МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Вісник Харківського блаціонального *Дніверситету* імені В.Н.Каразіна

_

№ 1113

Серія "Фізика"

Випуск 20

Серія започаткована 1998 р.

Харків 2014

УДК 530.1/539.8

Вісник містить статті, присвячені сучасному стану теоретичних та експериментальних досліджень в галузі фізики Видання призначене для науковців, викладачів, аспірантів та студентів фізичних спеціальностей вищих навчальних закладів та наукових установ

Затверджено до друку рішенням Вченої ради Харківського національного університету імені В.Н.Каразіна (протокол №7 від 27 червня 2014 р.)

Редакційна колегія:

Головний редактор

Вовк Р.В. - доктор фіз. - мат. наук, професор, ХНУ імені В.Н.Каразіна, Україна Заступник головного редактора

Єрмолаєв О.М. - доктор фіз.-мат. наук, професор, ХНУ імені В.Н.Каразіна, Україна Відповідальний секретар

Криловський В.С. - канд. фіз. - мат. наук, доцент, ХНУ імені В.Н.Каразіна, Україна Редакційна колегія

Агеєв Л.О. - доктор фіз. - мат. наук, професор, ХНУ імені В.Н.Каразіна, Україна Андерс О.Г. - доктор фіз. - мат. наук, професор, ХНУ імені В.Н.Каразіна, Україна Бойко Ю.І. - доктор фіз. - мат. наук, професор, ХНУ імені В.Н.Каразіна, Україна Гуревич Ю.Г. - доктор фіз. - мат. наук, професор, Дослідницький центр, Мексика Зиман З.З. - доктор фіз. - мат. наук, професор, ХНУ імені В.Н.Каразіна, Україна Кагановський Ю.С. - доктор фіз. - мат. наук, професор, Бар - Іланський університет, Ізраїль Камзін А.С. - доктор фіз. - мат. наук, професор, ФТІ імені Іоффе, Росія Кунцевич С.П. - доктор фіз. - мат. наук, професор, ХНУ імені В.Н.Каразіна, Україна Милославський В.К. - доктор фіз. - мат. наук, професор, ХНУ імені В.Н.Каразіна, Україна Пархоменко А.А. - доктор фіз. - мат. наук, професор, ННЦ ХФТИ НАНУ, Україна Пойда В.П. - доктор тех. наук, професор, ХНУ імені В.Н.Каразіна, Україна Портной М.Е. - доктор фізики, професор, університет Эксетеру, Великобританія Рожко А.Ф. - доктор фізики наук, професор, Лондонський центр нанотехнологій, Великобританія Хронеос Олександр - доктор фізики наук, професор, Империал коледж, Великобританія Фегер Олександр - доктор фіз. - мат. наук, професор, інститут фізики університету імені Шафарика, Кошице, Словакія Федоров П.М. - доктор фіз. - мат. наук, професор, ХНУ імені В.Н.Каразіна, Україна Шехтер Роберт - доктор фіз. - мат. наук, професор, Гетеборгський університет, Швеція Шкловський В.А. - доктор фіз. - мат. наук, професор, ННЦ ХФТИ НАНУ, Україна Шкуратов Ю.Г. - член-кор. НАН України, доктор фіз. - мат. наук, професор, ХНУ

імені В.Н.Каразіна, Україна

Ямпольський В.А. - член-кор. НАН України, доктор фіз. - мат. наук, професор, XHV імені В.Н.Каразіна, Україна

Адреса редакції:

Україна, 61022, Харків, майдан Свободи, 4, Харківський національний університет імені В.Н. Каразіна, фізичний факультет, 057-707-53-83, ruslan.v.vovk@univer.kharkov.ua Статті пройшли внутрішнє та зовнішнє рецензування.

Свідоцтво про державну реєстрацію КВ №11825-696 ПР від 04.10.2006

© Харківський національний університет імені В.Н. Каразіна, оформлення, 2014

UDC 530.1/539.8

Bulletin contains articles on the current state of theoretical and experimental research in the field of physics. The publication is intended for researchers, teachers and students of physical specialties of higher education and research institutions.

