL*) = max F(OL) The OL* value is called as
Q

the generalized Hurst exponent as well as for mono-fractal
) *
signal we have Ao =0 and o« = H. The

*
generalized Hurst exponent ¢  describes a multi-fractal

support of the signal analyzed. It’s fractal dimension is

ES
given by relation DF =2—« [24).

Analysis Results
Let’s start with results of mono-fractal analysis of the
gravitational wave signals discussed above. At the fig. 2
these signal registrations obtained in Hanford (fig. 2, a) and
in Livingston (fig. 2, c) are shown. One count on the
dimensionless time axis corresponds to 21 ms, thus, the
whole registration duration is 210 ms. One count on the

strain axis is equal to 5 - 10_22. All calculations
described below were performed with usage of the FracLab
Toolbox [26] and some original software been developed
by authors of this paper.

Capacity dimension DO of the whole first signal

(Hanford) is appeared to be DC ~ 1, 45 + 0,10 in

0,156 — 5. The

result for second signal (Livingston) is appeared to be
D, ~ 1,444 0,10 in

Corresponding bounds for Hurst exponent

range of the dimensionless time { =

the same range.

H

are
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H ~ 0,554 0,10 and H =~ 0,56 & 0,10.

Indirect indication on possibility of the fractal
property existence for the signals analyzed is given by the
CWT skeletons, which have characteristics fork-like looks
(fig. 2, b, d) (for CWT SDF calculation the Morlet wavelet
was applied). Moreover, on the fig. 2, b, d the fork-like
looks of skeletons are excellent seen in the range

T ~ 0,1 — 2, where T' is dimensionless period of
the signal, which is used in CWT. This results match well

with ones obtained during capacity dimension DC

estimation.

Let’s consider the results of the multi-fractal analysis.
First, WTMM method application should be described. To
obtain the CWT SDF of the signals analyzed, the
Daubechie’s wavelet of fours order (db4) was used. The

s(t)
0.0

TEE

1,6

1,2
0.8 Fy

04 p|

SOF
0.0

i ¥

Fig. 2. CWT SDF skeleton analysis results. Signals
in time domain: a — Hanford, ¢ — Livingston, CWT
skeletons: b — Hanford, d — Livingston.
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multi-fractal spectra f(a) of the signal investigated are

at the fig. 1. It was found that for the signal registered in
Hanford the minimal value of the Holder exponent is

Q= 0.38,1ts maximal value is Opax = 1.03

, the multi-fractal spectrum width is Aa = 0.65 and

%
the generalized Hurst exponent is ¥ = 0.65. For the

signal obtained in Livingston we have (¢ . == 0.36,

a,,. =1.01, Aa = 0.65 and @ = 0.66

ma.
correspondently. These two value sets almost don’t differ
from each other.

Now let’s discuss the results of MF DFA application.
All time-dependent values in MF DFA (fig. 3, fig. 4) and

] T T
0.0 Wﬂf\w\/j\ / \J/\/\/\’\N\mv

min

Fig. 3. MF DFA results for gravitational wave signal
obtained in Hanford: a — signal in time domain, b —

amin - Oémin (t)’ c- amax - amax (t)’ d-
Aa=Aalt), ¢ — o =a (), f -
H=H (t) Dashed lines denote results of the

WTMM method, dotted lines indicate upper bound of
the value for fractals.
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additionally the Hurst exponent H (t) , which is a part of
the fractal analysis method, were calculated with usage of
the slide window W(t) with dimensionless width
At = 3, 67 .Itis important to point, that each specific

value obtained for given window location in time domain
was assigned to the position of the window center. The
existence of the empty spaces to the right and left of the
graphs (fig. 3, b—f, fig. 4, b — ) is explained namely by this
reason.

It was found the following. In both cases (as for
Hanford, as for Livingston) there are steady tendencies to
increase with time for all four multi-fractal functions (

a . (1), a . (t), Aa(t) ad a (t)), which

result in a rather sharp decrease. For the Hurst (fig. 3, f, fig.
4, f) exponent there is a weak tendency to increase only. In
both cases, the fractality condition for the generalized

*
Hurst exponent (0 < o (t) < 1) is well satisfied

only for t < 4, 9 . For the Hurst exponent this condition
O< H (t) < 1) is satisfied sometimes in bounds
2<t<6.

3“) T T T T T T T T T

Ol _
O-UWW“W\/M/WWW

Cpin

Fig. 4. The same as previous figure for gravitational
wave signal registered in Livingston.
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Discussion
In one of the previous works of authors [5], it was
found that gravitational waves generated by a binary black
hole merger were appeared to be a unique natural ultra-
wideband (UWB) process with changing mean frequency.
The first gravitational wave registration (Hanford)
contains the UWB process with changing mean frequency,

130 ms, the
period band T ~ 4 — 30 ms, the dynamic frequency

which has the duration approximately 7 =2

bandwidth changing from 0.4 to 0.9, the signal mean
frequency rising with hyperbolic law, and the signal energy

distribution with maximum at TO ~ 20 ms.

The second gravitational wave registration
(Livingston) contains the UWB process with changing
mean frequency, which has the duration approximately

T~ 120 ms, the period band T ~ 4 — 30 ms,

the dynamic frequency bandwidth changing from 0.5 to
0.8, the signal mean frequency rising with hyperbolic law,
and the signal energy distribution with maximum at

TO ~ 20 ms.

Taking into account that results and comparing them
with present ones, one can assert the following. Both
signals analyzed have really fractal structure. This is well
confirmed by the results of application as of the mono-
fractal analysis, as of the multi-fractal analysis. There is no
too significant difference between the results obtained for
two signals registered in Hanford and in Livingston.
Analyzing the whole both signals, it is important to point,
that the value of the generalized Hurst exponent (

*
a = 0, 09 ) is in well agreement with the estimations
of the (H =~ 0,55 £ 0,10) obtained with mono-

fractal analysis. But the signals analyzed were appeared to
be multi-fractal. This is good shown at the fig. 1. Therefore,
the values of the Hurst exponent and of the generalized
Hurst exponent describe the multi-fractal support only.
Based on the estimation of /1 , one can assume, that multi-
fractal support may be partially related to additive white

Gaussian noise, which has I = 0,5.

But these were the results of whole signal analysis.
Meanwhile, as it was pointed above, the signals are
appeared to be significantly non-stationary and this fact
should be taken into account. The answer was obtained in
bounds of the MF DFA application.

Based on the time dependences, it was found that
both signals analyzed can be considered as fractal ones
approximately in the range of dimensionless time

t € [O; 6], where the condition 0 < Oé*(t) <1is
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well satisfied. It is important to point, that on the fig. 4, e,
seems, the narrower range ¢ € [2; 4] is observed. But

this range should be extended to the one described above,
as well as the width of the slide window applied for these

calculation is appeared to be no less than At = 4 . This
limitation is caused by the MF DFA method peculiarities
and by the size of the experimental data vectors used by the

authors of the paper. In the range ¢ € [O, 6] there is
approximately a half of the UWB process with changing
mean frequency. Second half of them is appeared to be
non-fractal. But whether this fractal component is a part of
the gravitational wave signal or is a noise having quite
different physical origin, suddenly, this question remains
unanswered now.

Thus, the results obtained in the paper is good
consistent with non-linear paradigm. Been generated by
extremely powerful, open, non-linear, dynamical system,
the gravitational waves were appeared to be a unique UWB
process with significant complex, non-stationary multi-
fractal structure. Suddenly, it remains unknown whether
they are a true fractal UWB (FUWB) processes or a UWB
processes registered on pretense of the additive multi-
fractal noise, which had quite another physical origin. To
solve this problem in the future, new observations and
investigations are needed.

Conclusions

1. The transient gravitational wave signals generated
by a black hole system merging to form a single black and
received in Hanford and Livingston were appeared to be
multi-fractal ones.

2. Being the unique natural UWB processes with
changing mean frequency, they had complex, non-
stationary multi-fractal structure.

3. Mono-fractal analysis shows, that capacity

dimension DC of the multi-fractal support of the signals
analyzed was appeared to be DC ~ 1, 45 £+ 0,10 in
range of the dimensionless time © = 0,156 -5

(Hanford) and DC ~ 1, 44 + 0,10 in the same

range (Livingston).
4. Using the classic multi-fractal analysis (WTMM

method), it was obtained, that Qi = 0.36 — 0.38

.« =1.01-1.03, Aa = 0.65

max and

« t = 0.65 — 0.66 for both signals investigated.
Therefore, both signals are multi-fractal ones as whole.

5. With MF DFA application, the signals investigated
were shown to be strongly non-stationary ones, including

BicHuk XHY, cepis «®isukay», sun. 26, 2017
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their multi-fractal numerical characteristics. It was found,
that in both cases the fractalify condition for the generalized
Hurst exponent (0 < « (t) < 1) is well satisfied

only for ¢ < 4, 9 . For the Hurst exponent this condition
O< H (t) < 1) is satisfied sometimes in bounds

2<t<6.

6. To solve the problem whether the signals
investigated are a true FUWB processes or a UWB
processes registered on pretense of the additive multi-
fractal noise, which had quite another physical origin, the
new observations and investigations are needed.
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On role of mass-transfer crowdion mechanism in local
relaxation processes
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Character of relaxation processes has been analyzed in crystalline materials near stress local concentrators of various types (a
crack in copper under its healing by uniaxial compression; a rigid (corundum) inclusion in a KCI single crystal; a hole in a KClI single
crystal due to pulse optical breakdown of the single crystal by ruby laser radiation). It was shown that in the first two cases (crack and
rigid inclusion), the main mechanism resulting in relaxation of about 50% stress was the dislocation-diffusion one. According to this
mechanism, excess vacancies and interstitials occur at intersections of screw dislocations; as a result, rapid crowdion (interstitial) mass
transfer is switched on completing the relaxation process. In the case of laser breakdown, the crowdion mass transfer mechanism is
principal. The diffusion-and-dislocation mechanism steps in at the final stage of the process and provides near 5% of the full necessary
mass transfer amount.

Keywords: dislocations; crowdions; interstitial atoms; diffusion; concentration of stress; relaxation processes.

[IpuBeneH aHanm3 XapakTepa pPeNAKCAIIMOHHBIX INPOLECCOB B KPUCTAJUIMYECKHX MaTepHallaX B OKPECTHOCTH JIOKaJIbHBIX
KOHIIEHTPATOPOB HANPSDKEHHH Pa3HBIX TUIOB (TPEHIMHA B MEAU IIPHU €€ 3aJICUMBAHUU OJHOOCHBIM CXKATHEM; YKECTKOe (KOpYHJ)
HHOPOJIHOE BKIoueHHe B MoHOKpucTaiuie KCl; monocts B Monokpuctaiuie KCl, momyueHHas B pe3y/ibraTe UMITYIbCHOTO ONITHYECKOTO
po0osi MOHOKPHUCTAJIIA H3ITy4YeHHEM pyOHHOBOTO J1azepa). [lokasano, 4To B MEPBBIX ABYX CIy4asx (TPEHIMHA, KECTKOE BKIIOYCHHE)
BEeYIMM MEXaHH3MOM MacCONEPEeHOCa, MPUBOASIIMM K CHATHIO 10 50 % HanpsukeHUH, SBIAETCS AUCIOKALMOHHO-IUG(Y3HOHHbBINH
MexaHu3M. COIIacHO ’TOMY MEXaHU3MY, Ha TIepEeCEUCHHUSIX BUHTOBBIX AUCIOKALIUH OSBISIOTCS H30BITOYHBIC BAKAHCHU M MEXKY3€IIbHBIE
aTOMBI, O1arofapst YeMy BKJIIOYaeTCst OICTPBIN KpayTHOHHBIN (MEXKy3eJIbHBIN ) MacCONEpPEeHOC, 3aBepIiast peslakcalnoHHBIH npornecc. B
ClTy4ae J1a3epHOTO IIPoOO0s BEAYIINM SIBIISICTCS] MEXaHU3M KpayIHOHHOTO Maccornepernoca. Juddy3noHHo-AnCcI0KannoOHHbII MEXaHU3M
TIOAIKITIOYAETCS Ha 3aKIIOYUTEIBHON CTaUHU Mpoliecca, 00ecednBas mopsaka 5 % IMOTHON BeTHMYNHEI HEOOXOANMOTO MacCOIIepeHoca.

KirioueBble ciloBa: AMCIOKALMH; KpPAayJHOHBI; MEXYy3elbHble aToMbl; AnGY3Hsd; KOHLUEHTPALUS HANPSIKCHUH;
pellaKCalMOHHBIC TIPOLIECCHI.

[TpuBeneHo aHaii3 xapakTepy pelakcaliifHUX INPOIECiB B KPUCTATIYHUX MaTepiajlaX HaBKOJO JIOKAIBHHX KOHIIEHTPATOPiB
HarpyXeHb Pi3HUX THMHIB (TPIIMHA B Mifi IIpH 11 3a1iKOBYBaHHI OTHOOCHUM CTHCHEHHSIM; SKOPCTKE (KOPYH) y>KOpPiTHE BKITIOUCHHS
B MoHokpuctan KCI; mopoxxanaa B MoHOKpucTani KCl, orpumana B pe3ynbTari iMITyJIbCHOTO ONTHYHOTO TPOOOI0 MOHOKpHCTANA
BHIIPOMIHIOBaHHAM pyOiHOBOro nasepa). IlokazaHo, 1o B mepuiMx ABOX BHIAJAKaX (TPIlIMHA, KOPCTKE BKIIIOUEHHS) MPOBITHUM
MEXaHi3MOM MAacCOIEPEHOCY, 10 MPUBOAUTH JI0 3HATTA 10 50% HaNpyKeHb, € JUCIOKaLiHHO-an(y3iiHNH MeXaHi3M. 3rigHO oMy
MeXaHi3My, Ha IepeTHHAaX TBUHTOBHX JIMCIIOKALIIH 3’ IBIISIOTHCSI HA/UTUIIIKOBI BAKAHCIi | Mi>KBY3€JIbHI aTOMH, 3aB/ISIKH YOMY BKJIIOYA€ThCS
IIBUAKAI KpayTioHHUH (MiXBY3€IBbHHI) MacoNepeHoc, 3aBepIIyioun pellakcaliifHuii mpomec. Y pasi Jla3epHOro IMpoOor0 BeyInM
€ MeXaHi3M KpayJioHHOTro Macomneperocy. JJudy3iitHo-aucnokamitHnii MexaHi3M HiIKIIOYaeThCsl HA 3aBepIIANbHINA cTaiil mporecy,
3abe3mnedyroun mopsiaka 5 % IOBHOI BETHMINHH HEOOXiJHOTO MacOIEPeHOCy.

KurouoBi ciioBa: gucioxanii; KpayaioHH; MiKBY3€IbHI aTOMU; TU(y3is; KOHIEHTPALis HaIpyKeHb; peaKcaliiiHi mpouecH.

Introduction for dispersion strengthening of a material) or production

Real solid crystalline bodies as physical systems
always possess some excess thermodynamic potential
in comparison with equilibrium ones due to presence
of crystalline lattice defects. These defects as foreign
inclusions, pores, grain boundaries, dislocations,
vacancies, interstitials (intrinsic and foreign) may be either
artificially created with some specific aim (for example,

outgoings. Various defects are introduced into material
in technologies of diffusion welding, powder metallurgy,
dispersion strengthening, etc. [1, 2, 3].

Under analyzing specific situations, one should take
into account not only requirements to products under
exploitation conditions but also the fact that near any defect
being a stress concentrator of external loading, relaxation
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processes take place which in one way or another reduce
both efficiency and service life of the product. These
relaxation processes are necessary to study in order to get a
possibility to control them and to estimate real capabilities
of specific technologies and quality of materials produced
with them.

Experimental Results and Discussion

Based on our previous works [4, 8—10] where
kinetics of relaxation processes near specific local stress
concentrators like cracks, foreign inclusions and pores
was considered, we form the intention to accent the main
peculiarities of relaxation processes and to specify the
transfer mechanisms leading to relieving or damping stress
state. Additionally, it is necessary to estimate the role of
each of the mechanisms under specific conditions.

In [4] healing of a disc-shaped plane crack with
size 2a and thickness ¢ was studied. Under uniaxial
compression perpendicular to the crack occurrence
plane, a dislocation-diffusion mechanism of healing was
assumed, i.e. generation of prismatic dislocation loops
with their subsequent diffusion dissolution. The kinetic
equation [4] for dissolution of dislocation loops contains
two components; one of them depends on loading and
crack size, and another is defined by the value of lattice
supersaturation by interstitials:

2 3
a o (¢
1- % = (ocy + OLBDVACI-)%

(D

where L, B, Y are experimental constants [4]; a, a,” are,
respectively, current and initial (under loading) radii of the

crack; D, is vacancy diffusion coefficient; D =D, CI(/) ,Dis
self-diffusion coefficient of copper atoms (at 7= 873 K

D = 3.1'10"7 m¥s); CI(/) is vacancy equilibrium

concentration at a given temperature 7 o is stress created
by external loading; ¢, ¢, are, respectively, current time and
the time for formation of a quasi-stationary dislocation
assemble in the crack tip after loading (in our case
t, = 5 minutes); o, is Peierls threshold; AC, = C,— Ci is

. . . .. 0
supersaturation of lattice by interstitials; C,, Ci are,

respectively, real and equilibrium concentrations of
interstitials at 7 temperature.

Naturally, Eq. (1) contains the external load value
and Peierls threshold (for details, see [4]). Generally
speaking, the level of lattice supersaturation by interstitials
is unknown a priori, and we can not take it into account in
the process under study without additional considerations.
If interstitial atoms are allowed to migrate reliably in
crowdion configuration, we can not really evaluate also
the contribution of crowdions into cracks healing so far.

BicHuk XHY, cepia «®isunkay, sun. 26, 2017

Let us turn to specific estimations. It has been found that
if dislocation loop dissolution flow due to interstitial
atoms migration is neglected, i.e. the second summand in
parentheses of Eq.(1) is assumed zero, after experimental
data treatment we obtain understated Peierls threshold
c,~0.4:10° N/m?. On the other hand, using the known from
independent sources Peierls threshold we can evaluate the
second summand in parentheses of Eq. (1).

If, for example, the typical Peierls threshold
c, ~ 10° N/m? is taken, the second summand in (1) is
found to be twice as large as the first one. That means, in
this situation under high-temperature healing of cracks in
loaded copper, the interstitial (crowdion) mechanism of
transfer acts. A specific physical model of such transfer
of atoms is in that vacancies occurring within atomic
close-packed rows move quickly along the close-packed
rows forming crowdion configurations and “take away
hollow” from the crack, so the crack is filled by atoms.
Such configurations are called anti-crowdion ones in [5].
All theoretical concepts developed in [5] for crowdions are
found to be fully applied to anti-crowdions.

A physical model for appearance of lattice
supersaturation by interstitials under plastic deformation
was proposed by Hirth and Lothe [6]. The supersaturation
is related with intersections of screw dislocation loops.
Here vacancies and interstitial atoms are generated. But
concentration of interstitial atoms is always predominates
due to their high mobility [6].

If these considerations are taken, we can believe that
experiments done in [4] and results of their treatment prove
justifiability of assumption on participation of interstitial
migration (crowdions) in the process under study.

Found participation of interstitial (crowdion) mass-
transfer for cracks healing in copper samples under uniaxial
compression perpendicular to the plane of crack bedding
is principal also because this allows correct planning the
regimes of technology operations for crack getting out in
the production cycle.

Similar situation appears also in other cases like this,
for example, during relaxation of stresses near foreign
inclusions in the matrix. In literature there are described
many different cases on reaction of the system near various
inclusions under changing external conditions [7]. Usually,
dislocation and diffusion mechanisms of mass-transfer
were discussed which were really observed (crowdions did
not mentioned practically).