Approved for publication by the decision of the Academic Council of Kharkiv Karazin National University. (Minutes N_{2} 7 dated June 27, 2014)

Editorial Board

Editor-in-Chief -Vovk R.V. - Dr. Sci., Prof., V.N. Karazin Kharkiv National University, Ukraine Deputy Editor-in-Chief -Yermolaev O.M. - Dr. Sci., Prof., V.N. Karazin Kharkiv National University, Ukraine Assistant Editor -Krylovskiy V.S. - Ph.D., Assoc. Prof., V.N. Karazin Kharkiv National University, Ukraine Ageev L.O. - Dr. Sci., Prof., V.N. Karazin Kharkiv National University, Ukraine Anders O.G. - Dr. Sci., Prof., V.N. Karazin Kharkiv National University, Ukraine Boiko Yu.I. - Dr. Sci., Prof., V.N. Karazin Kharkiv National University, Ukraine Gurevich Yu.G. - Dr. Sci., Prof., Center for Research and Advanced, Mexico Zyman Z.Z. - Dr. Sci., Prof., V.N. Karazin Kharkiv National University, Ukraine Kaganovskiy Yu.S. - Dr. Sci., Prof., Bar - Ilan University, Israel Kamzin A.S. - Dr. Sci., Prof., Ioffe Institute, Russia Kuncevich S.B. - Dr. Sci., Prof., V.N. Karazin Kharkiv National University, Ukraine Miloslavskii V.K. - Dr. Sci., Prof., V.N. Karazin Kharkiv National University, Ukraine Parhomenko A.A. - Dr. Sci., Prof., NSC "Kharkov Institute of Physics & Technology", Ukraine PoidaV.P. - Dr. Sci., Prof., V.N. Karazin Kharkiv National University, Ukraine Portnoi M. E - Dr. Sci., Prof., University of Exeter, UK Rozhko A. Dr. Sci., Prof., London Centre for Nanotechnology, UK Chroneos A. - Dr. Sci., Prof., Imperial Colledge, UK Feher A. - Dr. Sci., Prof., , Pavol Jozef Šafárik University in Košice, Kosice, Slovakia Shekhter R.I. - Dr. Sci., Prof., University of Goteborg, Sweden Shklovskij V. A. - Dr. Sci., Prof., NSC "Kharkov Institute of Physics & Technology", Ukraine Shkuratov J.G.- Corresponding Member of the NAS of Ukraine, Dr. Sci., Prof., V.N. Karazin Kharkiv National University, Ukraine Yampol'skii V. A. - Corresponding Member of the NAS of Ukraine, Dr. Sci., Prof., V.N. Karazin Kharkiv National University, Ukraine

Editorial address:

Svobody Sq. 4, 61022, Kharkiv, Ukraine, V.N. Karazin Kharkiv National University, Department of

Physics, 057-707-53-83, ruslan.v.vovk@univer.kharkov.ua

All articles reviewed.

Certificate of state registration of CT number 11825-696 PR on 04/10/2006

© V.N. Karazin Kharkiv National University, design, 2014

Содержание

Памяти Виктора Прохоровича Лебедева	6
A. Chroneos Vacancy-fluorine clusters in silicon	8
<i>Н.Н. Жолонко</i> К вопросу о платообразном поведении теплопроводности твёрдого параводорода с тяжёлой атомарной примесью предельно малой концентрации	12
<i>С.В.Храпатый, В.Н.Махлайчук</i> Константа равновесия димеризации молекул насыщенного пара тяжелой воды согласно второго вириального коэффициента уравнения состояния	16
<i>V.S. Krylovskiy</i> , <i>N.R. Vovk</i> Influence of high pressure on phase separation in underdoped $HoBa_2Cu_3O_{7-\delta}$ single crystals	20
В.М. Резникова, Л.А. Агеев, В.К. Милославский Фотоиндуцированная периодическая структура (ПС) из наночастиц Ag, ее превращение в (ПС) из частиц AgI и связанный с этими ПС	
дихроизм	26
V. Bogdanov, D. Kolesnikov, W. Lojkowski Au, Mg and Zn diffusion in GaN	32
<i>A.N. Sokolov, S.V. Savich, V.V. Sklyar, Z. F. Nazyrov, R. V. Vovk</i> In-plane paraconductivity of ReBa ₂ Cu ₃ O _{7-δ} (Re=Y, Ho) single crystals with a given topology of planar defects and a mono-	
domain sample	43
<i>І.В. Воробйова, Б.В. Зайцев, А.Ф. Кобець</i> Дослідження оптимальних умов створення трекових мембран з діаметром пор ≥50 нм на основі ПЕТФ плівок, опромінених іонами аргону	48
Г.Я. Хаджай, А.Н. Соколов, С.В. Савич, В.В. Скляр, Р.В. Вовк, В.С. Морозов, К.А. Котвицкая, Я.Г. Ленив Влияние всестороннего сжатия на проводимость монокристаллов	
Y _{0.95} Pr _{0.05} Ba ₂ Cu ₃ O _{7.8} с системой однонаправленных двойниковых границ	54
В.Ю. Гресь, А.М. Кудин Процессы гидратации в приповерхностных слоях сцинтилляторов	
NaI(Tl) и CsI(Na)	59
А.Т. Котвицкий, Д.В. Крючков N – точечные мультиплоскостные гравитационные линзы	63
<i>К.А. Мозуль, Л.П. Ольховик</i> , <i>З.И. Сизова, Е.В. Шуринова</i> Диагностика магнитного состояния реальной высокодисперсной ферритовой системы с широким распределением частиц по	
размерам	74
<i>Олександр Гриб</i> Асиметрія вольт-амперних характеристик гібридних джозефсонівських контактів з пніктидами	78
Z. F. Nazvrov, S.V. Lebedev, R. V. Vovk Excess conductivity of Y. Pr Ba.Cu.O., single crystals	83
A. Chroneos, C. A. Londos, E.N. Sgourou Strategies to suppress A-center formation in silicon and	
germanium from a mass action analysis viewpoint	87
В.П. Ревякин Перенос тепла в пластических фазах молекулярных кристаллов	91

Content

A. Chroneos Vacancy-fluorine clusters in silicon	8
N.N. Zholonko On the plateau-like behavior of the thermal conductivity of solid parahydrogen with	
heavy atomic impurities of extremely low concentrations	12
S.V.Hrapaty, V.N.Mahlaychuk The equilibrium constant for the dimerization of molecules of saturated	
steam heavy water according to the second virial coefficient equation of state	16
V.S. Krylovskiy, N.R. Vovk Influence of high pressure on phase separation in underdoped	
HoBa ₂ Cu ₃ O ₇₋₈ single crystals	20
V.M. Rieznikova, L.A. Ageev, V.K. Miloslavsky The photoinduced periodic structure (PS) from Ag	
nanoparticles, its transformation into PS from particles of AgI and the dichroism connected with	
these PS	26
V. Bogdanov, D. Kolesnikov, W. Lojkowski Au, Mg and Zn diffusion in GaN	32
A.N. Sokolov, S.V. Savich, V.V. Sklyar, Z. F. Nazyrov, R. V. Vovk In-plane paraconductivity of	
$ReBa_2Cu_3O_{7-\delta}$ (Re=Y, Ho) single crystals with a given topology of planar defects and a mono-	
domain sample	43
I.V. Vorobyova, B.V. Zajtsev, A.F. Kobets Investigation of the most effective condition for obtaining	
the track membranes with pore diameter \geq 50 nm on the basis of polyethylenetherephthalate films	10
irradiated with Ar ions	48
G.Ya. Khadzhai, A.N. Sokolov, S.V. Savich, V.V. Sklyar, R.V. Vovk, K.A. Kotvitskaya, V.S. Morozov, Y.G.	
<i>Leniv</i> Effect of hydrostatic pressure on the conductivity of $Y_{0.95}Pr_{0.05}Ba_2Cu_3O_{7-\delta}$ single crystals	<i>с</i> 4
with the system of unidirectional twin boundaries	54
<i>V.Yu. Gres, A.M. Kudin</i> Hydration processes in the surface layers of Nal(TI) and CsI(Na) scintillators	59
A.T. Kotvitskiy, D.V. Kryuchkov N-point multiplane gravitational lenses	63
K.A. Mozul', L.P. Ol'khovik, Z.I. Sizova, E.V. Shurinova Diagnosis of magnetic state of a real superfine	
ferrite system with broad particle size distribution.	74
Alexander Grib Asymmetry of IV-characteristics of hybrid Josephson junctions with pnictides	78
Z. F. Nazyrov, S.V. Lebedev, R. V. Vovk Excess conductivity of $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ single crystals	83
A. Chroneos, C. A. Londos, E.N. Sgourou Strategies to suppress A-center formation in silicon and	
germanium from a mass action analysis viewpoint	87
V.P. Revyakin Heat transfer in the plastic phases of molecular crystals	91