In [8] relaxation processes and transfer mechanisms
were studied in a KCI single crystal with immersed into
it corundum (Al O,) balls at melting temperature (model
experiment). During cooling of the system from melting
temperature, as a result of different expansion coefficients
of the crystal and the ball, dislocations appear in the KCI
single-crystal as in much softer material; some of them are
dissolved by diffusion, whereas some new appear again and
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Fig. 1. Typical dislocation structure in KCl single
crystal cooled from melting T, toroom T temperature
around a corundum ball of 30 um diameter (cooling
constant a&=1.05x10-s™").

again due to continuing cooling. As a result, under cooling
to room temperature, a certain amount of undissolved
dislocations accumulate in the crystal (see Fig. 1). Under
cooling, temperature varies by the exponential law
(T=T, e*") from melting point 7, to room T, =293K.
In experiments, the cooling constant & takes the following
values: 3.0x107s, 1.05x10%s, 1.05x10s, and 1x107s.

Quantitative treatment of dislocation structures (like
given in Fig.1) obtained at different cooling temperatures
near balls of different size was carried out in order to reveal
the cooling rate dependence of the relative portion of full
volume misfit of dislocation loops (AV /AV ) remained in
the crystal after cooling. The value AV, is the misfit between
void and ball volumes at room temperature. According to
calculations, the value (AV /AV ) does not depend on ball
size, but depends on cooling rate (Fig.2).

As the cooling rate increases, larger misfit value is
“frozen” in dislocation loops as it was expected. But it
is important that only (10—15)% of the misfit is found
to be “frozen” in the remaining dislocation loops. In [8],
sufficiently accurate calculations of the misfit value were
fulfilled. From these it follows that quantitatively the misfit
value in dissolved and unobservable dislocation loops is
also rather small, not more (20—30) % dependently on the
cooling rate.

Thus, in “frozen” and dissolved dislocation loops
there is less than a half of substance taken out of the stressed
area. Because after cooling the stresses in the crystal near
an inclusion were insignificant according to photo-elastic
method estimations, we can consider that more than a half
of full misfit was taken out from the stressed area by the
crowdion (interstitial) transfer.

Another type of stress concentrators was discussed
in [9]. These are voids remaining in the ion single crystal
after focused laser beam transmission accompanied by
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Fig.2. Relative portion of full misfit (AV /AV ) versus
cooling constant & in KCI single crystals cooled from
melting temperature T _ to room value T

room”

so called laser optical breakdown. This phenomenon
is being under study for a long time, and a lot of works
was devoted to it. Different mechanisms of local optical
breakdown (formation of a crystal local destruction) under
transmission of laser radiation as well as emission spectra,
formation of a plasma clot, kinetics of the breakdown, etc.
were considered. In a number of our works, mechanisms
of taking out of substance from the breakdown zone and
void formation are discussed. The main attention was
concentrated at studying the dislocation mechanism as the
most rapid for taking out of substance from the breakdown
zone.

Quantitative treatment of investigation results and
first of all the treatment of dislocation structures around the
breakdown zone [9] allowed us to realize that the registered
quantity of dislocation loops observed in the cleavage plane
intersecting the formed void might explain only about (4—
5) % of substance taken out of the breakdown zone.

In this connection, we have studied large amount of
literature data on this point, analyzed rates of energy losses
under transmission of laser radiation through single crystals
and developed the mechanism of void pulse formation — the
model of a local thermal explosion [10]. According to this
model, melting, evaporation and heating of the radiation
absorption zone to plasma state take place so rapidly that
atoms of the overheated area stay put. Therefore, this
process is an explosion with estimated duration less than
10-¢s. High pressure occurs and a shock wave forms which,
according to explosion theory, initially has the supersonic
speed. On the crest of the wave, atoms of overheated
substance are taken out with the supersonic speed. This is
possible if the atoms form crowdion configurations because
only crowdions are able to move with the supersonic speed
[11].

According to results of microfilming of the breakdown
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zone using nano-second resolution [12], at the initial time,
removal of substance and void formation (almost 80% of its
size) occur so rapidly that atoms would have the supersonic
speed to move to a distance close to observed size of the
heated zone. Dislocations and dislocation mass-transfer are
observed practically at the final stage after crystallization
of the substance.

Conclusions

Thus, analysis of particular but typical cases of
relaxation processes by dislocation-diffusion mechanism
near stress concentrators in various materials (metals
and nonmetals) was proposed. It has been shown that if
interstitial atoms and vacancies are generated at dislocation
lines intersections, the mass-transfer process is accompanied
by joining the crowdion (interstitial) mechanism. In the
cases where generation of interstitial atoms is not related
with plastic deformation but takes place as a result of local
pulse impact onto the crystal (thermal explosion under laser
optical breakdown), the crowdion mass-transfer becomes
principal.

Under healing of a crack, emptiness — vacancy-by-
vacancy — is removed from its volume by generation and
movement of vacancy dislocation loops and crowdion
configurations of vacancy type.

In the cases of thermo-elastic stress relaxation near a
rigid inclusion in the crystal or of a local thermal explosion,
atoms are taken out from the defect zone by generation and
movement of interstitial prismatic dislocation loops and the
flow of interstitial atoms (crowdions).
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The origin of internal stresses during hardening of alkali-halide single crystals was investigated. It is shown that the thremoelastic
stress relaxation is accompanied by the fragmentation of distinct areas of a single crystal and by the development of new dislocations,
which formed a cellular structure. The internal stress distribution is qualitatively analyzed by the photoelasticity method.

Keywords: hardening; thermoelastic stress; dislocation; fragmentation; photoelasticity.

SKCHepI/IMCHTaﬂBHO HCCJICIOBAHO BO3HHUKHOBCHHC

BHYTPEHHHUX

HaHp;DKeHI/Iﬁ Ipu  3aKajke MICJIOYHOTATIOUIHBIX

MOHOKpucTanios ¢ pemerkoii Tuna NaCl. ITokxazaHo, 4To penakcanust TEpMOYNPYTHX HANPSKEHUH COMPOBOXKIAETCS BOSHUKHOBEHHEM
HOBBIX JJUCJIOKAaLUH, (OPMHUPYIOINX SYEUCThIE CTPYKTYpPbl; M (parMeHTaluend OTAeNbHBIX oOyacTeil MOHOKpucTauia. Metogom
(OoTOYNPYrocTH KaueCTBEHHO MTPOAHAIM3UPOBAHO paCIpe/ieeHHe BHYTPEHHUX HANPSHKEHHUH.

KuroueBnle ciioBa: 3aKajika; TepMOYNpyTHe HAPSDKEHHS; TUCIOKAK; GpparMeHTanus; (oToynpyrocts.

ExcriepuMeHTanbHO AOCIIIPKEHO BUHUKHEHHS BHYTPIIIHIX HANpYKeHb MPH 3arapTyBaHHI JIy)KHOTAJIOITHUX MOHOKPHCTAIIB 3
rparkoro tuna NaCl. TTokasaHo, 1110 pesakcaiisi TEpMOIPYKHUX HANpPYKEHb CYHPOBOIKYETHCS BUHUKHCHHSM HOBUX JHMCIIOKALii,
SKi YTBOPIOIOTh KOMIpYacTi CTPYKTYypH, Ta ()parMeHTALi€l0 OKPEMHMX YacTHH MOHOKpHUcTaida. MeTogoM (OTONPYKHOCTI SKICHO

IIPOAHAaJIi30BaHO PO3IIOALT BHYTPILIHIX HAIPYKESHB.

KurouoBi cioBa: rapryBaHHs; TEPMONPY>KHI HaIPY KEHHS; IUCIIOKALIiT; ()parMeHTais; GoTonpyKHICTb.

Introduction

Thermoelastic stresses (TES) always develop during
the growth of dielectric crystals, in particularly alkali-
halide. Thermoelastic stress relaxation can significantly
change the crystal structure and affect further operating
characteristics.

Some experimental observations of structural changes
while hardening of alkali-halide single crystals with NaCl-
type lattice are presented in this article. The majority of
the performed experiments used KBr single crystals, as
such crystals are relatively “soft” and do not crack during
hardening

Experimental technique
Experiments were performed with alkali halide single
crystals of 10x10x10 mm size with initial dislocation

density p ~ 0 m . Crystals were heated on a ceramic

substrate at constant rate W =6 to temperature 7,

min

then maintained at this temperature for a particular time ¢
and quickly taken out from the oven (to the room
temperature). For the KBr single crystals: 7' =620°C,

t=5 min.

The cooled down crystals were cleaved, the
dislocation structure along with the cleavage relief were
optically analyzed. By the photoelasticity method the
distribution of the internal stresses was studied [1].

Thermoelastic stresses
As well known, cooling begins from the surface.
Hence the near-surface layer tends to shrink and thus
compresses the internal volume. The situation is similar
to the stretching of a metal hoop on a barrel. As a result,
in the internal region the compressing stresses appear,
while stretching stresses, parallel to the closest crystal side,
develop in the near-surface layer. The mean value of these
stress can be estimated from a ratio:
oc~elk =~ aAE (1)
where € = AT is the relative crystal strain in the near-
surface layer parallel to it’s surface, o is the linear thermal
expansion coefficient, AT =7 —T is the difference

between the temperature of the heated crystal and the room
temperature 7, E is Young’s modulus in the direction
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Fig. 1. Thin rectangular plate of constant width 2c.
Temperature is an even function of y and does not
depend on x and z.

parallel to the crystal surface. In our case AT =600 K
and o~ 3-0 ° K™ [2], so after removing of the crystal
from the oven the internal stresses reach 6 ~1.8-0 > E

. This value considerably exceeded the level of stress
necessary for dislocation arising in alkali halide crystals.
The TES problem is not solved analytically for
isotropic cubic shape bodies [3, 4]. There are solutions for
several simple cases of temperature distribution and for
rotationally symmetric figures (sphere and cylinder). In

particular, for a thin rectangular plate of constant width 2¢
(Fig 1a) in which the temperature is an even function of y
and does not depend on x, namely

2
TzTr(l—yTj
C

The solution for TES is [3]

x 2

2
o. =2aTE- aT,E(l —y—J 5
3 c

(see Fig. 1b)
If a sphere of temperature 7}, is dipped into a liquid

with temperature 7; (7} >T})) the external part of the

sphere will be dilate thus causing the comprehensive
uniform radial stretching in the middle. The maximum
value of this stress is

aF
=0.711——(T, - T, 3
Gr 2(1—\/)( 1 0) ()

Fig. 2. The cleavage of hardened KBr single crystal. T =
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b Fig. 4. Photoelastic pictures of KBr single crystals.
Isocline parameters: a — 0°, b — 25°, ¢ — 30°, d — 40°,
e—45°.

R’C
t=0.05742 =P )
X

In (3) and (4) v is Poisson’s ratio; R — sphere radius;
C, p, x — heat capacity, density and heat conductivity.

Results
Surface relief.
1) Periodically located bands of reorientation near to
a surface of hardened single crystals.
2) Dense system of cleavage steps; in the outer layer
the step orientation becomes normal to the surface (Fig. 2
c b, ¢).

3) The cleavage step density is the greatest in the

Fig. 3. Dislocation structure of a hardened sample: a —
central part of crystal.

near to the surface, b, ¢ — in the middle.

at time Dislocation structures.
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Fig. 5. Image of isoclines (dotted lines) and isostates
(solid lines) in a hardened crystal.

The resulting dislocation density is greatest near to
the surface. In the central part of the crystal, dislocations
form a cellular structure with diffused boundaries
(Fig. 3b, ¢).

The dislocation density is significantly decreased
after annealing of the hardened single crystal at
T =625°C for t =3 h . This effect can be explained by
the annihilation of dislocations with antiparallel Burger’s
vectors. Cleavage steps became curved and their density
decreased.

Photoelastisity.
Observations of the hardened single crystals
in polarized light (light source=polarizer=-crystal

—analyzer) in the crossed nicols yielded interesting
photoelastic images that changed as the crystal was rotated
with respect to the light polarization plane (Fig. 4).

Two principal stresses G,, G, and the shear stress
T, are presented in each point of plain stressed body. The
relation between stresses

21,

tan29, , = .
0,0,

Black lines in Fig. 4 are isoclines along which the

angles (9, 3,) between principal stresses G,, G, and
polarization plane [1] are preserved.

The crystal was rotated with respect to the light
polarization plane from 0° to 90° in steps of 5°. A schematic
isocline pattern is shown in Fig. 5. Each isocline is marked
with its parameter. As seen from the figure there are four
points of intersection of the isoclines of different parameters
(A, B, C, D). So-called “special isotropic points” are where
only the hydrostatic pressure is present. Solid lines in Fig. 5

BicHuk XHY, cepia «®isunkay, sun. 26, 2017

denote isostates; at each point the tangent is consistent with
the direction of one of the main stresses.
The difference  between  principal

Ac =0, — 0, using isochromatic (color) lines could not

stresses

be determined, as the optomechanical coefficient
proportional to AG is small in alkali-halide crystals [1].

The obtained pictures qualitatively obviously show
the presence of internal stresses in hardened crystal.

Conclusions
The internal thermoelastic stresses emerge in alkali
halide single crystals during hardening. Relaxation of these
stresses leads to significant change of the crystal structure
up to the transformation of some regions into polycrystal
by reorientation and fragmentation.
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Conducting anisotropic narrow-band ferromagnetic connections on the basis of f - d - elements attract enhanceable interest, as
systems tightly-coupled between electronic, magnon and latticed by subsystems [1-3]. Magnetic resonance is the effective instrument
of research of their power spectrum, however the mechanisms of forming of g - factors of magnetic moments in such substances are
studied not enough. Methods of theoretical researches of the resonant phenomena, developed for ferromagnetics described within the
framework of charts with Heisenberg intersite by an exchange, as in dielectric [4], so in wide-band conducting systems [5], inapplicable
for direct description of the connections examined here. In the real work we investigated the spectrums of magnetic excitations in a
narrow-band ferromagnetic explorer containing local ( ') and quasilocal ( d ) magnetic moments [6]. These spectrums are formed by
the spin correlations generated jointly by interatomic co-operations of d electrons (by an exchange with the electrons of shells and
Hubbard pushing away), and them intersite hops, taking into account the spatial chaotization of g - factors d - and f - subsystems [6].

Keywords: magnon; Green function; narrow-band ferromagnetics; g - factors.

HccenoBaHbl CLIEKTPBI MArHUTHBIX BO30YIK/ICHHUIT B y3KO30HHOM (heppoMarHUTHOM IPOBOTHHKE, COfiepIKaleM JTokaibHbie ( ) u
KBa3WJIOKaJIBHEIE ( d ) MATHUTHBIE MOMEHTHI [6]. DTH CIIEKTPBI GOPMUPYIOTCSI CITMHOBBIMU KOPPEIISIIIUSIMHU, TIOPOKAAEMBIMI COBMECTHO
BHYTPHUATOMHBIMA B3anMoJeUCTBUsIMU d 31eKTpoHOB (0OMeHOM ¢ anekTpoHamu f obonouek m xab0apIOBCKHM OTTAJIKUBAHHEM),
U UX MEKY3eJIbHBIMH MEPECKOKAMH, C Y4ETOM MPOCTPAHCTBEHHOH Xaotuszanuu g-daxropos d- u f- moxcucrem [6] M aHH30TpONUK
IapaMeTpoOB «BHYTPHUATOMHOTO» OOMEHa MEXIY JIOKAJbHBIMH M KBA3WJIOKAIBHBIMH SJIEKTPOHAMHU. I10TydEeHHBIC BBIPAXKEHUS IS
s dexTuBHBIX g-pakTopoB BzaumozeiicTByommx f - 1 d — MAarHUTHBIX MOJCUCTEM B Y3KO30HHOM (DeppOMarHeTHKe CoAepkKar Kak
H30TPOITHBIE MOTIPABKH K g-(pakTopaM HeB3aUMOJEHCTBYOMHX f - ¥ d - MOICHCTEM, TaK U MONPABKH, 3aBUCSILIE OT OTHOILICHUS X,y - U
Z - KOMIIOHEHT TE€H30pa JIOKaJIbHBIX OOMEHHBIX IIapaMeTpOB, IPUYEM 3HaK MONpaBok /s f - 1 d — mojcucTeM pasideH.

KunroueBnie ciioBa: Marnos; ¢pyHknus ['prHa; y3Kk030HHBIE (heppOMAarHETHKH; g-(aKTop.

JlocmimkeHi crnekTpu MarHiTHUX 30y[K€Hb Yy BY3bKO3OHHOMY (EPOMArHITHOMY MpPOBIIHHUKY, IO MICTHTh JIOKaJIbHI (
f ) i kBasinokanphi ( d ) maruitHi MmomentH [6]. i ciekTpu GOpMyIOThCsI CIIIHOBUMH KOPEJSILISIMHU, 10 HOPOMKYIOTBCS CIIJIBHO
BHYTPIIIHHOAaTOMHUMH B3aeMoJisiMU d eleKkTpoHiB (0OMiHOM 3 enekTpoHaMu f 000710HOK i Xa006apJOBCKUM BiAIITOBXYBaHHIM), i 1X
MDKBY3EJIBHIMH TIEPECKOKaMHU, 3 ypaxyBaHHIM IPOCTOPOBOI XxaoTu3anii g -akropis d - 1 f - migcucrem [6] i anizoTpoIil mapamMeTpin
«BHYTPIITHHOAaTOMHOT0» OOMIHY MK JTOKaJbHUMH 1 KBa31IOKaIBHIMH eJleKTpoHaMu. OTprMaHi BUpa3u A1t epEeKTHBHUX g -(haKTopiB
B3aemomitounX f - 1 d - MarHiTHUX MiICHCTEM Yy BY3bKO30HHOMY (PEpOMArHETHKY MICTSATH SIK 130TPOIIHI MOMpPaBKU J0 g -(aKTopiB
HeB3aeMofitounx f - 1 d - migcucTeM, Tak i MOMPaBKH, 3aJI€XKHI Bil BITHOMIEHHS X, Y - 1 Z - KOMIIOHEHT T€H30pa JOKAIbHUX OOMIHHUX
rnapaMeTpiB, IPUIOMY 3HAaK HOMpaBok st f - i d - migcucTem pisHUA.

Karwuogi ciioBa: marHoH; GyHkiiis ['piHa; By3bKO30HHHIA (hepoOMarHeTuk; g-Gpaxkrop.

Model and method
The charts of electronic power spectrum (Fig. 1)

Here S and s are backs local /- shells and quasilocal
d -anexrpona, accordingly, S>>1; J, and J is interatomic

and spectrum of elementary excitations (Fig. 2) of the
investigated system used in-process are analogical to used
in [6].

Electronic descriptions of the investigational system
were analogical to considered in [6], except for the
parameters of “interatomic” exchange between local and
quasilocal electrons, which in this case was anisotropic, -

H, :—Z[JL(SXSX +SYSY)+J ZSZ:|.
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exchange constants, 0<J <J.

Model Hamiltonian
Hamiltonian of the system in the external magnetic
field of H, directed along the co-ordinate axis of Z, looks
like

H=H,+H,

where
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- electronic Hamiltonian in presentation of numbers of
filling, qualificatory energies of both one-particle and
collective states, in particular is a magnon spectrum [6].

Element

H =-p,H- SZ+g,s%

m_ “B Ze: & fé E4%
describes co-operating of spin subsystem with the external
. o . .
magnetic field of H; Cigo Cs o are electronic Fermi
operators; A is a sites of grate, i, is the Bohr magneton;
ne . = ¢l c.  are electronic numbers of filling; o is the

€,0¢,0

spin index (the values of this index are represented by the
1
. z + ot
symbols 1(]) or +(-)); S5 = E(CéTCéT ceicéi) are

operators of electronic spins; J is an interatomic (d - f -)
exchange integral, U is the Hubbard interaction constant;

m

5d -

=

5d+

af+ !