Памяти Віктора Прохоровича Лебедєва

(1937 – 2013)

Редакційна колегія «Вісника Харківського національного університету імені В.Н. Каразіна» серія «Фізика» з глибоким сумом інформує своїх читачів про те, що 27 жовтня 2013 року пішов із життя голова редколегії доктор фізикоматематичних наук, професор Лебедєв В.П.

В.П. Лебедєв народився 19 січня 1937 року у м. Харкові. Він закінчив фізико-математичний факультет Харківського державного університету імені О.М. Горького та аспірантуру Українського фізико-технічного інституту. Захистив у 1971 році кандидатську, а у 1991 році докторську дисертацію. У 1991 році В.П. Лебедєву було присвоєно вчене звання професора. У 1959 році В.П. Лебедєв почав працювати на посаді асистента кафедри експериментальної фізики Харківського державного університету імені О.М. Горького. В подальшому працював на посаді старшого викладача, доцента, професора, завідувача кафедри. З 1993 р. до 2005 р. обіймав посаду декана фізичного факультету, а з 2001 року до 27.10. 2014 працював на посаді завідувача кафедри експериментальної фізики Харківського національного університету імені В.Н. Каразіна.

Основні напрями наукових досліджень, які проводив В.П. Лебедєв, стосувались фізики міцності та пластичності і, зокрема, низькотемпературної деформації металів і сплавів. Під його керівництвом було отримано ряд вагомих наукових результатів щодо впливу надпровідного стану металів та сильних магнітних полів на механичні та структурні властивості матеріалів. Лебедєв В.П. опублікував у співавторстві понад 150 наукових праць та кілька навчальних посібників, підготував трьох кандидатів наук. Він є одним з розробників Державного освітнього стандарту з підготовки бакалаврів за напрямом підготовки «фізика».

В.П. Лебедєв був членом двох спеціалізованих вчених рад із захисту докторських дисертацій. З його ініціативи та при його безпосередній участі на фізичному факультеті було відновлено видання «Вісника Харківського національного університету імені В.Н. Каразіна» серія «Фізика», головою редколегії якого він був до самої смерті.

Віктор Прохорович Лебедєв талановитий викладач, вчений і організатор фізичної освіти, людина щирої душі і вдачі. Світла пам'ять про нього назавжди збережеться в серцях всіх, хто його знав.

Редакційна колегія

PACS: 31.15.es; 61.72.jd; 61.72.uf; 61.72.Yx

Vacancy-fluorine clusters in silicon

A. Chroneos

Department of Materials, Imperial College, London SW7 2AZ, United Kingdom alexander.chroneos@imperial.ac.uk

It is known that Fluorine (F) doping and formation of F-vacancy (F_nV_m) clusters (for $n \ge 4$, $m \ge 1$) in silicon (Si) can suppress the transient self-interstitial mediated diffusion of boron (B). Recent experimental studies have revealed that the concentration of F_nV_m clusters is insignificant, which is in disagreement with results of a number studies. In the present study we use electronic structure calculations to evaluate the binding energies of F_nV_m clusters and V_n clusters. Significant binding energies of the V_n clusters reveal that the concentration of the large F_nV_m clusters is limited if compared to that of V_n or even smaller clusters.

Keywords: fluorine, silicon, vacancy, density functional theory

Відомо, що домішки фтору F і вакансіонні кластери фтор-ванадія $F_n V_m$ (n≥4, m≥1) в кремнії (Si) здатні уповільнювати швидкоплинну міжвузольну дифузію бору (B). Недавні дослідження установили, що концентрація кластерів $F_n V_m \epsilon$ незначною, що суперечить результатам багатьох теоретичних досліджень. У роботі ми проводимо розрахунок електронної структури з метою обчислення енергії зв'язку кластерів $F_n V_m$ та V_n . Значні енергії зв'язку кластерів V_n свідчать про те, що концентрація крупних кластерів $F_n V_m$ обмежена в порівнянні з концентрацією V_n і кластерів менших розмірів.

Ключові слова: фтор, кремній, вакансія, теорія функціональної щільності.

Известно, что примеси фтора F и вакансионные кластеры фтор-ванадия $F_n V_m$ (n≥4, m≥1) в кремнии (Si) способны замедлять быстропротекающую междоузельную диффузию бора (B). Недавние исследования показали, что концентрация кластеров $F_n V_m$ является незначительной, что противоречит результатам многих теоретических исследований. В настоящей работе мы проводим расчет электронной структуры с целью вычисления энергии связи кластеров $F_n V_m$ и V_n . Значительные энергии связи кластеров V_n свидетельствуют о том, что концентрация крупных кластеров $F_n V_m$ ограничена по сравнению с концентрацией V_n и кластеров меньших размеров.

Keywords: фтор, кремний, вакансия, теория функциональной плотности.

Introduction

Fluorine atoms (F) in silicon (Si) saturate the dangling bonds of vacancies, which results in formation of $F_n V_m$ clusters whose presence suppresses the transient enhanced diffusion of boron (B) ([1-12] and references therein). It has been determined in previous experimental studies that the average number of F atoms trapped per vacancy is 2-3 (see [3,4]). According to the density functional theory (DFT) predictions, the formation of large $F_n V_m$ clusters is favoured because of the energy gain as a result of the vacancy dangling-bond saturation by F atoms.[8-11] According to a recent model and interpretation[11] of the stability of the $F_n V_m$ clusters there is no limit on their size and therefore they are expected to grow until they saturate the dangling bonds available at a given temperature. However, Bernardi et al.[5] could not determine a detectable concentration of $F_n V_m$ clusters (for $n \ge 4$, $m \ge 1$). The results of Bernardi et al.[5] are consistent with the previous studies supporting the reduction of B transient enhanced diffusion by the codoping with F (for example [9] and references therein).

The impact of V_n cluster formation has not been considered in previous studies attempting to model the clustering of F atoms with V. Formation of V_n clusters results in reduction of the number of dangling bonds (for example a V_2 pair reduces the dangling bonds to 6 when compared to 8 in the case of two isolated V) and is energetically favorable.[13] The V_n cluster formation competes to that of $F_n V_m$ clusters as they are limiting the unbound V concentration available for the F atoms to bind.

In the present study we apply DFT to predict the most stable $F_n V_m$ and V_n clusters in Si, whereas mass action analysis can help explain the discrepancies in literature.

Calculations details

The simulations were performed using the DFT code CASTEP^{14,15} with the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional [16] and ultrasoft Vanderbilt pseudopotentials [17]. A 64-site tetragonal diamond structure Si supercell, periodic boundary conditions and 2x2x2 Monkhorst-Pack [18]

k-point sampling was used. A plane wave basis with the energy cutoff of 350 eV was used. The atomic coordinates and unit-cell parameters were relaxed using energy minimization. The efficacy of this approach in description of defect chemistry of semiconductors has been previously demonstrated [19-21].

Results and discussion

The bandgap of Si has been severely underestimated due to the inappropriate description of exchange when local density approximation (LDA) and the Perdew-Wang functional, PW91, are used [22]. Thus the present study is focused on uncharged supercell calculations performed at GGA and PBE levels of theory. This approach allows obtaining differences in energies less affected by the systematic errors in the exchange-correlation energy, which results from an intrinsic error correction capability for a 3D cluster. The condition of charge neutrality of supercells is fulfilled by assuming mid-gap Fermi level at which the $F_n V_m$ clusters should be neutral in charge.