Fig. 1. Scheme of the electron energy spectrum of
the model: 1 — partially filled magnetically active
4 f'level (E 4ﬂ), 2 — partially filled 5d band, 3 — band
of unfilled 5d states, 4 — band of unfilled 4 f states,
E, — the Fermi energy, £, , E, , and E ap T maximum
energies in the corresponding bands, &, is the Brillouin
quasimomentum; the arrows represent the spin indices

of the electron states.
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W is a width of electronic zone; g, (g,) - is the crystal
averaged value of the g factor for the d and f electrons;
inequalities of W<<4zJS are used, U/2JS<<1, 0<W<2zJ,
U>J, where z is a co-ordinating number of crystalline
grate.

There is a calculation of magnon spectrum in the
region of small values of the magnon quasimomenta.

The site magnetic moment of the crystal looks like

M, =1, (gfésé + 84eSe );

his transversal components in circular coordinates are equal

M: =M +iM.

Transversal dynamic magnetic susceptibility of the
system

1

Q) =X (@)

N7

can be expressed through Fourier transforms of twotemporal
late temperature of the Green’s function

| 4
58 ) 3
. /
op

Fig. 2. Scheme of the spectra of the elementary
excitations in the model used: 1 — acoustic magnon
spectrum, 2 — optical magnon spectrum, 3,4 — lower and
upper boundaries of the continuum of single-particle
(Stoner) electronic excitations with a spin flip (the figure
corresponds to the one-dimensional case with k,=0.4k,),
g, and g,, are the energies at the corresponding zone
centers (q=0), €_ is the energy of the Stoner excitations
at zero quasimomentum transfer (all three bands are
shifted upward by an applied external magnetic field).
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where ¢ =g+ia, a >0, e =w, w is frequency of the

trial field, v, is an atomic volume.

Resonant frequencies correspond to the poles of the
Green’s function | , which can be defined from equalization
of motion for her.

Calculation of transversal dynamic magnetic
susceptibility, conducted by the method of twotemporal
late of the Green’s function within the framework of
the approach developed in [6], resulted in two resonant
frequencies of homogeneous precession of constrained d
- and f - the magnetic moments of the system, related to
acoustic and optical to the magnon branches.

Linearizing on the field of H=(0, 0, H?) of the got
expressions for resonant frequencies of homogeneous
precession allowed to define effective g - factors,
corresponding acoustic and optical to the magnon branches
which in linear for 1/S approaching, have a next kind:

: (e m

gac :gf 1_

. g V(I Y
8op = 84 1_<SZ> _g_: KTLJ

Conclusions

Got expressions for effective g - factors interactive f -
and d - magnetic subsystems in narrow-band ferromagnetic
contain both izotropic amendments to g - factors
uninteractive f - and d - subsystems and amendments
depending on the relation of X, y - and z is a component
of tensor of local exchange parameters, thus sign of
amendments for f - and d - subsystems different.
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Methods of determination of polytrophic effectiveness factor
of the centrifugal supercharger

Yu.A. Oleynik, S.A. Saprykin
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Ukraine, 61010, Kharkov, Gimnazicheskaya Emb., 20
oleynik.juriy@ndigas.com.ua

Mathematical models of determination of the polytrophic effectiveness factor (EF) of the centrifugal supercharger (CS) of natural
gas were analyzed. On this basis four methods of calculation of polytrophic EF of CS were investigated. According to these four
investigated methods there was carried out the practical calculation and comparison of changes of values of polytrophic efficiency of
CS. The simplest method was allocated, that helps to determine the polytrophic EF of CS with entrance pressure of 0,5-2,3 MPa very
quickly.

Keywords: polytrophic process; adiabatic process; polytrophic effectiveness factor.

[Tpoanann3npoBaHEl MaTeMaTHYECKIE MOJIEIH ONPEAEIEeHHs OIUTPOIHOro koddduimenta nonesnoro aeiicreus (KII/) nen-
Tpobexxnoro Haraerarens (LIBH) mpupoxnoro rasza, Ha 0ocHOBe 4ero ommcaHsl YeTblpe MeToaa pacuéra monutpornHoro KITJ[ LIBH.
[lo onmucaHHBIM YeThIpeM METOaM IPOBEAEH MPAKTHUECKUH pacyeT W cpaBHEHHE M3MeHeHuH 3HayeHuil nonutponnoro KIIJ LIBH.
BbhienieH caMblii POCTON METOJ, MO3BOJISIOIINN ObIcTpo onpenenats nmonutponHbii KITJ] IIBH mpu Bxoaubix masnenusx 0,5-2,3

MITa.

KunroueBnle ciioBa: monuTponHbli nporecc; agnabdarHblii nponecc; nonutponssiit KIT/T.

[IpoBeneno aHami3 MaTeMaTHYHUX MOJENEH BU3HA4YEHHS MOJiTpomHOro koedimienta xopucHoi nii (KK/I) Biamentposoro
naruitada (BL[H) npupoanoro rasy, Ha OCHOBI 40ro Oyyo OIMCaHO YOTHPU MeToau po3paxyHky mojirpornHoro KKJ[ BIIH. 3rigxo
3 OIHMCAaHUMHU YOTHUpPMa MeTofaMH Oysio MPOBEICHO MPAaKTUYHUN PO3paxyHOK Ta 3piBHSIHHS 3MiH 3HaueHb noxitpornHoro KK/ BIH.
Bunineno Haiimpocrimuit MeTon, skuit 103Boutsie mBKaKo BusHauatu nomitpornHuid KK/ BIIH npu BxXigaux tuckax 0,5-2,3 Mlla.

KurouoBi cioBa: nonitpornuuii nporec; axiabarauii npouec; nomirpornaui KK/I.

Introduction

For assessment of the technical condition of the
centrifugal supercharger (CS) of the natural gas (NG) it is
necessary to determine its polytrophic effectiveness factor
(EF). The simple method of calculation is necessary to make
it under operating conditions CS at compressor station. The
existing mathematical models (MM) of determination of
polytrophic EC CS [1-6] will be considered in this article.
After their analysis the simplest mathematical methods will
be allocated, which allow to determine the polytrophic EC
CS under operating conditions.

Parameters of natural gas

Let us consider the NG parameters, which are
necessary for calculation of polytrophic EC CS. In fig. 1
axes of temperatures, pressure and specific enthalpies of
NG at its compression in CS are shown.

On an axis of temperatures of fig. 1 the following
temperatures of NG are shown: T; — NG temperature on CS
entrance, K; T, — NG temperature at CS exit at polytrophic

© Oleynik Yu.A. , Saprykin S.A., 2017

process of compression, K; T,, — NG temperature at CS exit
at adiabatic process of compression, K.

On an axis of pressure of fig. 1 the following pressure
of NG are shown: p;— NG pressure on CS entrance, Pa;
p>— NG pressure at CS exit at polytrophic process of
compression, Pa; p,, — NG pressure at CS exit at adiabatic
process of compression, Pa.

On an axis of specific enthalpies of fig. 1 specific
enthalpies of real NG at adiabatic and polytrophic processes of
compression of NG are shown. Also in the drawing specific
enthalpies of NG are shown if it has properties of a perfect gas
at temperatures O, and O,, .

For specific enthalpies and specific works in fig. 1 the
following designations are entered: h; — specific enthalpy
of NG on CS entrance, J/kg; h, — specific enthalpy of NG
at CS exit at polytrophic process of compression of NG,
J/kg ; h,, — specific enthalpy of NG at CS exit at adiabatic

process of compression of NG, J/kg; -hy;, hy;— specific
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Fig. 1. Temperatures, pressure and specific energy of
NG on an entrance and an exit of CS.

enthalpies of NG on an entrance of CS and an exit of CS if
the compressed NG has properties of a perfect gas, J/kg;
et — losses of specific energy of NG due to return of heat
from NG to the external environment, J/kg; ej;, €5;—
difference between a specific enthalpy of NG in perfect
condition and NG in a real state at e = 0, J/kg; A, — the
specific work made by CS over NG at adiabatic process of
compression, J/kg; A,— the specific work made by CS

over NG at polytrophic process of compression, J/kg.

In the description of calculations of the NG parameters
we won’t consider coefficient of compressibility of NG for
simplification of definition of 1 — polytrophic EF CS.

Mathematical models of calculation of
polytrophic EF CS
Forsizes i,, and i; we will write down the equations

according to standards [1, 2]:
hy, =hpi—ey;; (1)

hy =hy—ey;; (2)
h,;=(2,6R ¥
5i=(2,6R +149) T, + 1,225 T3 ;
hy;=(2,6R +14 2
1i= (2,6R +149) Ty + 1,225 Tf ;
e2i=K ¢ 95

e;i=K c 81;
.
03468 03564 |7, 10,0273 0117 |,
7, e ==
) 5 )2 20 T 5 )\ 12

2
0,3468 0,3564 |m; 10,0273 0,117 |[ m;y
81 =T + 3 —+— — 3 —_—
T o Ju 2 0m 7 gl

62:

52

T T
T, =—2; 1 =—1;

T!: C
nz:P_2; = Pi .

Pe Pc

where R — gas constant NG, J/(kg-K);
81, O, — corrections of a specific enthalpy of

NG which lead values of an enthalpy from a condition of a
perfect gas to a condition of a real gas;

Ty, T, — the specified NG temperature on an

entrance of CS and an exit from CS;
n; , T, —reduced pressure of NG on an entrance

of CS and an exit from CS;
T, — critical temperature of NG, K;

pe — critical pressure of NG, K.
Knowing h,, and h; values, it is possible to find
specific work of A, (fig. 1):
Ay=hy, —hy,
and then to define specific work of A, and further to
determine polytrophic EF CS by a formula: n= A, /A, [5,

6].
For specific works as A, and A, (fig. 1) we will

write down formulas taking into account coefficient of a
polytope n and coefficient of an adiabatic k [5]:

n
Ap:n_lR(T2—T1); 3)

k
Ag=—R(T2 = T0). “)

We will transform a formula (3) taking into account
dependence of the NG parameters at polytrophic process [5,

6]:
Ap= n R 1 T—Z— 5
n-1 Tl
n-1
Ay= nml{p—z}“—l. (5)
n—1 p1

Also we will transform a formula (4) taking into
account dependence of the NG parameters at adiabatic
process [5, 6]:
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Aa:—k R 1[T2a —1],
T

k-1

ko
A= — g || R2a|* ] 6)
k-1 P

Formulas (5) and (6) are used more often than
formulas (3) and (4) since look more presentably though
the result of calculations of A, and A, turns out

identical.
In a formula of n=A,/A, [5, 6] we will substitute

the equations (3), (4) and we will receive:

ﬁR(Tz -Ty)
n=- ;M=
HR(TZa -T;)

n k-1 TZ_TI
n—-1 k T2a_T1’

and at T, = T,, assumption, we will receive the simplified

The formula (7) is used in the standard [3] where for
the CS parameters the following equations are given:

k
oA +0,0041(t, —0 )+

01 (3

439 (a,, 05 )+ 5,0(——0,3);

n
ty+t
¢ = 12 2.

g TZ h E h P2

Il—lz Tl _ Tl . n _ pl (9)
noopP oy P2 Tn-1 hT72,
p1 p1 T

where t;, t, — NG temperature on an entrance and an exit
of CS, °C; t, — average temperature of NG, °C; A, —

relative density of NG by air.

The equation (8) is convenient that having defined k /
(k-1) value and n / (n-1) value, it is possible to find n on a
formula (7) at once.

formula The following equation for the NG parameters is
n k-1 . . .
n=— . (7) given in literature [4]:
n-1 k
Table 1
Methods of calculation of values n
Methods Description of calculation of parameters NG Cala;lation
Method 1 ]
according to MM We determine h,,, h; values by formulas (1), (2) and we calculate
of the standard [.l], A,=hy, —h,. A,
rules of calculation N n=—2-
[2] We determine 1 by a formula (9) and we calculate A, by a formula (5). Aq
n J—
Method 2 . k
according to MM We determine k-1 by a formula (8). On a formula (7)
of the standard [3] n
We determine 1 by a formula (9).
n—
L k Cik
Method 3 We determine fiz by a formula (11) and we calculate =—
according to MM [4] k-1 R On a formula (7)
We determine Ll by a formula (9).
n —
Method 4 We set value k for NG taking into account values of the following param-
according to a for- eters: Ty, Ta, p1» p2- On a formula (7)
mula (7) We determine — " by a formula (9).
n —
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Mc, =55 +(56 +0,017t5)A (10)

air »

where M —molar mass of NG, kg/kmol; ¢, —heat capacity

of NG with a constant pressure if NG has properties of a
perfect gas, kcal/(kg-°C).

Dimension of the equation (10) kcal/(kmol-°C). In
literature [4] for 1 fi; two dimensions (kcal/(kmol-°C)

and kcal/(kmol-K)) that can be a typo or accounting not of
temperature, and an interval of temperatures when intervals
of degrees Kelvin and Celsius are equal:

AT =T, - T =(t, +273,5 )—(t, +2735 )=

= t2 - tl = At N
therefore for an interval we can use dimension as kcal/

(kmol-°C), and kcal/(kmol-K).
We will accept assumption that fig ~fiy where fig

—heat capacity of NG with a constant pressure and adiabatic
process of compression. We will separate both members of
equation (10) into M and we will substitute in the equation
(10) instead of value of an interval of AO:

1 :
C :M[S’S +(56 +0,017AO)Aair],

where dimension of ¢y — keal/(kgK).

If in the equation to use AT, then great values of ¢y

therefore we will use not AT, but AT/2 turn out and we will
rewrite (10) in a look:

Cx =ﬁ{5,i +[5,6 +0,017A—2TjAair},

and for change of dimension of ¢y of calories in Joules,

095 %

=

2

&

= Methodl{1t)
S Method2(1)
5 em=-

5% Method3(t)
.2 Method4(t)
% ) 0.8
=

=

Gas temperature at the exit, °C

a

we will increase the right member of equation on 4187 J (1
kcal = 4187 1J):

4187 AT
Clk =T|:5,5 +(5,6 +0,0177jAalri|,(11)

where dimension of ¢y — J/(kg'K).

Replacement AT on AT/2 brought closer value ¢; to

¢y Vvalue that we will check further at practical calculations
of .

For ¢ we will write down expression [6]:
k
cg =—R
k-1
and we will receive a formula
kS
k-1 R
In the grant “Centrifugal gas compressors” developed
by Solar for the size A, the following formula is given:

=)
. k
A=l 1Pz Ky (g
k air
Rair -R
A b

air
where R,;, — gas constant of air, J/(kg-K).

The formula for k not to be given in a grant of “Solar”.
It is possible to assume that the constant value k is used or
the program of calculation of A uses different values k in
dependence on parameters of gas and modes of behavior of
CS.

092 15 -
4
J
-
’
0.9) -2
>,
.‘E o’ > '_o'
‘;—E’ ," 0" -
~. Methodl(P) S -
2 — n)jﬁ ” .. .“
5 Method2(P) > pots
5 mmms . P
£ Method3(P) Py -
D mamas ,..' '_a
2 Methodd(P) v
Esswe 0.8 -~ "
= -
= .’j _v"
~ - -
= o
0.75 et
- _’
... /’/’
Bk
. 'pf
0.7

13 1.35 14 1.45 1.5 1.55 1.6 1.65 1.7

Gas pressure at the exit, MPa

b

Fig. 2 Calculation of 1 by four methods: a - input data: p;=0,6 MPa; p,=1,6 MPa; t;=4°C; t, =90°C; pg =0,73
kg/m?; b - the calculated parameters: 1= 0,8091; 1, = 0,8232; 1n3=0,7925; n4=0,8159; n = 1,3804; k,=1,2934;

k3= 1,2794; k, = 1,2900.
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Gas temperature at the exit, °C Gas pressure at the exit, MPa
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Fig. 3 Calculation of 1 by four methods:a - input data: p;=1 MPa; p,=2,8 MPa; t;=3 °C; t, =90°C; ps =0,73
kg/m?; b - the calculated parameters: 1;= 0,8009; n, = 0,7969; 1n3=0,7725; n4=0,7957; n = 1,3938; k, = 1,2906;
ky=1,2792; k4= 1,2900.

We will rewrite a formula (12), having received the

equation similar to the equation (6):
k-1 n-1

Tk n n
A= Tr|[R2]| 5 ) Ap=——T|R [p—z} -1
P1 n-—1 P1

where assumption is accepted that outlet pressures from the ~and for definition of n=A, /A, , we will receive:

compressor at polytrophic and adiabatic process of n—
compression of gas are equal, that is p, = p,, (fig. 1). n [Pz:| ny
For A, we will write down a formula (at p, = py, ): n=-0= 1 LP1 (13).
k k-1
k-1 ’71)2 —l k 1
o
09 0.9 205 .
I‘ ’l
7 2
0.85 - 0.85 T -..o"."
'._'

= 5 2
2 8 o8 | 2
% Metodi( *° E* Method1(P) .’1':-"
5 Method2(1) g Method2(P) ‘”o_»'
§ by 0s § Mmisw) 075 7
3 Methodd() é Methodd(P) .._,‘:;"
g E 5 <
£ 0.7 E 07 . ’.:,4'
=] £ . #
=¥ P

0.65 0.65] " 7 ‘

e ’
‘l
“
0.6/ 06—
55 58 61 64 67 70 1.85 19 1.95 2 205 21 215 22 225

t

Gas temperature at the exit, °C Gas pressure at the exit, MPa

a b

Fig. 4 Calculation of 1 by four methods: a - input data: p;=2,2 MPa; p,=3,75 MPa; t;=33°C; t,=83°C; pg =
0,73 kg/m?; b - the calculated parameters: n;= 0,7658; n, = 0,7494; n3= 0,7484; ny4= 0,7546; n = 1,4243; k,
=1,2874; k3= 1,2869; k4= 1,2900.
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Fig. 5 Calculation of 1 by four methods: a - input data: p;=2,2 MPa; p,=3,75 MPa; t;=33°C; t,=83°C; pg =

0,73 kg/m?; b - the calculated parameters: 1; =

=1,2862; ky=

We will enter the following designations:

n

L
k-

As Sy <1, and S, >1, it is possible to receive result

1,2914; k4= 1,2900.
n-1
|:p2i| n _1
=S5, <1; P1 T

[Pz
P1

also we will write down a formula (13) in a look

T]=SISz.

=Sz>1.

0,7998; m, = 0,7844; n3= 0,7955; n4= 0,7925; n = 1,3960; k,

when $;S, >1. At practical calculations for a formula (13),

values = 1,01...1,03 are received that confirms the made

assumptions of great value of the work S;S,.

Methods of calculation polytrophic EF CS
From the analyzed MM four methods of calculation
of m shown in table 1 are allocated. The most difficult
calculations are carried out in a method 1, the simplest — in
a method 4.

09

0.8]

Method1(1) , 75
Method2(t)

\ ethod3(t) 0.7]

Imllodl(t}
s 0.65
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0.55
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Method4(P)
LN

.65k

Polytropic efficiency factor

.

Fig. 6 — Calculation of n by four methods:a - input data:
= 0,73 kg/m’; b - the calculated parameters: 1= 0,6967; 1, =

=1,2675; ky=

102 107

t

17

Gas temperature at the exit, °C

a

1,2831; k4 =1,2900.

122

4.75 48

P

4.85 4.9 4.95 5

Gas pressure at the exit, MPa

b

p1=2,65 MPa; p,=4,9 MPa; t;=43°C; t,=111°C; pg
0,6658; m3=0,6962; n4= 0,7093; n = 1,4640; k,
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The m values calculated by methods 1-4 (table 1) are
given in fig. 2-6.

In fig. 2-6 absolute pressures d;, 0, are given and
the following parameters are used: p, — NG density under
standard conditions (20 °C, 101325 Pa); mn;— the 1 value
calculated by a method 1; n,— the n value calculated by a
method 2; m3—the n value calculated by a method 3; 14—
the m value calculated by a method 4; k, — value k when
calculating for a method 2; k;— value k when calculating for
a method 3; k4 = 1,29 — the constant value k accepted in a
method 4.

The k; value (value k when calculating for a

method 1) in fig. 2-6 isn’t present as m; is calculated not by
a formula (7) and as the relation A-f / Aé (table 1).

In calculations and schedules of fig. 2-6 the following
constant parameters were accepted:

- for a method 3: M = 17,4 kg/kmol;

- for a method 4: k = 1,29.

In fig. 2-6 not only 1 values at the fixed t, value are

shown, but also schedules of n(t,) and n(p,) where t,
and p, change in the range of near real value (a dotted line
on graphics) given in basic data. Schedules allow to ana-
lyze more precisely features of change of 1 for each meth-

od that shows features of MM of calculation of the NG
parameters.

Replacement AT on AT/2 in a formula (11) showed
good results in calculations of 1 (fig. 2-6), but we will note
that with entrance pressure 0,5...1,0 MPa the method 3
gives the minimum m values.

Good results for calculation of 1 were shown by the
simplest method 4 (table 1, fig. 2-6) which it is possible to
apply under operating conditions CS. At p;= 2,65 MPa the
method 4 gives the overestimated values (fig. 2-6) and it is
better to use it at p; =0,5-2,3 MPa.

By a method 2 at p; = 2,65 MPa the smallest polytro-
phic EF (fig. 2-6) therefore at p; > 2,2 MPa are better to use

a method 3 which is simpler in calculations, than a meth-
od 1 was received.

Conclusions

1. According to the analyzed MM four methods of
calculation of polytrophic EF CS (table 1) are
described.

2. Practical calculations of polytrophic EF CS for four
methods are carried out. Schedules at change of
temperature and outlet pressure of CS are constructed
that allows to compare the nature of change of 1 for
each method.

BicHuk XHY, cepia «®isunkay, sun. 26, 2017

3.

It is shown that it is possible to use the simplest fourth
method for calculation of polytrophic EF CS with inlet
pressures of CS about 0,5-2,3 MPa.

With inlet pressures of CS more than 2,3 MPa it is better
to use the third method of calculation (table 1).
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Review of theory of mesocopic systems

V. V. Fedotov

NTUU ”Igor Sikorsky Kyiv Polytechnik Institute”

As part of this work, the theory of mesoscopic systems was substantiated. The main effects of mesoscopic systems are provided;
it is determined that the macroscopic characteristics of the system are significantly fluctuating within the mesoscopic level. The basic
indicators of coherence of the quantum phase are determined and the mechanisms of influence are outlined. Six effects of mesoscopic
systems with detailed justification are characterized. The theory of mesoscopic systems is based on the following mesoscopic effects:
the Aaronov-Bohm effect; integral quantum output effect; fractional quantum Hall effect; Universal fluctuations of conduction;
quantization of conductivity of a quantum point contact; direct currents in mesoscopic rings.

Small scales of time and/or length and low temperatures are characteristic for a mesoscopic regime. Under the conditions where
the temperature is reduced, the time/length of the coherence of the phase increases, and the mesoscopic regime extends over larger
scales of time/length. At Kelvin temperatures, the time and length scales in semiconductor samples are respectively picoseconds and
micrometers.

Prospects for further developments in this area of research are based on a detailed study of mesoscopic effects, based on the
growing trend for the production and research of materials containing the smallest structures and having low-dimensional features, that
leads to the mesoscopic regime.

Keywords: mesoscopic systems; fluctuation; quantum phase; coherence; nanostructured system; macroscopic characteristics

VY pamkax aHoi poOOTH 3pOOJICHUI 0N TEOPil ME30CKOMIYHUX CUCTEM. 3a3Haue€HO OCHOBHI €()eKTH ME30CKOMIUHUX CHCTEM,
BH3HAYEHO, III0 MAKPOCKOIIIUHI XapaKTePUCTHKN CHCTEMH 3HaYHO (IIyKTYIOIOTbh, y paMKaxX MEe30CKOIIYHOro piBHs. BH3HaueHO 0CHOBHI
MIOKA3HUKU KOT€PEHTHOCTI KBAaHTOBOI (pa3M Ta OKpecIeHO MexaHi3Mu BIUIMBY. OXapaKTEpHU30BAHO IIICTh €(EKTiB ME30CKONMIYHUX
CHCTEM 3 JICTQIBHUM OOIPYHTYBaHHSM. Teopisi ME30CKOIIYHHX CHCTEM IPYHTYETHCS Ha HACTYIHHX ME30CKOMIYHHX edeKTax:
edpexr AapoHoBa-boma; eeKT iHTerpatbHOrO KBAaHTOBOTO BHXOIY; APOOOBHI KBaHTOBHII edekT Xoiuia; yHiBepcanbHi (IyKTyarii
KOH/IaKTaHCa; KBAHTYBAHHS ITPOBIJHOCTI KBAHTOBOI'O TOUYKOBOTO KOHTAKTY; MOCTIHHI CTPYMH Y ME30CKOMIYHUX KIIBIISX.

[MepcriekTBH MOAANBIINX PO3POOOK Y JAHOMY HANPSIMKY JOCIIDKEHHS IPYHTYIOThCS Ha I€TaJIbHOMY BUBYCHHI ME30CKOIIUHHX
e(eKTIB BUXOASYM 3i 3pOCTAIOUOI TEHAEHIIT JO BHTOTOBJICHHS Ta JIOCIIJUKEHHS MaTepiaiiB, IO MICTATh HaWMEHII CTPYKTYpH Ta
MAaroTh HU3bKOPO3MIPHI PHCH, IO IIPU3BOAUTH J0 ME30CKOMIYHOTO PEKUMY.

KarwuoBi cioBa: Me3ockomiyni cuctemu; (uykTamis; KBaHTOBa (ha3a; KOTEPEHTHICTh; HAHOCTPYKTYPOBAaHA CHCTEMA;
MaKpOCKOTIYHI XapaKTEPUCTUKH.

Amnsoraupns. B pamkax naHHo# pabGoThl crienmaH 0030p TEOPUM ME30CKOIMHMYECKHX CHCTeM. YKazaHbl OCHOBHBIC I(P(EKTHI
ME30CKOIIMYECKHX CHUCTEM, OIPEIENICHO, YTO MAaKPOCKONNYECKHE XapaKTePUCTHKNA CHCTEMBl 3HAYUTENBHO (IYKTyHpPYyeT, B paMKax
ME30CKOIINYECKHX YpoBHS. OIpeneneHsl OCHOBHBIE ITOKA3aTeNI KOTEPEHTHOCTH KBAHTOBOW (a3l M 00O3HAYEHBI MEXaHHU3MBI
Bo3zeiicTBUsL. OXapaKTepr30BaHbl eCTh 3P HEKTOB ME30CKOMIMYECKHX CHCTEM C ITOAPOOHBIM 000CHOBaHHEM. T€OpHst ME30CKOITMYECKHUX
CHCTEM OCHOBBIBACTCS Ha CIECAYIOMNX Me30ckomuueckux 3dpexrax: apdexr AaponoBa-boma; s3GeKT HHTETPaIbHOTO KBAHTOBOTO
BbIXOJ1a; APOOHBII KBaHTOBBIN 3(dext Xoa; yHuBepcaibHble (IIyKTyallui KOHJAKTaHCa; KBAHTOBAHMS IIPOBOAUMOCTH KBAHTOBOTO
TOYEYHOTO KOHTAKTA; MOCTOSIHHBIE TOKH B ME30CKOITNYECKHUX KOJBIAX.

TlepcriekTnBBl HadbHEWIINX Pa3paOOTOK B JIAHHOM HAIpaBICHHH HCCIIE[OBAaHUS OCHOBBIBAIOTCS Ha JETAJIHHOM H3yUCHUH
ME30CKOINYECKHX A(P(HEKTOB MCXO U3 pacTyliel TeHACHINH K U3TOTOBICHUIO M HCCIISOBAHUS MaTePUaIOB, COICPIKAIINX CaMble
CTPYKTYPBI U HMEIOT HU3KOPa3MEPHBIE YEPThI, YTO MPHUBOAUT K ME30CKOIIMUECKUX PEXKUMA.

KiioueBble €JI0Ba: ME30CKONHYECKHE CHUCTEeMbI; (IIyKTalus; KBaHTOBas (a3a; KOT€PEHTHOCTb; HAHOCTPYKTYPHPOBAHHAs
CHCTEMa; MAKPOCKOIINYECKUE XaAPAKTCPUCTUKH.

Introduction and research problem statement
The constant trend in modern material science is to

precise configurations of impurities in disordered systems,
determine some quantitative behaviour patterns. This may

offerand explore systems that contain the smallest structures.
The obtained systems are suitable for a mesoscopic regime,
in which the coherence of the quantum phase leads to a
change in the electronic states of quantum devices. At
the same time, microscopic details of the sample, such as
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lead to the expressed fluctuations of the quantity measured
in different samples, which are macroscopically equivalent.

At the end of the 20" century, the apparent trend
towards nanostructured systems appears in physical science,
which include semiconductor structures and magnetic



V. V. Fedotov

materials, as well as internally nanostructured systems,
such as biomaterials and macromolecules. These smallest
structures are suited to the so-called mesoscopic regime in
which quantum effects become relevant to the behaviour
of materials. At the same time, significant progress in the
controlled production of submicron solid-state structures,
as well as the general availability of low-temperature
plants, allowed to systematically investigate artificially
created structures with electronic properties having been
modified or even prevailing over the effect of quantum
interferences. This allows conducting experiments in a
mesoscopic regime that directly investigate the quantum
properties of phase coherent systems of many bodies.

Research paper’s objective. Make an overview of
the theory of mesoscopic systems. Describe the basic
indicators of the quantum phase coherence and outline the
mechanisms of influence.

Analysis of recent research and publications. Good
starting points for the study of mesoscopic physics are
the recent scientific papers on this subject presented by
M.A. Ivanov [1], S.M. Shevchenko [2], M.V. Denisenko
and A.M. Satanin [3]. Klinskikh A.F., H. T.T. Nguyen,
P.A. Meleshenko [4], in the annex to a series of fundamental
“secondary” macroscopic quantum effects, as well as
quantum-dimensional effects in mesoscopic systems,
present some modern methods of quantum mechanics that
have not found any consistent coverage in the academic
literature.

Article [5] deals with the investigation of the
conductivity of impurities of weakly doped (N <1,017 cm
%) noncompensated (K <107) silicon from the electric (E)
and magnetic (H) fields at temperatures corresponding to
the saturation of the 03 conductivity.

Khalilov V.R. [6] presents the relativistic quantum
Aaronov-Bohm effect for a free (in the availability of a
three-vector Coulomb potential of Lorentz) and bound
fermion states. The author obtained the general scattering
amplitude in the combination of three-vector Coulomb
potentials of Aaronov-Bohm and Lorentz as a sum of two
scattering amplitudes.

However, despite the scale of scientific research on
the subject of this paper, the issue of substantiation of the
theory of mesoscopic systems remains open and requires
detailed elaboration.

Research findings

The mesoscopic regime is an intermediate between
the quantum world of microscopic systems (atoms or small
molecules) and the classical world of macroscopic systems,
such as large fragments of a condensed matter. Mesoscopic
systems, as a rule, consist of a large number of atoms, but
their behaviour is significantly influenced by the effects
of quantum transitions. This is mesoscopic physics on the
verge of statistical physics and quantum physics.
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The coherence of the quantum phase, which is
required for the appearance of interference effects, is
maintained only for a finite time T-.’P’ which is called the
phase separation period. The phase coherence is lost when
the system or its components being studied interact with its
medium, for example through electron-phonon scattering.
In electronic conductors, the time of separation of the final

phase corresponds to the length of phase separation L -

Mesoscopic quantum effects appear when the typical
time scales or system lengths are less than the time or
length of phase separation. In many cases this means that
the corresponding size of the system Lmust be less than the
phase coherence length [2]

L <L, (1)

For an electron, the time/length of the coherent
phase is limited to electron-electron and electron-
phonon scattering. These processes are important at high
temperatures, but both types of scattering are suppressed at
low temperatures, the reason for this is the dependence of
the coherence of the phases on the temperature.

It is important to note that only the processes of
scattering, in which the excitation (phonon, electron
excitation, etc.) of the environment is created or destroyed,
result in the loss of phase coherence. Such scattering
processes leave a trace inside the environment, which in
principle can be observed, and resembles the measurement
of the particle trajectory. These processes are usually
inelastic and associated with the transfer of energy.
However, processes that change the environment without
transferring energy can also lead to decoherence.

In contrast, scattering of electrons from static
impurities is always elastic. Despite the fact that the
phase of electrons could be modified during the scattering
process, this occurs in a clearly defined way and does not
destroy the effects of coherence of the phases.

Therefore, the mesoscopic regime is characterized by
small scales of time and/or length and low temperatures.
When the temperature drops, the time/length of phase
coherence increases, and the mesoscopic regime extends
over larger scales of time/length. At Kelvin temperatures,
the scale of time and length in semiconductor samples are
respectively picoseconds and micrometers.

Since small finite systems at low temperatures are
found in mesoscopic physics, the interlayer interval 4 of
the discrete electron spectrum may become larger than the
product of the Boltzmann constant and temperature. Then,
the electronic and thermodynamic properties of the sample
are determined not only by global values, such as the
average density of states, but also by the spectrum details.
However, the exact spectrum depends on the configuration
of impurities, which leads to fluctuations of the observed
values between macroscopically indistinguishable samples.
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These fluctuations are interesting for study, because
qualitative effects are often universal in the sense that they
are not dependent on microscopic details.

The theory of mesoscopic systems is based on
mesoscopic effects:

— Aaronov-Bohm effect;

— Integral quantum output effect;

— Fractional quantum Hall effect;

— Universal conductance fluctuations;

— Quantization of conductivity of a quantum dot
contact;

— Direct currents in mesoscopic rings.

Aaron-Bohm effect

One of the most striking effects of phase coherence
is the ability to observe the Aaronov-Bohm oscillations
in the conductivity of mesoscopic structures containing
small normal metal rings [6]. At low temperatures, when
the coherence length of the phase is greater than the length
of the ring, the interference of the electron amplitudes is
important, which can pass through both one, and through
another part of the ring. It is necessary to add to the internal
difference of the phases of the two paths the effect of the
magnetic field, which leads to the phase shift set as

@p = ZEE/hsgdgj = ZHE/};‘I’ 2)

Fig. 1 Aaron-Bohm effect: a) distribution of magnetic
flux; b) geometry of the Aaronov-Bohm effect.
According to [2,6].
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The i}ntegral of a closed loop of a ring from a vector
potential A gives a phase shift proportional to the magnetic
flux & through a ring set as the area of the ring multiplied

by the (constant) magnetic field strength B perpendicular
to the plane of the ring. The conductivity component (the
ratio between the current through the sample and the

applied voltage) is proportional to COS (q.‘),:, + @E)

, which leads to observations /1 f £- of periodic oscillations
of conductivity of the device as a function of the magnetic
flux penetrating the ring, as shown in Figure 1a.

The longitudinal voltage [{r is measured between
two points along one edge of the sample, whereas the Hall
voltage is measured between the points on the opposite
edges of the samples.

Integral quantum output effect

One of the first and most striking observations of the
macroscopic effects of phase coherence in the electronic
properties of solid-state devices was the discovery of the
integral quantum Hall effect [6] by Klaus von Klitsinger in
1980, awarded the Nobel Prize in 1985.

When measuring the Hall effect in the inverse layer
of a silicon MOS (metal-oxide-semiconductor) transistor at
low temperatures (T ~ 1 K) and in strong magnetic fields
(B> 1 T), the linear dependence of the Hall resistance
turns into a number of degrees (plateaus). The value of the
resistance on these plateaus is equal to the combination of
fundamental physical constants divided by an integer.

When, the plateau is observed on the Hall resistance
R, longitudinal electrical resistance becomes very small.
At low temperatures, the current in the sample can proceed
without dissipation (scattering). In the course of research,
Klaus von Klitzing used two-dimensional electron gas.

The Hall effect provides that when a conductor is
placed in a magnetic field B, it creates a transverse voltage
between the opposite sides of the sample, proportional to

the longitudinal current [. This dependence can be written
through the so-called Hall resistance

Vy = Ryl (3)

Classically, using Drude’s formula, we get Hall’s
resistance B

Ry = / en, 4)

with two-dimensional electron density #1.. The magnetic
field does not affect the longitudinal resistance R -
calculated from the ratio of the voltage drop between the
two points on the same side of the sample to the current I
within the Drude’s theory.

The longitudinal resistance is reduced to zero, with
the exception of some values of the magnetic field, where
peaks appear.
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Fractional quantum Hall effect

The transition to stronger magnetic fields and the
decrease of temperatures in two-dimensional electron
gases allows observing additional Hall resistance plateaus
at fractional filling factors, such as v = 1/3. This so-called
fractional quantum Hall effect was discovered in 1982 [4].
Particularities in case of fractional filling can be traced
to the existence of correlated collective quasiparticle
excitations [3]. Thus, unlike the integer quantum Hall
effect, the Coulomb interaction between electrons is
necessary to explain the fractional quantum Hall effect.
Quasiparticles have a fractional charge (for example, e /
3 with v = 1/3). From the shock noise measurements [1],
it has recently been confirmed that the charge carriers at
v = 1/3 in the regime of the fractional quantum Hall effect
actually have a charge e/3.

Universal fluctuations of conductance

The use of disordered wires in a mesoscopic regime
has expressed fluctuations as a function of external
parameters such as magnetic field or Fermi energy. These
fluctuations were detected by [3] in low temperature (below
1 K) conductivity of the inverse layer in a disordered
silicon transistor. Fluctuations are reproduced and reflect
the imprint of the sample. The origin of oscillations is the
interference of the various paths that electrons can take
during passage through the sample, as shown in Figure 2.

In a macroscopically equivalent sample with a
microscopically different configuration of impurities,
fluctuations are qualitatively similar, but their exact
characteristics can be completely different. The most
striking feature of the conductivity oscillations is that their
typical amplitude is universal in diffusion regime [2].

Fig. 2. Possible paths of an electron through disordered
wire, with processes of elastic scattering on impurities.
The paths of an electron are influenced by the magnetic
field or the value of the Fermi wave vector, which leads
to oscillations of conductivity in the mesoscopic regime.
According to [6]

Regardless of the mean conductivity value,
the oscillations always form the order of quantum

conductivity e’ f h and depend only on the basic

symmetries (for example, the symmetry of inversion
time) of the system [4]. This can cause the repulsion of
the eigenvalues of the matrices of random transmissions.
Quantization of conductivity of a quantum dot contact
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Apointcontactisabond between two leading materials. Such
a link can be formed by imposing a restrictive narrowing
on the wire or by inducing the electrons to pass through a
narrow channel determined electrostatically when they lead
from one two- or three-dimensional region of the sample to
another. In the case of a very narrow width, narrower than
the average free path and the length of the coherence of
the phases (), which is called ballistic quantum dot contact.
Constant currents in mesoscopic rings

Quantization of conductivity of a quantum dot contact

A point contact is a bond between two conductive
materials. Such a link can be formed by imposing a
restrictive narrowing on the wire or by inducing the
electrons to pass through a narrow channel determined
electrostatically when they lead from one two- or three-
dimensional area of the sample to another. In case of a very

narrow width W, narrower than the average free path and

the length of the coherence of the phases (W < P L @)
which is called ballistic quantum point contact.