When an interstitial F is positioned in-between two Si atoms (bond-center position), it forms two covalent σ bonds, releasing one electron to the crystal and in consequence becoming effectively positively charged for most conditions [9]. If we assume the tetrahedral position for the interstitial F, then an electron is needed for the interstitial F to complete its outer shell. Therefore, the interstitial F is expected to be negatively charged. Thus we have found that bond-centred position for the interstitial F is more energetically favourable than the tetrahedral position. This conclusion is in a good agreement with the previous first-principle predictions for F interstitials in Si [9].

Cluster formation can be quantified by calculating the binding energies. The binding energy, $E_b(F_nV_mSi_{N-n-m})$ of *n* F atoms to *m* V to form a F_nV_m cluster in Si is given by:

$$E_{b}\left(F_{n}V_{m}Si_{N-n-m}\right) = E\left(F_{n}V_{m}Si_{N-n-m}\right) - -nE\left(FSi_{N-1}\right) - mE\left(VSi_{N-1}\right) + (n+m-1)E\left(Si_{N}\right)$$

$$(1)$$

where $E(F_nV_mSi_{N-n-m})$ is the energy of an N lattice site supercell (here N = 64) containing N-n-m Si atoms, n F atoms and m vacancies, $E(FSi_{N-1})$ is the energy of a supercell containing one F and N-1 Si atoms; $E(VSi_{N-1})$ is the energy of a supercell containing one V and N-1 Si atoms; and $E(Si_N)$ is the energy of the N Si atom supercell. The physical meaning of negative binding energy is that the F_nV_m cluster is more stable with respect to n isolated F and m isolated V. The difference in the binding energy is the lowest between F_2V_3 and F_3V_3 (-1.75 eV). The energy change for every added interstitial F exceeds this value (i.e. -1.75 eV) for all the F_nV_m clusters considered (see Table 1).

Consistently with the previous results (for example

[11] and references therein) the clusters with all dangling bonds saturated of the general formula $F_{2m+2}V_m$ (for example F_4V and F_6V_2) exhibit the highest binding energies. As the bond-centred F interstitials are positively charged they should repel one another. Consistently with the previous work [9] we performed calculations for the clusters in which we assumed a fully relaxed configuration (i.e. in which the F atoms repel one another). It is worth noting that such clusters are more energetically favourable compared to those in which the F atoms are constrained to the original dangling bond directions (for example the $F_{\nu}V$ cluster, refer to fig. 1). The dependence of binding energy on the number of F and V in a cluster defect is shown in fig.2 (greater colour intensity means higher bond energy). It is evident that not only the increase in the cluster but also the exchange of F by V results in formation of a cluster having stronger binding energy.

Fig. 1. (color online) The F_4V cluster in the (a) fully relaxed configuration were the F atoms repel one another and (b) when the F atoms are constrained to the original dangling bond directions. Yellow and light blue spheres represent Si and F atoms respectively, whereas black spheres represent *V*.

The relative concentrations of $F_n V_m$ clusters can be quantified by applying mass action analysis. [23] Within the mass action framework, the concentration of $F_n V_m$ clusters, *i.e.* $[F_n V_m]$, relative to the concentration of unbound F atoms, *i.e.* [F], and the concentration of unbound V, *i.e.* [V], is given by

$$\frac{\left[F_{n}V_{m}\right]}{\left[F\right]^{n}\left[V\right]^{m}} = \exp\left(\frac{-E_{b}\left(F_{n}V_{m}Si_{N-n-m}\right)}{k_{B}T}\right)$$
(2)

where k_B is Boltzmann's constant, *T* is the temperature and E_b is the binding energy of clusters (given in Table 1).

Fig. 2. The dependence of binding energy on the number of F and V in a cluster defect (greater colour intensity means higher bond energy).