Constant currents in mesoscopic rings. The electrons
in the mesoscopic rings can support the current around
the ring in a thermodynamic equilibrium, even at zero
temperature. This current depends on the magnetic flux
and cannot dissipate dissipative. Therefore, it flows forever
even in ordinary conductors, and that is why it is called a
steady current.

Direct currents in mesoscopic rings. The electrons
in the mesoscopic rings can maintain the current around
the ring in a thermodynamic equilibrium, even at zero

temperature. This current depends on the magnetic flux &
and cannot scatter dissipatively. Therefore, it flows forever
even in ordinary conductors, and that is why it is called a
steady current.

O

Fig. 3. An ideal one-dimensional ring run through by a

magnetic flux & According to [2,4].

Figure 3 shows an ideal one-dimensional circle
ring L« L@. It is well known that a magnetic field

cannot affect the behavior of one-dimensional systems.
This, however, does not occur when the one-dimensional

system is closed on the ring. In this topology, the flux ¢
connecting the ring leads to a phase shift 2 f "#’D
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accumulated by an electron moving around the ring,

‘i’ﬂ =h f' € is a quantum of the flux. Using a
calibration transformation, this phase shift can be given by
[2] in the boundary state, eliminating the magnetic vector
potential from the Schrédinger equation for electrons and
leading to generalized periodic boundary conditions

Wix =0) =exp(i2nd / F,)0(x = L))

for single-particle wave functions ‘lﬁ)‘ (_X] It follows that
all the electronic properties of the rings must be periodic
in a magnetic flux, the period of which is a quantum of the

flux ‘1']5'0 , similar to the Aaronov-Bohm effect.

The wave function of non-interacting electrons in a
pure ring are flat waves

Y(x) o exp(ikx) ©)
The boundary state of equation (5) limits the possible

wave vectors K to values

k=211 (n =%/,

where n = {D,il,iZ,iS,} Flux

dependence of the corresponding one-particle energies

E, = h kn/zm _ I/Zm [h/L (n—i)l ®)

which is shown in Figure 4. The direct current at zero
temperature is set as the sum of currents E'ﬁ,kﬂ f mlL
from the lowest levels in the ring. The direct current can
be written as

-1/2 0

" /o,

Fig. 4. The dependence of the flux on the lowest energies
of one particle in the ring, for -3 < n < 3.4ccording to

[2,4].
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L=—-"% ©)

with the total electron energy E. Since, ata given value of

&, the sign of the derivative one-particle energies relative
to the magnetic flux fluctuates with a quantum number

T, the total steady current decreases by eliminating
adjacent levels. The resulting current with a large number
of particles dominating over the last electron (at the Fermi
level) and order

L~V

with the Fermi speed Uf.

In disordered rings of finite width with elastic free
path length [ << L, the theoretical value is more difficult
to obtain even for non-interacting electrons. In a diffusion
regime a steady current of the following order is expected

di ev {

(10)

decreasing in the ratio l f L.

The experimental value of the direct current in
diffusion rings [2, 3] is much larger (at least for an order)
than this theoretical prediction. It is believed that the
discrepancy is due to the electronic interaction, which was
neglected when deriving the equation (11). Despite the
fact that electronic interaction seems to play an important
role, it is also important to assert that interactions cannot
affect the steady current in pure rotary-invariant 1d rings
[2, 6], and the non-binding result (10) is consistent with
an experimental one for a pure semiconductor ring in a
ballistic regime [3].

This led to a large theoretical activity associated
with the combined effect of interactions and disorders for
increasing the steady currents in the mesoscopic rings.
Despite the fact that different theoretical approaches
indicate an increase in steady current in disordered samples
due to repulsion of Coulomb interactions, there is still no
quantitative understanding of experiments.

Conclusions from this study and prospects for further
developments in this area
As part of this research paper, the theory of
mesoscopic systems was reviewed. In a mesoscopic regime
there are many interesting, sometimes unexpected effects
due to phase coherence of electronic wave functions. Some
of these effects are very promising for use in nanoelectronic
devices or quantum standards in metrology.
The most outstanding example, the quantum Hall
effect, is already used as the standard of resistance. On the
other hand, mesoscopic systems provide an opportunity to
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study the basic features of quantum mechanics. They also

allow studying directly the features of interacting correlated

quantum systems of many bodies. Examples are the
fractional quantum Hall effect and transport spectroscopy
of interacting electrons at quantum dots.

Prospects for further developments in this area
of research are based on a detailed study of mesoscopic
effects coming from the growing trend for the production
and research of materials containing the smallest structures
and having low-dimensional features, which leads to the
mesoscopic regime.
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Mwukona mutpoBud MNunevunkoB — BuaaTHUM PisnK, oguH 3 NioHepIB

besgpoToBoi Tenerpadii Ta OCHOBOMOMOXHUK pafiokepyBaHHSA
(do 160 pidHuUj 3 OHS1 HapPOOXKEHHS)
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U Xaprkigcvkuil nayionanvhuil ynigepcumem iveni B.H. Kapasina
Vkpaina, 61022, m. Xapkis, ni. Ceéo600u, 4
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Hagseneni Oiorpadiuni nani BugatHoro ¢ismka Mukomu [mutpoBrya IluiasumkoBa Ta pO3MISHYTO HOTO OCHOBHI HAyKOBi
JOCSITHeHHs y rany3i ¢i3uku, reodi3zuku, MeTeopoorii, 0e3xpotoBoi Tenerpadii Ta pagiokepyBanns. OnucaHi HEUIOJABHO 3HAWICH]
Ta BiJHOBJICHI JesKi (i3U4HI NpUIaau, SKUMU kopuctyBaBcss M. /1. [TMIBYMKOB NIpH NPOBEACHHI TOCTI/IB.

KurouoBi ciroBa: pedpaxromerp, 6e3nporosa Tenerpadis, pagiokepyBaHHs, pejie, epeaBajibHa aHTeHa iCKpOoBOT paiioCcTaHIIl.

TIpuBenensl Ouorpaduueckue maHHble Bblgaromierocss (usuka Hukonas JmutpueBuya ITHIBYMKOBA U PACCMOTPEHBI €O
OCHOBHBIE Hay4YHbBIE JOCTIKECHHUS B 00IacTH (hU3MKH, reopU3nKu, METEOpOIOTHH, OECIPOBOTHON Teserpaduu U pagnoyIpaBIeHUs.
OrnycaHbl HEABHO HAMICHHBIE U BOCCTAHOBJICHHbBIE HEKOTOPbIE (hpH3nuecKue Mpudopsl, KoTopsiMu noub3osasics H. /1. ITunsankos npu

MPOBEACHUU OIBITOB.

KuroueBnle cioBa: pedpaxromerp, GecripoBopHas Teierpadus, paauoynpaBlIeHHe, pelie, Iepefaronias aHTeHHa HCKPOBOH

paanuocTaHuu.

Biographical data of the outstanding physicist Nikolai Dmitrievich Pilchikov are given and his main scientific achievements in
the field of physics, geophysics, meteorology, wireless telegraphy and radio control are considered. Some physical devices used by
N.D. Pilchikov during the experiments, recently found and recovered are described.

Keywords: refractometer, wireless telegraphy, radio control, relay, transmitting antenna of a spark radio station.

Y  Hame ChOTOAEHHS  TIOBEPTAIOTHCA  IMEHA
He3acy)keHO 3a0yTHX BUEHUX, SKi 32 4aciB CBOTO KHTTS
BOHM OyJM IIMPOKOBIIOMHMH B HAyKOBHX Koiax, 00
3po0OMIM BaroMuii BHECOK Y PO3BHUTOK CBITOBOT HayKH.
Jo Hux Hanexuts 1 Mwukona JImurpoBuu [lnipunkoB
— TeHiampHHHA  Qi3uK i3
TIEPIIONPOXiTHUKA, B JOPOOKY SIKOTO IECATKA BIAKPUTTIB Ta
BHHAXOJIB CBiTOBOTO 3HaueHHS (Puc. 1). OCHOBOMOIOKHIK
paniokepyBaHHs Ta (ororanpBaHorpadii, oauH 3

HepIIUX JIOCHIIHUKIB BJIACTHBOCTEH PEHTICHIBCHKUX

Ha,Z[SBI/I‘-IaI‘/JIHI/IM TaJJaHTOM

MPOMEHIB, PaIiOaKTHBHOCTI, MOCTIIHAK TI'€OMAarHCTH3MY,
METEeOpOoJIOTii,  ONTHKH, PO3POOHHK  OpPUTIHATHHHUX
pHUCTPOIB [t O6e3aporoBoi Tenerpadii. M. /1. ITumsankos
BiJJ3Ha4YaBCsl PI3HOCTOPOHHICTIO HAYKOBHX IHTEPECIB Ta
BHKITIOYHOKO TPAIE3aTHICTIO, MaB BUCOKI OpraHi3aliiiHi
3MATHOCTI 1 MOPaJIbHI YCTOI, JOCKOHAIO OBOJIOMAIB CiMOMa
MoBamH. BiH MOCTIiiiHO NparHyB MNOB’s3aTH TEOPETHYHI
JOCTI/KSHHS 3 MPAKTUKOI0. 3a YHCEeNbHI HayKOBi 3aCITyTH

HOTO TTOBaYKAITM 1 BBAYKAJM PIBHUM c001 0araTo CllaBeTHHX
¢izukis. M. JI. ITwisankoB OyB o0OpaHuii wieHOM
pi3HMX HaykoBHX ycraHoB Pocii, ®panuii, Himeuuunwu,
Agctpii. biorpagiuni nmani mpo M.J. IluisamkoBa Ta
OCHOBHI BiJIOMOCTI NP0 HOTO KUTTEBHH IUISAX 1 HAYKOBO-
MeIaroTiYHy JisTBHICTE omyOmikoBani B [1-4]. Ommc
JIOKYMEHTIB, 1[0 CKJIAJI apXiB BYCHOTO, HaBEJICHUH B [5].

Muxkona  [ImutpoBnd  IIuasuMkoB — HapoaMBCs
21 tpaBus 1857 poky B M. Ilonrasi. Moro 6arbko,
Jmvutpo IlaBnoBud ITuiabuMKOB, yYacHUK HaI[iOHAJIBHO-
JIEMOKpaTUuHOTro pyxy, wieH Kupuino-MedoaiiBcbkoro
Oparctsa, TPOMaJIH,
MpomaraHaAncT ykpaiHoginecTBa. Bim 0Oy ocobucro
3Haiiomnii 3 Tapacom LlleBueHKOM, TIATPUMYBAB CTOCYHKH
3 [anrteneiimonom Kyirimiewm, 3 ranubKUMU rpOMa/ICbKUMA
1 KyIBTYpHUMH JissidaMu Ta 3 Muxaiiinom J[paroMaHoBHUM.
HAmutpa
HactaBHuKoM Oumekcannp Konwmcekuit, [lamac Muphuit

yied  IlonTaBchkoi AKTUBHUN

[lunburkoBa  BBaXKAJIM  CBOIM  JTyXOBHUM
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Hukonari AMMTpiesn% IMAbYHKOBL

Puc. 1. ®otonoprper M. Jl. [Munpunkosa [1].

(ITanac SxoBmu Pymuenko), Ian Kapnenxo-Kapuit (IBan
KapmoBua ToGineBnd). Matm Muxomn JmMutpoBmda
[MunpunkoBa — Jlronmmna KamitoniBHa FOp’eBa moxoma
i3 30iqHIIOl TBOPSHCHKOT pojauHUA. BoHa momepra, Kojiu
M. /. ITuas4nKoBy HE MUHYJIO ¥ POKY.

Jlo dotupHamusaTH pokiB Mwukona [InimpaukoB
nepebyBaB BAOMa. baTebko 3 Haa3BHYalHOIO JIOOOB’IO 1
CaMOBIIaHICTIO BUXOBYBAaB 1 HABYaB CBOTO €TMHOTO CHHA.
[Momanpury ociTy Muxona [TnnsankoB mouas 3100yBaTy 3
1871 poky B 1 [TonTaBchKiii 4o0BiUiil KJIaCHYHIN riMHA3I1,
JI¢ BUAUISBCS TAJaHOBWTICTIO IO HAyK, OCOOJIMBO JI0
(bi3UKH 1 MATEMaTHKH.

[Ile rimuaszucrom Mukosna [TUIBYHKOB O3HAHOMHUBCS
3 [lamacom MupHHM i BOHHM, HE3B@KAIOUH Ha BIKOBY
Pi3HHUIIO, CTANM PY3AMH. IX MO€HyBaIN BUCOKi MOMHCITH
PO CITY>KiHHS TIpocToMy Hapoxy. Muxona ITunsunkoB Ta
[Tanac MupHwuii Opanu y4actb y IPOCBITHHILKOMY pyCi B
[TosTaBi, BXOAMIN 10 TAEMHOTO TOBAPUCTBA « YHIS».

VYV cepmHi 1876 poxy M.JI. IIMas4MKoB BCTYIIHB
Ha (i3UKO-XIMiYHE BINIINEHHS (i3UKO-MaTeMaTHIHOTO
¢axynbreTy XapKiBCHKOTO IMIIEPaTOPCHKOTO YHIBEPCUTETY
i pa3oM 3 OaTbKOM cTaB NpokuBaTH y Xapkosi. CriouaTky
BOHM MEIIKAIM Yy HallMaHUX KBapTHpax, a IMOTIM Yy
BiIacHOMY OyauHKY Ha ['iMHa3n4Hiil HabepexHiii. CTyneHT
[TMTPYUKOB CTapaHHO BYMBCA, 13 3aXOIIICHHSAM IIPAIIOBAB
y ¢isuunomy kabineri yHiBepcutery. Moro BumTemsMu
oyiu: mpodecop ximii M.M. Bekeros, mpodecop MexaHiku
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B.I. Immenenpkuii, npodecopu ¢izuxu A.Il. Ilumkos i
1O.I". Mopo3sos, nouent ¢izuku O.K. [Toropinko, mpodecop
reometpii K.O. AHIpeeB.

VYV 1878 pomi, me a0 mOsSBH B €Bpori BimoMocTel
mpo mexaHiuaui Gororpad T. Emicona, M./I. ITumsankoB
po3pobuMB  cxeMy  ejekTpuuHoro  (onoasrorpada.
CBoro mepiry HayKOBY JIONOBiIb — pedepar Ha Temy:
«Hocnimpkenns: Kpykca, 110 CTOCYIOTbCS YETBEPTOrO
CTaHy Marepii», TEKCT SIKOro He 30epircs, CTyIeHT
4 xypcy IMwmeamkxoB M.Jl. BHTONOCHMB Ha 3acimaHHI
¢isuko-ximMiuyHOi cekmii ToBapuCTBa TOCHITHUX HAYK
npu XapkiBcbKkoMy YyHiBepcuteri 14 nucromanma 1879
POKy. 3axoIUIeHHS HaBYaHHSIM, y SKOMY MaB BiJAMIiHHI
yCIIiXH, J1a0OpaTOpHUMHU pOOOTaMH, KOHCTPYHOBaHHIM
Ta BIOCKOHAJICHHSAM (I3MUHUX TMPHUIAJIiB, OS3KOpHUCIHBA
JOTIOMOTa  BUKJIAaJadaM Ta TpaIliBHUKaM  (i3HIHOTO
KabiHeTy B yCTaTKyBaHHI Jaboparopil mist (i3smgHOTO
MIPAaKTHKyMy, pPeTeJbHE BiJBiyBaHHS 3acilaHb (hi3UKO-
ximigHoi cekuii ToBapucTBa JOCHIHMX HAayK HOMITHO
Bunusin [TwisankoBa M.JI. cepem I1HIIMX CTYACHTIB.
VYemimmao 3akiHumBmm y 1880 pori yHiBepCHTETCHKHI
Kypc 31 3BaHHAM KaHAWJaTa XapKiBCHKOTO YHIBEPCHTETY,
BiH ()aKTHYHO CTaB €IMHUM TiJHUM IIPETEHICHTOM Ha
OJICpKaHHS CTHIICHIIT TS I ITOTOBKH J10 TPO(ECOPCHKOTO
3paHHs. 3anmummta M./, [lunpankoBa B yHIBepcHTeTi
Ta HaJaTH HOMY MOXIIMBICTBH MiJrOTYBAaTH MaricTepchbKy
aucepTanio pekomeHayBas mpogdecop Ilnvkos A.IT. Ha
kadenpi ¢izuxm i Pizmunoi reorpadii M. /1. ITumsamnkos
TOYaB MMPAIOBATH SIK CTUIIEHAIAT 3 mucromnana 1880 poxy.

YV 1882 — 1883 pokax M.J. IlunbuMkoB CcKIaB
€K3aMEHH Ha CTYIiHb Marictpa 1 akTHBHO 3aiHsBCS
HayKOBOIO poOoTor. Bike uepe3 pik micis 3aKiHUEHHs
YHIBEpCUTETy BiH 3pOOHMB KiJbKa MOBIJOMJIEHH IIPO
pe3ybTaTH CBOIX JOCHIMKEHb Ha 3acilaHHIX (i3UKo-
ximiuHoi cekmii ToBapmcTBa HOCHINHUX HayK. YChOTO
3a 14 pokiB pobotm B XapKiBCHKOMY YHIBEpCHTETI
M./JI. IMunsuukoB Ha 3acigaHHsX ToBapuCTBa JOCIHIIHUX
HayK BUroyiocuB 14 nonosijei, siki BijoOpaxanu OCHOBHI
HampsAMKHA HOTO HAayKOBOI AISUTBHOCTI, IO CTOCYBAJIHCS
BHUBYCHHS (hi3WKO-XIMIYHHX TPOIECIB, SIKi 3AIHCHIOIOTHCS
npu cyTi 3aKOHY
3aJIOMJICHHSI CBITJIa, METO/IIB pedpakToMeTpii, MeXaHi3MiB

eJIeKTPOITI3i, KalIIPHUX ~ SIBHIII,
YTBOPEHHSI 3BMYAWHOI Ta KyJIbOBOI OJMCKAaBOK, NPHYHH
YTBOPEHHSI T'pajy, a TaKOXK CIEKTPAJIbHOI MoJsipu3aii
CBITJIa, PO3CISTHOTO atMocdeporo. Huzka
JIOTIOBiIelf BUEHOTO Oyna TPHCBSIYEHA TMPOITIaryBaHHIO
HOBMX METONIB  JOCIHIDKEHHS Ta
CllyxadiB 13 NPUHOMIOM [ii, CTBOPEHHX HHUM HOBHX
¢bi3nuHNX TpUIaniB: pedpakToMeTpa, TUdepeHiaaTbHOro
aepoMerpa,
TaJIbBAHIYHOTO CTPYMY, (DOTOCNEKTPUIHOTO PETYIATOpA,
IHKJTIHATOpa I BHMIPIOBaHHS BEPTHUKAIBHOI CKIIAIOBOL
36MHOTO MarHetusmy, ceiicmorpada. M.JI. ITumsamkoB
pazom 3 LIT Ocunosum Brockonanumu CraryT ToBapucTsa

3€MHOIO
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Muxona JImumposuu [unvuuxos — sudamuuil (izux, 0Our 3 nionepie 6e30pomosoi meneepadii ma
OCHOBONOLONCHUK PAOIOKEPYBANHS

JOCIITHAX HayK Ta BIOPSIIKYBAJIN BHITYCK HOTO Tpailb.

V ciuni 1884 poxy M. /1. [TunpunkoB OyB npu3HaYCHUN
Ha [ocay Mo3aIlTaTHoro JadopanTa, ay rpyaHi 1885 poky
Ha TOCaay MpUBAT-IOIEHTa XapKiBCHKOTO YHIBEPCHTETY.
3 pOro Yacy BiH YMTaB B YHIBEPCHUTETI JIEKIii 3 icTopil
(bi3uKH, 3 eKCIIEpUMEHTAIBHOI (PI3UKK 1 Pi3HUX pPO3IUIIB
MareMaTH4HOI (hi3UKH, 3 Teopii MOTeHIiaTy, MaTeMaTHIHOT
i Qi3M4YHOT ONTHKH, MEXaHIYHOI Teopii TeruioTH, Teopil
MIPY>KHOCTI, TeOpii eNeKTPUKH, a TaKOK 3 METCOpPOJIOrii,
arMoc(epHOoi eNeKTPUKA Ta 3eMHOTO MarHeTusMmy. Bin
TaKOK IPOBOIVB PI3HOMAHITHI HAYKOBI IOCIIJKCHHS,
MOCTIHHO  3/IMICHIOBaB  KOMIUICKTYBaHHS  (Di3HYHOTO
KaOiHeTy TpWIIaJlaMH, BHUTOTOBJICHHMMH B MaHCTEpHSIX
BIJIOMHUX €BPOINEHCHKUI ipMm.

[Mupoke BU3HAHHA Y POCIHCHKUX Ta €BPOIEHCHKUX
reo¢i3ukiB i reorpadiB 3m00yIH pe3yabTaTH JOCHTIIHKEHb
Kypcbkoi Oynu  TMpoBenieHi
M. InunpunkoBuM y 1883 — 1884 pokax Ta y monabIi
poku. Bi nepiuM BUCIIOBUB TiroTe3y npo Te, 1o Kypcbka
i Benropoackka MarHiTHI aHOMaUTii TIOB’s13aHi 13 HAsIBHICTIO
B IMX MICIICBOCTIX BEIMKMX 3alaciB 3ali3HOI pynu,
PO3MIpH 1 MiCITsl 3aNATaHHS SKUX MOXYTh OyTH BH3HAYCHI
LIJISIXOM MPOBEICHHS IeTAIBHUX MArHiTHUX JOCIHIIKEHb.
3a JOCATHEHHS Yy JOCII/UKEHHI MAarHiTHUX aHOMaJii
M./J. IIunpurkoB OyB HaropoJLKEHUH CpiOHOIO MealuIio
Pociticbkoro reorpagiuHOro TOBapuCTBA.

Y 1888 pomi 3a pesymprataMu  IOCHTIKCHB
Kypcopkoi marnitaoi anomamnii M./]. [TnisankoB y CaHKT-
[TeTepOyp3pKOMYy YHIBEPCHTETI 3aXHCTHUB MAariCTepChKY
qucepranito  «Marepuaigsl K BOIIpocaM O MECTHBIX
AQHOMaJIMSIX 3€MHOTO MarHeTH3Ma» 1 OTPUMaB HAyKOBHH
CTymiHb MaricTpa (izuku 1 ¢iznunoi reorpadii.

YV 1888 — 1889 pokax Bin nepedyBaB y @panuii, 1e
MPOUILIOB IPYHTOBHE HAyKOBE CTa)KyBaHHS, NPALIOIOYH B
nmabopaTopisx IiJ KePiBHUIITBOM BHIATHUX (PPAHITY3bKHX
BYCHUX: Mapi-Ansppena  Kophro,  maiiOyTHBOTO
HoGemniBchkoro maypeara [adOpienst lomaca Jlimmmana,
Enerepa-Eni-Hikonn Mackapa.

V wmaiictepHi (i3WUHUX TpUIadiB, SKa HaIekKasa
Mmapu3bKOMy ONTHKY 1 MexaHiky JKromro J[ro0ocky,
M.A. [uiapuMkKoB 3aMOBUB BHUIOTOBJIEHHS JIBOX CBOIX
npuianiB, ki Oyau monaHi Ha BcecBiTHIO MiKHapomHy
BHCTaBKYy, 10 BigOymacs y 1889 poui B Ilapmwki. Onun
3 mux npwiaaiB — pedpaxroromerp IlunbunkoBa — B
MTOJANIBIIIOMY CTaB TOCTIHO BHITYCKaTHCh MaWCTEpHEIO
Hrobocka i HaOyB IMMPOKOTO TOIIUPEHHS Ta OTPUMAaB
CXBaJbHI BIATYKH BiJ pIi3HUX (axiBIliB, 30KpeMa Bij
MIPaLiBHUKIB (PI3UYHHUX Ta MEANYHUX JIAOOpaTOPiH.

M.A. TwieaukoB OpaB ywacth y BceciTHild
MDKHApOIHIA BHCTaBIl, 1m0 BiaOymacst 1889 pormi y
[Mapmxi. Tam BiH, 30KpeMa, mo3HalioMuBCs 3 ['ycTaBom
Eiipenem — tBOpriem Eiideneroi Bexi. [lizmime, y 1904
poi iy 1907 poui, 3 no3sony I. Efidenst M. [I. [TunpankoB
MPOBIB JIOCHI/DKCHHS 3 TOJSIPU3aIlil CBiTJIA Ta i1oHI3aIil
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armocdepu, siki BUKOHaB Oe3nocepennbo Ha Efdenesii
BEXKI.

M.J. IlunsamkoB OpaB ydacTb y poboTi 2-ro
MiXHapOIHOTO KOHTPECY ENEeKTPUKiB, KU BinOyBcs 24-
31 cepmaa 1889 poky B Ilapmxi. Pociiiceky nenmerarito
Ha bOMY KoHrpeci ouomtoBaB mpogecop O.I' CtoneTos,
3 skuM 'y M.Jl. Tlnnp4ukoBa CKITAIHMCh TeIUT, JPYXKHI
CTOCYHKH. Y IIOAaJbLIOMY IMX BYEHHX [OEJHYBaJIa
TBOpYA CIIIBIpans, COpSAMOBaHA Ha peGopMyBaHHS
¢izmgnrOi ocBiTH B Pociiichkiif iMmepii Ta Ha CTBOPEHHS
(bi3ngHHX Tab0paTOPii 1 PI3UIHUX IHCTUTYTIB, CIICI[IATEHO
o0yI0BaHUX Ta A00pe OCHAIIEHHX PI3HUMH Cy4acHUMH
MpUiIaiaMy, HAWOUIBII NPUAATHUMH JUIsl TIPOBEJICHHS
HayKOBHX JIOCIIIJKEHb 3 PI3HUX raiy3ed (izuku.

Ha oxgnoMmy i3 3acinans 2-ro Mi>kHapOIHOTO KOHTPECY
enexkrpukiB M.JI. [InipunkoB BHepire modadnB TOCITIIH 3
eJISKTpOMarHiTHUMHU XBUIsIMH [ eHpixa ['epiia, siki mokasas
npodecop M.J1. €ropos. Li nocniam € Gi3naHOI0 OCHOBOIO
npuHIUIY Oe3apoToBoi Tenerpadii 1 pamgiokepyBaHHS,
TIepIIi IPUCTPOT JJISL SIKUX Y TTOaJIbIIOMY Oyiin po3po0iieHi
O.C. TlonoBum, I'. Mapxkoni Ta M. JI. [Tums9uKoBUM.

YV 1889 Ta B 1890 poxax M.J. IlunsunkoB OpaB
y4acTh y po0oti Mi>KHapOTHIX KOHTPECIB METEOPOJIOTIB,
ki BigOymucs B [Taproki.

16 rpymus 1889 poxky M.J. IMwisumkoBa Oyino
MPU3HAYEHO BUKOHYBaYeM 000B’sI3KIB EKCTPAOPIUHAPHOTO
mpogecopa XapkiBcbkoro yHiBepcurety. Lle
JUIA HBOTO CTHUMYIIOM MJISl aKTWBi3alii opraHi3aIiifHoi,
HayKOBOI, BUKJIaJallbKOI Ta IIPOCBITHUTENILCHKOT IISUTBHOCTI.

Y 1890 poui M.JI. [TnIbYUKOB BHCTYITUB OTHHM i3
3aCHOBHHKIB KypHally «MeTepeosorndeckuii BECTHHUKY,
B SIKOMY ITYOJIKYBaJIMCh PE3yJbTaTH METEOPOJIOTTUYHHUX Ta
reoi3NYHAX JOCTIHKCHb, a TaKOX IOMYJISIPH3YBaJIOCh
3HAYCHHS METEOpOJIOTii JUIA TPAKTUKH. Y THOMY XK
xkypraimi M.JI. [TnipaukoB myOmikyBaB pe3ylbTaTH CBOIX
nociipkes. Y 1893 pori Hum, 30kpema, Oyiia orryOnikoBaHa
crartsi «O0 MCCIIe0BaHUM BBICIIMX CIIOEB aTMOC(EpHI».
Y wii crarTi BYEHHMU BHepIile Y CBITI 3alpONOHYBaB
KOHCTPYKIIIO 1 OMFICaB MPUHIAI il MpooOpasy cydacHOTO
ckadaH/pa, IKOTO BiH Ha3BaB «IIOPTACPOHABTOM).

Y 1891 poui 3a imimiatmBu M.J[. [MmnpumkoBa B
XapkiBCbKOMY YHIBEpcUTETi Oyin CTBOPEHI MAarHiTHO-
METeopoJIoriuHe  BifyiiieHHs (i3uyHOro kabiHeTy Ta
METEOpOJIOTiYHA CTaHIlisl 1 HaJaroJpPKeHO IPOBEICHHS
CUCTEMATUIHHUX METEOPOJIOTIUHHX JTOCITIKEHb.

Y wmeir xe wac M.J. IlwibuukoB posnouas
JNOCHDKeHHS y ramy3i armocdepHoi ontuku. B
MOAATBIIOMY EKCIIEPUMEHTAIFHO ~ OOIPpyHTYBaB
MIPUYMHH TOITYOOT0 KOJILOPY HeOa, BCTAHOBHB 3aJICKHICTh
Ppi3HUIT
YepBOHMX IMPOMEHAX BiJl MyTHOCTI aTMoc(epH, a TaKoxK
JETabHO OCHIAWB TIOJSIPH3AIII0 MICSYHOTO CBITIA,
PO3CIsTHOTO aTMOC(EPOFO.

Y 1894 poui M.Jl. IIwibunkoB 3BITBHUBCS 3

CTaJIo

BiH

IHTEHCHBHOCTI mojspu3auii B Troiyoux Ta
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XapkiBcbkoro yHiBepcutery. Y 1894 — 1902 pokax
BiH [IpalllOBaB Ha I[10Cali BHUKOHyBa4a OOOB’SI3KiB
€KCTPAOPINHAPHOTO npodecopa Hosopociiicekoro
iMmeparopcrKoro yHiBepcurety (M. Omeca).

B Opeci M. [lwipunkoB  NpoBiB  HU3KY
EKCIICPUMEHTAIBHUX JIOCHI/DKEHb 3 BHBYEHHS (Di3UKO-
XIMIYHUX TPOIECIB IIPU EJIEKTPOi3i, pe3yabraTh SKUX
cTasd (PI3UYHOI0 OCHOBOKO BIIKPHUTOTO HHM METOLY
(hotoranpBaHorpadii. TeopeTnune OOTpyHTYBaHHS
CIIOCTEPEKYBAHUX  SIBUIIL, Oyll0o  BHKIQJCHE Yy
HU3MI crateid Ta MoHorpadii «Marepuaiasl K BOIPOCY
0 TPWIOKEHUH TEPMOIMHAMHYECKOTO  ITOTEHIHAIA
K  W3YYCHHMIO  OJIGKTPOJMHAMHYECKOH  MEXaHHUKH»
M.JI. TlunpunkoB 3ailicHUB Ha OocHOBI mpais Jx. ['i60ca.
Bin Takox 3aiiHSIBCS BUBYCHHSIM PEHTICHIBCHKUX MPOMEHIB
onpasy x micid iX BigkputTsa B.K. Pertrenom y mucromami
1895 poxy. CBoi nepiui peHTreHorpaMu xabu, paka, puow,
MHUII, XyKa Ta kopaja Mukona JIMUTpOBHY oOJiepkaB
19 ciuns 1996 poky. BiH 3ampornoHyBaB KOHCTPYKIIiO
HOTY>KHOT PEHTreHIBChbKOI TpyOKH, Tak 3BaHOi (hOKyc-
Tpyoxkn M.JI. IlunmsumkoBa, $Ka JJaBajga MOXIIMBICTh
CYTTEBO CKOPOTHUTH TPUBAJIICTH €KCIO3HIIIi (3 TOMUHH 70 3
CEKYyH]) IPU IPOBECHHI PEHTICHOJIOT19HIX JIOCIIiPKECHb.

M./J1. IlunsumkoB OyB OJHMM 3 IEpIINX Y CBITI
JOCHIJTHAKIB  pajioakTUBHOCTI. BiH ToBapumryBaB i3
IT’epom Kropi Ta Mapiero Cxiogoscbkor-Kropi, ycriimHo
JOCTIKYBaB PagiOaKTUBHI BIACTUBOCTI BIAKPUTOTO HUMHU
paniro.

V¥ Bepecni 1897 poky B Opeci BinOyscs 4-i 3’131
HavyaJbHUKIB TejerpadiB Ta 3ali3HUYHHUX EJICKTPHKIB,
Ha skomy BuctynuB O.C. Ilomo i3 momosimmo «IIpo
tenerpadysants 6e3 ApotiBy [6]. Jlonosizb, 110 BigOyIacs
B bymmaxy Pociiicekoro TOBapUCTBa,
CYIIPOBODKYBajlacsl JEMOHCTPYBAaHHSIM il  iCKPOBOTO
panionepenaBaya cucteMu [1omoBa, OCHAIIEHOTO aHTEHOO
(Bibparopom Ilonosa) i pagionpuiiMada cucremu Ilomosa.
Acucrentom O.C. IlonoBa mnpu mokasi jgochigiB i3
6e3mpotoBoi Tenerpadii 0y M. . [Tuisaukos.

Bxe HacTymHOTO pOKY, a came 25 6epesns 1898 poky
Ha TyONiuHIf JeKmii, ska 3a TMOBIIOMJICHHSM OJECHKOI
razetu «lOxHOe o0o3penne» BinOynacs y 3anmi Onecbkoi
6ipxi [3,4,7], M. IlwisdnkoB IpOIEMOHCTPYBaB
repesl HayKOBIIMHM Ta IIPEJCTaBHUKAMH TI'POMaJICHKOCTI
pe3y/bTaTd CBOIX BJIACHUX OCIIKEHb 13 0e3ApOTOBOT
Tenerpadii Ta pagiokepyBaHHs. BueHni, BHKOPUCTOBYIOUN
PpamioXBuII, SIKi TeHEpYBaB iCKPOBHIA ITepeaBay, Ha TIeBHIN
BIJICTaHI Bil HBOTO 3aIaliUB CBITIO y MOIENI MaskKa,
MPHUBIB y Mi0 MOJENH 3aJi3HHYHOTO cemadopa, 3poOHuB
MOCTPLT i3 MAJICHBKOI TapMaT. Y HEBEJIUKOMY OaceliHi,
po3MillieHOMY Oe3MocepeIHb0 B MpHUMIlICHI bip:koBoi
3amd, BIH JUCTAHIIHO TMiAipBaB MiHIATIOPHY MiHY.
[Ipu mpOMyY A7 GLNBIIOI HAOYHOCTI Ta €EKTHOCTI UM
BHOyXOM Oyia mortoruieHa Mozelns sxTu. Lle Oy mepramit
y CBITI IPUKJIAJ] BUKOPUCTAHHS pasiokepyBanHs. [TizHime,
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«3 nerkoi pykm» ¢pannyspkoro ¢izuka Enyapna bpawii
[8], s ramy3p HayKH CTajla HA3UBATHCh TEIIEMEXaHIKOIOY.
Cxoxxumu  gocaimkenasmMu B CIIA, He3aneXHO Bif
[unpankoBa, 3aiiMaBcs Hikonma Tecma. 1 mumas 1898 poky
Tecna nonmaB 3asBKy Ha NATEHT, y SIKOMY 3aIllPOIIOHYBAaB
pO3poOKy cucTeMu pajiokepyBaHHs —kopabmem  [8].
M.JI. TlunpuMKOB HE CTaB TATCHTYBAaTH CBOi PO3POOKHU
1 mpomaBaTH
HaBiTh 3a CyMy, sIKa CKJajaja 3a JJaHUMH, HaBEICHUMHU
B [4], | winplioH (¢paHKiB, OCKIIBKHA CIIONiBaBCS
ITOCTaBHUTHU X Ha CIIy’KOy BiCHKOBOMY BiOMCTBY Pocii.
OuinbHUKaM BIHCBKOBOIO 1 MOpPCBKOTO MIiHICTEPCTB
Pociiicekoi iMmepii BiH HEOJHOPA30BO MPOTOHYBAB JIJIs
PO3MIAAY CKOHCTPYHOBAaHHI HUM CICIIaJbHHUA MPUCTPIN
CEJICKTUBHOTO TPHAOMY pPaIiOCHTHANIIB — «IIPOTEKTOP)
(y cydacHOMY pO3yMiHHI — ENEKTPHUYHHHA (iIbTp), II0
BHJUIIE PaliOCHTHAIN TUIBKH BiJ TICBHOTO aJpecara,
BiA(QUIBTPOBYIOYM IX BiJl CHUTHAIIB-3aBaj pPaaionpuioMy
1 3axumiae mpwiaanud 0e3apoToBoi Teyerpadii, a Takox
CKOHCTPYHOBaHI BYEHHMM pI3HOMAaHITHI pa/iioOKepOBaHi
npuctpoi  (MiHM, O€3IPOTOBI  ENEKTPUYHI  KepMma,
TOpIENN, aBTOMAaTHYHI ceMadopu 1 Masiku) Bif Aii HA HUX
CJICKTPOMArHiTHUX XBWJIb CTOPOHHBOTO IOXOJUKEHHS.
«IIporextop» IImnpunkoBa, JOJATKOBO  OCHAIICHHWH
pPO3pOOJICHUM HHM MPHCTPOEM ISl 3amucy iH(opMariii
3 JIBOMa IIepaMH, CTBOPIOBAaB MOXUIMBICTh 3IIHCHUTH
3axHIleHy paxionepenady indopmarii, o He HoTpedyBana
mmdpyBaHHS TEKCTy pagiotenerpaduoi mememi 3
BHKOPHUCTAHHSM cIleriabHuX mudpis [3,4].

Y 1902 poui M.JI. IIwibunkoB 3BITBHUBCS 3
HoBopociiicbkkoro yHiBEpCHUTETy 1 TII04aB MpalfOBaB
opauHapHoro mpodecopa
TEXHOJIOTIYHOTO iHCTUTYTY Immeparopa Omexcanapa
III, B sskoMy BiH CTBOPWB i OCHACTHB pPi3HOMAaHITHUMH
npmiagaMu Qi3mgHy J1a00paTopiro — OHY 3 HaMKpaImx
cepe JIabopaTopiid TOMIIIHIX BUIINX HABYATHHHUX 3aKIIa/IiB
Pociiicekoi iMmepii.

3 31 cepnust 1o 4 BepecHst 1903 poky B paiioHi
XepcoHEeChbKOTO MHCY Oynam TpOBeACHI BUIPOOYBaHHS
TIPUCTPOIB [T 6€3IpOTOBOI Tenerpadii, CKOHCTPYHOBaHUX
M.JA. IunsankoBuM. CurnHamu B panioedip mocuiana
repesaroda pagiocTaHiiss 3 XEpCOHEChKOro Maska, a
TpuiiMany iX MpuiIayu BUHAX1IHHUKA, 1110 OyJIM BCTAHOBJICHI
Ha TpaHcnoptHoMy cymHi «Jlaectpy». Ha mnpuitmanbHiit
pamiocranitii «J{HecTpay 11l KOTMBaHHS BHILIUIIA QITBTPO-
pe3oHaHcHa cucteMa («mporektopy [Iumsankosa). locmian
npoiinnm ycminmHo. Byno, 30kpema, BcTaHOBIEHO [3,4,9],
0 Ha BiJICTaHi, 3HAYHO OIBIIINA 32 ICHYIOYI HOPMAaTHBH,
npuiaan [InnparkoBa 3a0e3nedyBain HOpMaIbHy poOOTy
pUHMaTbHOT it Oe3aporoBoi  Tenerpadii
xoHCTpyKIii [rokpere-Ilomosa (puc. 2), ska Ha TOH Hac
BHKOPHCTOBYBAJIaCh Ha pociiickkoMy ¢oTi [6,10-12].