Eq. 2 highlights that the formation of the larger clusters is not only dependent upon the temperature and the binding energy differences between the clusters, but also on the relative [F] and [V] concentrations. Using Eq. 2 one can generate a set of equations for $F_n V_m$ clusters, which can be solved using the iterative minimisation approach. The accuracy of description by this method depends on the accurate determination of the initial V concentration. The efficacy and assumptions of the presented mass effect framework in related materials and issues was widely discussed in our previous papers [24-27].

Interestingly, in a recent related study concerning F-doped germanium (Ge) the mass effect analysis has implied that the really large $F_n V_m$ clusters are never of significance irrespective of the relative F and V

concentrations [28].

Conversely, smaller clusters such as V_4 , F_2V_2 and FV and isolated defects are more populous with their concentrations depending strongly on temperature [28]. Cluster populations in Si and Ge are expected to be similar given the analogous $F_n V_m$ binding energies. Therefore, there is consistency with the work of Bernardi et al. [5] which could not determine a detectable concentration of $F_n V_m$ clusters ($n \ge 4$, $m \ge 1$). The electronic structure calculations performed in this paper predict that V_{n} clusters have high binding energies and can be antagonistic to $F_n V_m$ clusters, Table 1, fig 2, because the concentration of the unbounded V available for the F atoms to bind is limited. Additionally, the change in binding energy strongly depends on the number of Fluorine and Vanadium atoms in a cluster defect. A mass action model proposed in this paper can be applied to calculate the relative concentration of the $V_{\rm p}$ and $F_{\rm p}V_{\rm m}$ clusters given an initially determined V concentration and the amount of F implanted in the Ge sample.

Acknowledgements

The authors acknowledge useful discussions with Robin Grimes (Imperial College London) and Hartmut Bracht (Münster University). Computing resources were provided by the HPC facility of Imperial College London.

- S. P. Jeng, T. P. Ma, R. Canteri, M. Anderle, and G. W. Rubloff, Appl. Phys. Lett. 61, 1310 (1992).
- X. D. Pi, C. P. Burrows, and P. G. Coleman, Phys. Rev. Lett. 90, 155901 (2003).
- P. J. Simpson, Z. Jenei, P. Asoka-Kumar, R. R Robison, and M. E. Law, Appl. Phys. Lett. 85, 1538 (2004).
- N. E. B. Cowern, B. Colombeau, J. Benson, A. J. Smith, W. Lerch, S. Paul, T. Graf, F. Cristiano, X. Hebras, and D. Bolze, Appl. Phys. Lett. 86, 101905 (2005).
- F. Bernardi, J. H. R. dos Santos, and M. Behar, Phys. Rev. B 76, 033201 (2007).
- S. Boninelli, G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, N. Cherkashin, and F. Cristiano, Appl. Phys. Lett. 93, 061906 (2008).
- C. G. Van de Walle, F. R. McFeely, and S. T. Pantelides, Phys. Rev. Lett. 61, 1867 (1988).

Table 1

Defect cluster	$E_{b}(F_{n}V)$	Defect cluster	$E_b(F_nV_2)$	Defect cluster	$E_{b}(V_{n})$
FV	-2.23	FV_2	-4.26	V_2	-1.58
F_2V	-4.20	F_2V_2	-6.92	V_3	-4.04
$F_{3}V$	-6.21	F_3V_2	-8.67	V_4	-6.41
F_4V	-8.36	F_4V_2	-10.61		
		F_5V_2	-12.78		
		F_6V_2	-14.94		

Binding energies (eV) for $F_n V_m$ clusters in Si.