3 iteparypHuX Jpkepen  Bigomo [3,4], mo
npuinaau, ki Oynu pospodneni M.Jl. TInipunkoBuM Juist

iX M[peaCTaBHUKAM 1HO3EMHHX JICpIKaB

Ha mocaji XapKiBCHKOTO

cTa”uil
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Puc. 2. 3aranpHuil BUTIAN TpPUHAMANBHOI iCKPOBOT
pamiocTaHmii s 6e3apoToBOI Temerpadii KOHCTPYKIIT
[Tomora-droxpere [12]. Jliteporo P  mo3HaueHe
esleKTpomarHitTHe pene J{iokpere.

BIOCKOHAJICHHs araparypu Oe3aportoBoi Ttenerpadii, a
TAKOXK TX CXEMHM Ta OIMCH JI0 HAILIOTO Yacy He 30eperincs.

OpHak y pesynbrarti
HEIOIaBHO TMpOBeJCHUX y ¢izuuHomy kabineri HTY
«XapKiBCHKUI TOMITEXHIYHUHA YHIBEPCUTET», HAMH OyiIH
BHSBJICHI, BiJPECTABPOBaHI Ta BUIIPOOYBaHI JESKi IPUIa i
JuLst 6€31pOTOBOI Tenerpadii, SKUMHU KOPHCTYBABCS BUCHHUH.

Ha Puc. 3 naBeneHuil 3arajabHUil BUIISLL JHCKIB
BiOparopa (aHTeHM) TmeperaBadya st Oe31POTOBOTO
TesnerpadyBaHHs,
M.J. IIumsaMkoB TIpH  TIPOBEACHHI

MOIIYKOBUX  JTOCTIIIKCHB,

SIKH  BIPOTIZIHO  BHKOPHCTOBYBaB

CBOIX JIOCIHIIB.

Puc. 3. 3aranbHuil BUIIIS JIATYHHUX JIMCKIB BiOpaTopa
pajionepenasaua Jyisi 0€37pOTOBOTO TejerpadyBaHHsL.
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Koncrpyknist mporo BiOpatopa cucremu bbepkHeca
3 JIAaTYHHUMH JIMCKAMH Ta ICKPOBUM MPOMDKKOM, SIK
3a3Ha4eHo B [6,11,12], 6yna 3anporonosana O.C. [Tomoum
HaBecHi 1897 poky. Emexrpomm mporo BiOpartopa, 1o
3aKiHYYIOTBCS ~ JIATYHHUMH  KYJIbKaMH
MOMIIIYBaJIM Y CKJISIHY TOCYIUHY 3 TEXHIYHHUM MAaciOM.
[lepmmit MpUMIpHUK LHOTO TpHJIaxy OyB BHUTOTOBICHHN
Ha EnexrpomexaHiuHOMYy
mopty 3a kpecienusmu O.C. Ilomosa [6,11,12]. Bin
OyB BUTIPOOYBaHWH TPW TPOBEACHHI MEPIINX IOCTiIiB
3 Ge3gpoToBoro TeierpadyBaHHA 3 BHKOPHCTaHHIM
BIHCHKOBHX KopaOmiB croyatky B DiHCBKiIH 3aromi
banriiicekoro Mmopst 'y 1898 pori, mpo mo cBiTUUTH
¢dororpadis Toro uacy (Puc. 4), naBenena B [11], a moTim
y 1899 pomi i mHa Yopromy mopi [6,11,12]. Ogur 3 Takux
BiOpatopi (Puc. 5 a), sx 3a3maueHo B [12], 30epircs mo
nporo vacy. BiH excrionyetbcs B LleHTpansHOMYy My3ei
3B 53Ky iMeHi O.C. [TomoBa y Cankr-IletepOyp3i.

PO3psITHHKA,

3aBoai  KpoHIITaATChKOTO

Puc. 4. KOpadeIbHOTO

dotorpadis
O.C. TlormoBa, 110 BUKOPHUCTOBYBABCS TP TPOBEJICHHI
JOCHIIB 13 pajio3s’si3ky MK kopabisimu banriiicbkoi
eckaapu 'y 1897 pomi [11].

nepeaaBadya

Ha Puc. 5 0 mpeacraBicHUN 3arajbHUA BUIVISLT
BiOpaTopa 3 JaTyHHHMH JUCKAMH, SIKUMH, BipOTiITHO,
xopuctyBaBcs M. /1. [TinsamkoB, 1o Oy B peKOHCTpYHOBaHUI
HaMH. MoO)XKHa BHCYHYTH HNpPUIIYIIEHHS, IO JWUCKH JUIS
BiOparopa Moru Oyt nepenani M. J1. [TuinsankoBy pazom 3
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Puc. 5. 3aranpHuil BUITIAN BiOpaTopiB TepeaBada st
0e3IpOTOBOTO TeNlerpadpyBaHHs 3 JTATYHHIMH TUCKAMH:
a — 0 eKCTIOHYeThes B LleHTpanpHOMY My3ei 3B’S3KY
imeni O.C. [Tonoa [12]; 6 — 10 OyB peKOHCTpyHOBaHHI
HaMH.

THIITMM 00J1a THAHHSIM, BUTOTOBJIEHUM y KpoHIITaaTi BITKY
1902 poky, mpu MmiAroToBIi 10 MPOBEACHHS TOCIIJIB, 110
Bi1OyJHCs1, siK OyI10 3a3Ha4€HO BHIIIE, 32 iforo y4yacTio B 1903
poui B CeBactomodi. L1i qrcku Morm OyTH BUTOTOBIICHI Ha
3amoBiieHHs M.JI. TlunsaukoBa i panime, a came B 1897
abo y 1898 poui. MoXnaMBO iX BHUTOTOBHB CIIaBETHHH
Mexanix HoBopociiickkoro yuiepcurery M. A. Tumuenxo,
3 SIKUM BYEHMH TICHO CHIBIIPALIOBAaB IIiJi Yyac podOTH B
Opneci. MoxHa 3aBOa4uTH, 110 y TakoMy pasi came i
JCKH, BiporigHo, Oy Bukopuctani M.Jl. [TnnsunkoBum
JUTA TIOKa3y JOCHITIB 3 PagioyNpaBIiHHSI, IO BiAOymucs
25 6epesns 1898 poky B bipxosiii 3ami [3,4,7], a Takox
29 xoBTHs 1898 poky Ha 3acijaHHI OICCHKOTO BiIUICHHS
Pociticekoro Texniunoro tosapuctsa [3,4,13] Ha upomy
3acigaHHi Oe3MoCepeaHbO IiJ Yac AOmoBiai mpodecopa
paioXBUIIb
OyB YBIMKHEHWH eNEKTPHYHHUHA I3BIHOK 1 IIiipBaHUHA
HEBEJIMKUH BHOYXOBUH MPUCTPIH.

Sk Bkazano B [4,5], B apxiBi M./l. ITumsurkoBa
36epircs auct Big O.C. [Tonosa, skuii OyB HanMcaHuil HUM
22 xoBtHs 1904 poky, Takoro 3Mmicty: «[ THOOKOIIaHOBHHIA
HdvurpoBrnay!  Hesabapom Bamoi
texerpamu 3 [laprmka s BiImpaBUB MOIITOKO 0 XapKoBa
iM’a 3a azgpecoro DizmuHOl Jaboparopii
TEXHOJIOTIYHOTO 1HCTHTYTY peje, ofepskaHne Bij J{rokpere.
Joci st He MaB 3BICTOK, MIHIIIO BOHO 33 MPHU3HAYCHHSM,

IInnsankoBa IIAXOM BUKOPHUCTAaHHSA

Muxkoito micas

Ha Bame

yu Hi? He ofepkyroun BiJOMOCTEH Mpo Ballle HOBEPHEHHS,
s HE HAJICWJIAB JI0 I[bOTO Yacy PaxyHOK, SIKWil Ternep mpu
Haroni pomydaro. lupo BasYHWMI i TOTOBHH OO MOCIYT
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O. INomnoBy. Hanmuc Ha 3Bopori: «P.S. TloBTopsito mie pas,
o konu 6 pene Bam He Oyno Ternep norpiGHe, TO mpoury
MTOBEPHYTH HOT0O, BOHO HE CTaHE JJIS MEHE OOTSDKIMBHM 1
Moxke OyTu mymieHa B aino. O. IL.»
Hagicmane y 1904 pomi O.C.
M.J. TlunpuaukoBy pene Exena J[lrokpere (Puc. 6),
sKe TOH pasoM 3 Mapemamiem i Piromio cremiaiabHO
CKOHCTPYIOBaB ISl NPUHAMANIbHOI CTaHIl 0e31pOTOBOT
Tenerpadii ITonoBa-rokpere  [6,10,12],
HEIIOIaBHO OyJ0 BWITQJAKOBO 3HAHACHE B IIiICOOHOMY
MPUMIIICHHI BENHUKOI JIeKIiiHOI ayauTopil (i3maHOTO
kopriycy HTVY «XapkiBCbKHH TMOJITEXHIYHUHA 1HCTHTYT»
mi 4ac 1l MiArOTOBKH JO KaIiTaJbHOTO pPEMOHTY.
Perne, sik BWHO 3 HANMUCIB Ha HOro KOpIyCi, MPOWILIO
iHBeHTapm3amio y 1942 pomi mix gac oxynamii M. XapkoBa
i, BiporimHO, 3 MeTOoI0 30epexeHHS Oyao TOMileHe

ITormoBum

CHUCTEMH

Puc. 6. 3aranpamii Butisig pene Exxena J{roxpere.
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npaniBHUKaMKu (i3n4yHOrO KaOiHEeTy B Tifpoi30ibOoBaHHN
NaKyHOK i HaJII{HO 3aX0BaHe B roTaeMHii Himi. Hamu Oyna
MpOBeJIeHa pPecTaBpallis, PEeTyaIOBaHHS 1 BHIPOOYBaHHS
nii mporo mpuiaxy. BceraHoBneno, mo perne Jroxpere
Ji€ 3a TPUHOUIOM EJICKTPOBUMIPIOBAILHOTO TIPHIIaLy
MAarHITOCICKTPUIHOL Hocmian
0 BOHO € JayXe YyTJIMBUM. 3aBISKH BUKOPHCTAHHIO
TAKoOTo peiie y npuiimaibHiil cranuii cucremu Ilonosa-
rokpere 3pazka 1904 poky (muB. Puc. 1), sk 3a3HaueHO
B [6], BOamoch CyTT€BO TiABUIIMTH HAalbHICTH CTIHKOTO
npuiiomy nemenr Oe3aportoBoi Tenerpadii. CraHuisMu
6e3npoToBoi Tenerpadii cucremu [lonosa-/{rokpere Oyiu
ocHareHi kopadm YopHomopcrkoi 1 banTiiicbkol eckanpu
Ta yacTHHa KOopadiiB TuxookeaHCHKUX ecKajp, siKi Opanu
ydacTh y Pocificeko-Amnoncekiit BiriHI 1904 — 1905 poxkis.
Taka  ickpoBa panioctaniisa y 1904 pori 6yna po3mimeHa
Ha IOCTIiiHIA ocHOBI Ha Eiideneiit Bexi, mo, y meBHil
Mipi, BpATYBAJIO 11 BiJ] IEMOHTAXKY.

M.A. IlunpuukoB OyB iHILIATOPOM 3acCHYBaHHS Y
XapKiBCbKOMY TEXHOJOTIYHOMY I1HCTHTYTI JPYKOBaHOTO
oprany — «M3Bectuii XapbKOBCKOI'O TEXHOJOTHYECKOIO
WHCTHTYTa». BiH OyB pemakTopoM MEpIINX YOTHPHOX
TOMIB I[OTO BHIAHHS. Y 2 ToMi «3BecTrii XapbKOBCKOTO
TeXHoJornueckoro uHctutyray [6] M. Ilunpunkos
MOBIJOMMB TPO Te, WO BiH «IPOJOBKYBAaB PO3POOKY
pI3HUX MUTaHb 3 0e3aPOTOBOI Tenmerpadii, MpUIyMaB Ta
BHTOTOBUB HOBe pene». Tomy peme [rokpere, sike Oymo
Hagicmane O.C. ITlomoBuM, BiporimHOo Oyno moTpiOHE
M.Jl. [luipuukoBy Ui TPOBEACHHS ITOPiBHSIBHHUX
JIOCIIJIIB, CIPSIMOBAaHUX Ha BCTAHOBJICHHS XapaKTEPUCTHK
pere, po3poO0ICHOr0 HUM CaMuM, abo K JUIsl TEePEeBipKU
MOXKJIMBOCTI
mpuianiB y amaparypi 6e3mpoToBoi Tenerpadii, Ky BiH
po3po0bioBaB.

Pene ITunbsunkoBa, KOHCTPYKLIS SIKOTO J0 ChOTOAHI
me He Oyna BizoMa (axiBusM, Y pe3yibTari IpOBEICHHS
CHeLiaJIbHHUX MOLIYKiB HEN[0IaBHO OyJIO BUSIBIICHE HAMHU B
Koutek1ii npunais ¢izuuHoro kadinety HTY «XapkiBcbkuii
MOJIITEXHIYHUN THCTHTYTY. Horo 3aranpuuii BumsL 10 Ta
Tmicis pecraBpartii mokasaanit Ha Puc. 7. Ciig 3aBOaunTH,
oo e yymiuBe peie, po3podmeHe M.J. IlminpumkoBuM,
BIPOTiJTHO MOIJIO BUKOPHCTOBYBATHChH HE TUJIBKH JUIS TOTO,
o0 aBTOMAaTHYHO BiJHOBJIIOBATH BHXIJHI PE3UCTHBHI
XapaKTEepUCTUKH Korepepa 3aBIsIKU yapy 1o ioro Tpyoi
MOJIOTOYKOM E€JIEKTPUYHOTO A3BOHHMKA, BBIMKHEHOTO IIMM
pere, Ta 3MiiCHIOBaTH BBIMKHEHHS TelerpadHOTo armapara
Jlrokpere Ui 3alMCy Ha IANepoBy CTPIUKy TeierpadpHux
Jierien, aje W 1 K NPUCTPii, Mo Mir OyTH CKJIaoBOIO
YaCTHHOIO  «rpoTekTopay  [luimsunkoBa.  3MiHIOIOYM
JIOBXKHMHY HacaJI0K sikopst pene (Ha Puc. 4 0 BoHU MO3HAUYCHI
uudpamu 1 12), sskuii € CBOEPiTHUM (DI3UTHUM MASITHUKOM,
MOKHa Oy7I0 3MIiHIOBaTH HOTO MOMEHT iHEepIii i, 3HAYHTH,
LIJTECTIPIMOBAHO  33aJaBaTH 3MIHIOBAaTH  IIEPioJ
(gacToTy) HOTO KOJIMBaHb.

CUCTCMU. II0Ka3aJjiu,

OJTHOYACHOTO BHKOPHCTaHHS 000X IHX

abo
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Puc. 7. 3aranpanii Burmsin pene M./, IInisankosa: a,
0 — 1o pecraBparii, B — micis pecraBpamii. [Lludppamu 1
12 mo3HaYeH1 HACAKH KOS perle.

Y 3B’a3ky 3 mouatkoM Pociiickko- AmOHCHKOT
BiitHm 1904 — 1905 pokiB momanpmi BUIPOOYBaHHS
i BIPOBaKCHHS po3pobieHnx
M./ [MunsankoBuM, 6e3mocepeiHb0 Ha (II0Ti, BIpOTiIHO,

He nipoBouichk. OnHak y 2 Tomi «M3BecTrii XapbKOBCKOTO

pamionpucTpoiB,

TexHoJornyeckoro wuHctutytay [14] M. Ilunsauxos
3a3HAYMB TPO TE, IO BiH «IIPUAYMaB i B MOJACITHHOMY
BHJi BHUTOTOBHMB NPOTHUMIHHHN 3aXWCT Ui OpPOHEHOCIIB
Ta KpeicepiB. 3a pobotu 3 Oe3npoToBoi Tenmerpadii i
MIPOTUMIHHOTO 3aXUCTy cyaeH mpodecopy I[lmipankoBy
Oyna BuHeceHa noxska Komanaysaua ¢uiorom y Tuxomy
okeani Bia 1 Bepecust 1904 poky 3a No 18».

3 BimoMocTeH, ski HaBeneHi B [3,4] Ta MICTIThCS B
apXiBHUX TOKYMEHTaxX [ 5], BiIIOMO, III0 32 PO3IOPSIKEHHIM
Mopcekoro BigomctBa M./, [luipuukoB pasom  3i
cBoimMu criBpoOiTHUKaMu, 30kpema 3 J[.A. KyrneBuuem,
O.M.InseBumtaB.B.Taiinak-Konnypenkom, nposiBy 1904-
1906 pokax TOCHiIKEHHS, COPSIMOBAaHI HAa BCTAHOBJICHHS
ONTUMAIIFHUX YMOB CTabinbHOI, OE3BIIMOBHOI pPOOOTH
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HiMelbKo1 ickpoBoi pamioctanii « TenedyHken» cucremu
ApkoiCnabi, sika BHKOPUCTOBYBaIach Ha THX00KeaHCHKOMY
pocilicekomy (0TI Ta, SK 3a3HAYCHO B [6], cKkIamanace i3
HE/IOTIPAIlbOBAaHUX, MOTAHO 3MOHTOBAHMX 1 HEHATINHHUX
TIPHJIAJIIB.

i mociau Oyiu mpoBe/IeHi 1y 3B’ 13Ky 3 HCOOX 1 THICTIO
po3po0ieHHs MOOUTEHOT Bepcil ickpoBoi pagiocTaHiii. s
[[bOI0 KOMIUIEKT HPUIIAJIB, a caMe: MpuiiMaibHa CTaHIIis
¢ipmu  «TenedpyHken», IHAYKIiHA ~ cHipanb
(xoTymka Pymxopda) mepemaBaibHOI CTaHIIIT, aKyMYIITOPH
no Hel Ta IOMHAMOMALIMHA JUIs 1X 3apsyDKaHHS, sKa
MpaioBaja BiJi OCH3WHOBOTO JBHTYHA, OyJIH 3MOHTOBaHI
Ha aBromo0im dipmu «Korepoy, crienianbHo NpuadaHoMy
M.J. unpuukoBum y 1905 poui 3a kot MopchKoro
BimomcTBa. lle Oyma meprma B Pociiicekiit immepii airoda
TepecyBHa paiOCTaHIlisA, 3MOHTOBAaHa Ha aBTOMOOLNI.
[Ipu mpoBemeHHI IOCTINIB aBTOMOOLIH IEPEMIlIyBaBCs
mo Tepuropii mapky XapKiBCBKOIO TEXHOJOTIYHOTO
incrurytry.  CramioHapHa  craHmis — 0e31pOoTOBOrO
tenerpady BupoOHuuTBa (ipmMn  «Tenedpynken», a
TaKOK TIPHJIAA JUTSI aBTOMAaTHYHOI peecTparii rpo3 Oymu
3MOHTOBaHI y CIeI[iallbHO 30yZOBaHOMY Ha TEpHUTOPil
XapKiBCHKOTO TEXHOJIOTIYHOTO 1HCTUTYTY MaBUIBHOHI TIPU
METEOPOJIOTIYHIN o0cepBaropii. | 10 chOroaHi Haa Jaxom
¢izuanoro xopmycy HTY «XapkiBchbKHi MOTITEXHIYHUNA
IHCTUTYT» 3IIIMAaEThCSI METalIeBa KOHCTPYKILSl Y BUIVISII
KOpabelbHO1 IO i3 JBOMa CKJISTHUMH 130JISTOPaMH,
SIKy, BiporimHo, BukopucTtoByBaB M.JI. IlmmsamkoB s
PO3MIIIEHHSI TlepelaBalbHOi Ta NMPUHMAaIbHOI aHTEeH. €
JIaHi Ipo Te, IO MicIs 3aBepiueHHs Pocitichko-noHChKOT
BiliHH, a came BHITKy 1907 poky, BiH HpOBIB pa3om 3i
cBOIMH CHiBpOOiTHHKaMK Ha Oeperax o3ep y bepminBomax
HU3KY TOCIIIIB 3 paiioOKepyBaHHs Ta ONTHKH.

[Tpu mpoBeeHHi 10CTiKEeHb COHTIHOTO 3aTEMHECHHS
y 1905 pomi y micti @iminBimti (Amkup) M. . [Tumsarkos
KOPDHCTYBaBCSl ~ CHELIabHO  CKOHCTPYHOBaHUM
«(ororpadiyHUM TEIECKOIOMY, SIKUIT Ha HOTO 3aMOBIICHHS
BUTOTOBUB BiZloMu# (ppaHiy3bkuii ontuk CekperaH.

M.JI. IlunsankoB OpaB aKTHUBHY y4YacTb y poOOTi
¢izmanoi cexuii VII, VIIL, IX, X i XI-ro 3’i3aiB pociichKux
JMOCTITHUKIB TIPUPOAM Ta JIKapiB, a TakoX y pPOOOTI
I MenneneeBchkoro 3’31y i3 3arajibHOT 1 IPUKIAAHOT XiMil.
BiH roj0ByBaB Ha 3aciJaHHSX, BUCTYIMAaB i3 JOMOBIIIMH,
CIJIKYBaBCS 3 BIJIOMHUMHU POCIHCHKMMH BYEHHMH, SIKi
Opanu yyactb y pobOTi nux 3 i31iB.

M. IMumsarkoB OyB MalCTepHUM JEKTOpoM. BiH
AKTHBHO TMOIYJSIPU3yBaB HOBITHI MOCSTHEHHS (i3UIHOL
HayKd B XapKoBi Ta B IHIIMX MicTaX, YATAIOUW ITyOJIIdHI
JIeKIii, 110 CyNMpOBOKYBaJIKCh MOKazoM jgociiaiB. Lli
JIeKIiT BYUSHOTO 30MpajIy TUCSUHI ayquTOpii CiryxadiB.

YV 1893 — 1894 poxax M./I. [InipunkoB OyB roI0BOIO
XapKiBCHKOTO MICBKOTO TOBApHCTBA BEIIOCHIICIAHCTIB-
mobureniB. Y 1893 pori 3a #foro iHINIATHBOO 1 Mg HOTO
Oe3mocepeHiM KEPIBHUIITBOM HA IIBHIYHIA JTUISHII
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VYHIBEPCUTETCHKOTO Cajay, WO BHUXOAWTH A0 HHUHINIHBOI
wioni  Coboau
BerepruHapHOTO IHCTUTYTY, TSI TFOOUTEITIB BEIOCHIICTHOTO
criopty OyB mMoOymOBaHUH UKIOAPOM (BETIOTPEK).

M. IMunsarkoB OyB BYCHHM-CHIUKIIONEIUCTOM,
JIIOJIMHOIO IIMPOKOT epyauiii W BHUCOKOI KyJIBTYpH, IO
JlaBajio oMy MOJJIMBICTB 3asIBUTH NPO cebe He TLIBbKHU SIK
PO TOCIITHUKA B PI3HUX Taily3six (hi3UKH Ta METEOPOJIOTTiI,
ane W SK MpPO BYCHOTO T'yMaHiCTa, TPOMAJCHKOTO ifya,
€BPOTICHICPKA OCBIUCHICTh Ta 3arajJbHUN KyJIBTYypHHUH
Kpyrosip MOEAHYBAINCH 13 YKpPaiHCBKUM
MaTpioTU3MOM.

BucHuii BXoAMB 10 KOMa Jisi4iB MPOCBITHHIIEKOTO
pyXy Ha XapKiBLIMHI, 10 SKUX Hauexain: X. ATYeBChKa,
M. bekeroB, B. J[lauuneBcbkuii, C.
1. Epumenxo, O. ITotedns, A. Loromis, M. JJobon0BCHKHH,
B. ManrsoBanwii. Pazom 3 M. MixHOBCbKHM, I. XOTKEBHUEM,
O. 3aiikeBumuem, X. J. 1ta X. O. AIYeBCHKUMU
M./JI. [TunsuMKoB aKTUBHO MPAIfOBAaB HA HUBI MTpOMaraHan
YKpaTHChKOT HaIllOHAJIbHOT if1ei.

JIro60B 10 MHCTENTBA Ta JiTeparypu chopMyBatach
y M.JL. [TnnsamkoBa 3 TUTSAYHX POKIB TTiJT BIDTMBOM OaThKa i
30eperack y HhOTro Ha3zaBk/au. Bin 3alimMaBcs nepexiaiamMmu
JITEepaTypHHUX TBOPIB YKPATHCHKOIO MOBOIO, TUCAB JIIPHYHI
Bipmi, ki ApykyBamuch 3a mignucom «M.IT». Kpim
miteparypHoi TBopuocti, M.JI. IMTunsunkoB npodeciiino
3aiiMaBCsl JKUBOTIMCOM 1 MalCTepHO I'paB Ha CKpwui. Bin
BiJIBiyBaB KOHIIEPTH, TeaTpajbHI BHCTAaBH Ta XYHOXKHI
BHCTaBKH.

TpariuHo 1 TaeMHHYE 3aBEPIIMIIOCS JKUTTSI BUCHOTO.
3a odimiiiHOK Bepciero, BHUKIaacHOW Yy [1,4], mpodecop
[unpunkoB M.JI. MOKIHYKB JKHUTTS CaMOryoCTBOM 6
TpaBHsI 1908 poxy o 7 roamHi paHKy, mepeOyBaroum Ha
JKyBaHHI Y TIPUBATHIN KIIHIII JUTI HEPBOBO XBOPHUX, SKa
HaJIe)KaJla MPUBAT-JOLECHTY XapKiBCHKOTO YHIBEPCHUTETY
[.51. ITnaronoBy. /1o ChOrOAHIMIHBOTO JHS 1€ HE OfiepIKaHi
BUYEPITHI BIJIIOBIJII HA HU3KY TIMTaHb TaKOTro 3MICTy. XTO
K BCE-TaKM HATUCHYB Ha CIIyCKOBHH radok peBOJbBepa
«bymapmor», mocTpin sxoro obipBaB KHUTTA BueHOro? Bin
caM YM areHT OfHiel 3 1HO3eMHHX JAepKaB, SIKi MOIJIH
«nonoBaruy» 3a BuHaxoxaMmu M. /1. [TunsurkoBa? Yu Mmoria
JIIOJIMHA 3 TIPOCTPEJICHUM CEepIieM He BTPATUTH CBIJOMICTb
Bil OOJILOBOTO INOKY Ta BTPAaTH KPOBi, a OCMHCJICHO
MOKJIACTH PEBOJILBEP HA HIYHUH CTOJHUK, JISITTH B JIDKKO 1
CKJIacTH pykHu Ha rpymsx? Yum 6pas nmpodecop [Inmsankon
y JIKapHIO Marepiaj, B SKHX OylTH ONFCaHI CXeMHU
Ta TPUHIUIH il Woro mpmianiB? B apxiBi, sxuii OyB
po3iOpaHuii ofpasy K MICJIsS CMEPTi BUCHOTO, IX TaK i HE
BJIAJIOCS] 3HANTH.

OiIsl  MPUMIIEHHST  KOJHMIIHBOTO

SIKOTO

PaeBcbkuid,

BincmiByBanHs ~— Tima  mokiiiHOro  mpodecopa
[umpaukoBa M.JI. Bimbynocs y PoxaecTBeHCHKO-
Boropommaniit  (KamuryniBebkiit) mepksi. [loxoBaHHS

Tina BimOynock Ha loaHHO-YCIKHOBEHCHKOMY MIiCHKOMY
kiagosuii 8 Tpasas 1908 poxy. CtyneHTH Ha pyKax HeCIn
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Puc. 8. Moruna M.JI. ITunsurkoBa Ha 13 mBHUHTapi M.
XapxoBa.

TpyHy 3 TitoM npodecopa Iunpunkosa M.J1. Bix 1epkBu
1o xianosuia. 3apas mormwia M.J]. [Tuieunkosa (Puc. 8)
3HAXOMUThCs Ha IIBUHTAP] Ne 13 M. XapkoBa, Ha «ILIOMIAIIT]
3HAMEHUTHX XapKiB’sHY.

Hemonasuo oxHa 3 Bynuis M. XapkoBa Oyi1a Ha3BaHa
Ha yecth M.JI. IlmnpumkoBa. Y lleHTpanbHIN HayKoBiit
616mioTeni XapKiBCbKOTO HAIIIOHAJIBHOTO YHIBEpCUTET IMEHI1
B.H. Kapasina 30epiratoTbcst KHUTH 3 0COOMCTOT 010TiI0TCKH
M./I. TlunbuukoBa, sKy BiH 3amoBiB XapKiBCHKOMY
yHiBepcutety. Y (izmuHux kabiHerax XapKiBCHKOTO
HarfioHanbpHOTO yHiBepcuteTy imeHi B.H. Kapaszina ta HTY
«XapKiBCHKHUI MONITEXHIYHUHN IHCTUTYT» 30epiratroThCs Ta
JI0 IILOTO Yacy BUKOPHCTOBYIOTBCS TIPH TTOKa31 JICKIIIIHUX
JIEMOHCTpaliil npuiaay, siki y cBiif yac npuabas (y Tomy
YHUCIi 1 3@ BJIaCHI KOIITH) i BHKOPHUCTOBYBaB Ipodecop
M. . ITunsunkos.

Jlitepatypa

1. E.A. Porosckuii. [Ipodpeccop H.Jl. [IMap9nKOB 1 €10 TPYIBIL.
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2. H.JIL Tlomskxosa, E.A. IlomoBa - Kssauugckas. Hwukomait
Jmutpuesnd [unsuukos. YOH, T.53, B.1. 131 (1954).
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HayxoBa aymka, (1983), 198 c.
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HayxoBa gymka, (1970), 164 c.
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«Modonas reapaus», (2014), 380 c.

OTuer 0 cocTosHHM XapbKOBCKOTO TEeXHOJIOTHUECKOTO
Wucruryra Mmneparopa Anexcanzapa III 3a 1903 ron.
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Hmnepamopa Anexcanopa 111, T. 1, Xapbkos. 39 (1905).
XKopx [lapu. DnekTpudecTBO BO BCEX €ro MPUMEHEHHSX.
Canxkr-IletepOypr: Tumorpadus Cysopuna, (1903), 438 c.
B.U. Hlammyp. A.C. IlonoB u coBeTcKkas pagHOTEXHHKA.
M.: BoenHoe u31aTenbecTBo BoeHHOTro MuHNCTepeTBa Coroza
CCP, (1952), 122 c.

Hcropus panuocssasu B sxcnosuuuu LieHTpansHoro myses
cessu umenn A.C. Ilonoma: Karanor (doroamsbom) /
H.A. Bopucosa, B.K. Mapuenkos, B.B. Opnos u ap. CII6:
HenTpansusnii My3eit ces3u nmenn A.C. ITomosa, (2008),
188 c.

lazera «tOxHOe 0603perney. (1898), 31 oxrsadOps.

OTr4er 0 COCTOSIHMM XapbKOBCKOTO TeXHOJIOrMYECKOro
Wnctutyra Mmneparopa Anexcanzapa III 3a 1904 ron.
HMszeecmusn Xapwvroscrkozo Texnonoeuueckoeo Hncmumyma
Hmnepamopa Anexcanopa 111, T. 2, Xapokos. 41 (1906).
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IHOOPMALIIA JUUISI ABTOPIB CTATEN
xypHaiy «Bicauk XHY». Cepist «Dizuka»

VY xypHani «Bicauk XHVY». Cepis «®i3uka» IpyKyIOTBCS CTAaTTi Ta CTHUCII 32 3MICTOM ITOBIJIOMJICHHSI, B SIKMX
HaBeJIeH1 OpUTiHANBHI PE3yNbTaTH TEOPETHYHUX Ta EKCTIEPUMEHTANIBHHUX OCHIKeHb, a TAKOXK AHAJITHYHI OTJISIH
JTepaTypHUX JHKEpeI 3 Pi3sHOMAaHITHUX aKTyalbHUX TMpo0iieM (i3uKH 3a TEMaTHKOIO BHIAHHS.

Moga craTeii — yKkpaiHChKa, aHTIIIHChKA Ta POCIHCHKA.

TEMATUKA XYPHAITY

1. Teopernuna dizuka.

2. di3uka TBEPIOTO Tija.

3. ®i3uKa HU3BKUX TEMITEPATyp.

4. di3uKka MarHiTHAX SIBUIIL.

5. OnTrka Ta CeKTPOCKOTTis.

6. 3araspHi nUTaHHA GI3UKK 1 cepel HUX: METOJOJIOTIS Ta icTopis (i3WKH, MareMaTHyHi MeToau (i3MYHHX

JIOCITIPKCHB, METOIKA BUKJIAaHHs (DI3UKHU Yy BUIIH [IKOJ, TEXHIKA Ta METOAMKA (Di3UYHOTO CKCIICPUMEHTY TOIIIO.

BUMOTI'M 1O O®OPMJIEHH S PYKOITUCIB CTATTEN

3aranbHUI 00CAT TEKCTY PYKOIUCY CTATTi MOBHHEH 3aiiMaTH He Oiibiie, HiX 15 CTOpiHOK.

Pykommic crarTi cKIamaeTbes 3 THUTYIBHOI CTOPIHKH, Ha SIKi BKa3aHHO: Ha3Ba CTAaTTi; IHIIIANKM Ta TIPi3BHINA
aBTOPIB; MOIITOBA a/Ipeca YCTaHOBH, B sKii Oyia BUKOHaHa poOoTa; Kiacudikauiiiauii ingekc 3a cucremamu PACS Tta
VJIK; aHoTanii Ha OKpeMOMY apKylIi 3 TpI3BUILEM Ta iHilllaJlaMH aBTOPIB 1 Ha3BOIO CTATTi, BUKJIAAEHI YKPaiHCHKOIO,
POCIHCBKOIO Ta aHNIIHCHKOIO MOBaMH; OCHOBHHUI TEKCT CTATTi; CIUCOK JITEPATypH; MIAMKCH MiJl PUCYHKaMH; TaOJuIIi;
pHUCYHKH: Tpadiku, POTO3HIMKH.

AHorarris moBuHHA OyTH 32 00'eMoM He MeHbII Hik 500 ciMBomiB. CtaTTs HOBUHHA OyTH CTPyKTOpOoBaHa. BICHOBKHI
MOTPIOHO MTPOHYMEPOBATH Ta B HUX MOTPiOHI OyTH BUCHOBKH a HE TEepeTrcaHa aHOTAaIlis.

EnexTpoHHMI BapiaHT pyKONHCY CTaTTi MOBUHEH BIAIOBIJaTH TAaKUM BHMOTaM: TEKCT PYKONHCY CTaTTi IOBHHEH
Oytu HaOpanuii y popmati MicrosoftWord Bepcii 2013, BupiBHIOBaHHS TEKCTY MOBUHHE OyTH 3/1iHCHEHE 32 JIIBUM KpaeM,
rapaitypaTimesNewRoman, 6e3 npornucHnx OyKB y Ha3Bax, OyKBH 3BHYalHI PSJKOBI, 3 MOJISIMU JIIBOPYY, NTPABOPYY,
3Bepxy 1 3HM3Y 10 2,5 cM, Gpopmynu noBuHHI OyTn HaOpaui B MathType (He Hmxkue Bepcii 6,5), y hopMymnax KUPHIHLs
HE JIOITyCKA€ETHCS, CHUMBOJIM 3 HIDKHIMHU 1 BEpXHIMH iHAEKcaMH ciin Habuparu B MicrosoftWord, mmpuna dhopmynu He
oimemre 70 mm, rpadiku Ta GoTtorpadii HeoOXigHO TogaBaTH B TpadidHOMy (opmari, pospizHeHHsS He MeHmne 300 dpi,
romupeHHst (aiyliB HOBUHHO OyTH *.jpg, IIMPUHOIO B OJIHY UM JIBI KOJIOHKH, JUIS OJHI€T KOJIOHKH PO3MIpH: 3aBILUPIIKA
8 MM, JuIsl 1BOX KOJIOHOK — 16 MM. Macmirad Ha mMikpodororpadisx HE0OXiJHO MPEACTABIATHA Y BUIVIAAI MaclITaOHOT
JHHIAKY.

BUMOI'U 10 O®OPMIJIEHH I 'PA®IKIB
TopmuHa miHii He Oinbme 0,5 MM, ae He meHtIe 0,18 MM. BennanHa miTep Ha mianucax 10 pUCyHKIB He Outemt 14
pt, ane ne menme 10 pt, rapuitypa Arial.

ITPUKJIA L ODPOPMIJIEHHA CITMCKY JIITEPATYPU
1. JLJI. Jlanpay, E.M. JIu¢munu. Teopus ynpyrocru, Hayka, M. (1978), 730 c.
2. N.N. Iranos. OTT, 25, 7, 762 (1998).
3. A.D. Ashby. Phys.Rev., A19, 213 (1985).
4. D.V. Vert. In Progress in Metals, ed. by R. Speer, USA, New York (1976), v.4, p.17.

J1O PEJAKILIIT HAJAETHCA

1. IBa po3apyKoBaHi IPUMIpPHUKN PYKOIIUCY CTATTi, AKi MiAMHUCaHi ii aBTOpaMu.
2. EnexTpoHHa Bepcis pyKOMHCY Ta aHi MI0/10 KOHTAKTIB /IS CIUTKYBaHHA 3 11 aBTOpaMu. J{J1s 11h0T0 MOTpiOHO HazicIaTn
€JIEKTPOHHOIO TIOIITOY0, TUTEKH Ha anpecy physics.journal@karazin.ua.
3. HampaBieHHS BiJ yCcTaHOBH, ji¢ Oyia BUKOHaHAa poOOTa, 1 aKTH €KCIIEPTU3H Y ABOX NPUMIPHUKAX; aJpecy, Pi3BHUIIE,
MOBHE iM’s1 Ta 0ATHKOBI aBTOPiB; HOMepH TenedoHiB, E-mail, a Takox 3a3HaYUTH aBTOpa PYKOIHKCY, BiIIOBIAIEHOTO 32
CIUJIKYBaHHS 3 PEAAKINI€I0 )KYPHAITY.

Marepianu pyKomucy cTaTrTi MOTpPiOHO HampaBiIATH 3a agpecoro: Pemakmis sxypHamy «BicHuk XapKiBCBKOTO
HarfioHaneHOTO yHiBepcuteTy imMeHi B.H. Kapasina. Cepis: ¢isuka», Jlebeney C.B., ¢isuunuii daxymsret, Maiizan
CBobomu, 4, XapkiBcbKuii HamioHaEHUH yHiBepcuTeT iMeHi B.H. Kapasina. texn. (057)707-53-83.
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