- M. Diebel and S. T. Dunham, Phys. Rev. Lett. 93, 245901 (2004).
- 9. G. M. Lopez, V. Fiorentini, G. Impellizzeri, S. Mirabella, and E. Napolitani, Phys. Rev. B 72, 045219 (2005).
- V. Fiorentini and G. M. Lopez, Phys. Rev. Lett. 96, 039601 (2006).
- G. M. Lopez and V. Fiorentini, Appl. Phys. Lett. 89, 092113 (2006).
- S. A. Harrison, T. F. Edgar, and G. S. Hwang, Phys. Rev. B 74, 121201 (2006).
- 13. D. J. Chadi and K. J. Chang, Phys. Rev. B 38, 1523 (1988).
- M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
- M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002).
- J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- 17. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
- H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
- A. Chroneos, H. Bracht, R. W. Grimes, and B. P. Uberuaga, Appl. Phys. Lett. 92, 172103 (2008).
- H. Bracht and A. Chroneos, J. Appl. Phys. 104, 076108 (2008).
- 21. A. Chroneos, H. Bracht, C. Jiang, B. P. Uberuaga, and R. W. Grimes, Phys. Rev. B **78**, 195201 (2008).
- 22. R. J. Needs, J. Phys.: Condens. Matter 11, 10437 (1999).
- F. A. Kröger and V. J. Vink, in *Solid State Physics*, edited by F. Seitz and D. Turnbull (Academic Press, New York, 1956), Vol. 3, 307.
- 24. A. Chroneos, R. W. Grimes, B. P. Uberuaga, S. Brotzmann, and H. Bracht, Appl. Phys. Lett. **91**, 192106 (2007).
- 25. A. Chroneos, R. W. Grimes, H. Bracht, and B. P. Uberuaga, J. Appl. Phys. **104**, 113724 (2008).
- 26. A. Chroneos, R. W. Grimes, B. P. Uberuaga, and H. Bracht, Phys. Rev. B **77**, 235208 (2008).
- A. Chroneos, R. W. Grimes, and H. Bracht, J. Appl. Phys. 105, 016102 (2009).
- A. Chroneos, R. W. Grimes, and H. Bracht, J. Appl. Phys. 106, 063707 (2009).

PACS: 67.80.Gb Тепловые свойства; 65.40.-b Тепловые свойства кристаллических твёрдых тел

К вопросу о платообразном поведении теплопроводности твёрдого параводорода с тяжёлой атомарной примесью предельно малой концентрации

Светлой памяти В.Г. Манжелия посвящается

Н.Н. Жолонко

Черкасский национальный университет им. Богдана Хмельницкого бульв. Шевченко, 81, Черкассы, 18031,Украина zholonko@yahoo.com

Исследованы возможности использования данных о платообразном поведении теплопроводности твёрдого p-H₂ с примесями Ne и Ar предельно малых концентраций. Показана целесообразность применения в качестве тяжёлой примеси атомов Hg для дополнительной проверки гипотезы о сегрегации в твёрдом p-H₂ примесной подсистемы в цепочки вдоль ядер дислокаций. Отмечено, что при этом твёрдый p-H₂ может стать слабо проводящим и даже сверхпроводящим, поскольку длины корреляций куперовских электронных пар на три порядка превышают средние расстояния между примесями в цепочке. Обсуждаются условия проведения соответствующего эксперимента на основе существующих данных для других тяжёлых примесей в твёрдом p-H₂.

Ключевые слова: твёрдый параводород, теплопроводность, тяжёлая примесь, нитевидная примесная структура, электропроводность.

Досліджені можливості використання даних про платоподібну поведінку теплопровідності твердого p- H_2 з домішками Ne и Ar гранично малих концентрацій. Показана доцільність застосування як важкої домішки атомів Hg для додаткової перевірки гіпотези про сегрегацію в твердому p- H_2 домішкової підсистеми в ланцюжки уздовж ядер дислокацій. Відзначається, що при цьому твердий p- H_2 може стати слабко провідним і навіть надпровідним, оскільки довжини кореляцій куперівських електронних пар на три порядки перевищують середні відстані між домішками в ланцюжку. Обговорюються умови проведення відповідного експерименту на основі існуючих даних для інших важких домішок у твердому p- H_3 .

Ключевые слова: твердий параводень, теплопровідність, важка домішка, ниткоподібна домішкова структура, електропровідність.

The possibilities of using the data regarding plateau-like behavior of the thermal conductivity of solid $p-H_2$ doped with Ne and Ar extremely low concentrations were investigated. The usefulness of heavy impurity Hg for the further verification of segregation hypothesis in solid $p-H_2$ impurity subsystem in chains along the dislocation cores was shown. It is noted that this solid $p-H_2$ with Hg could have electric conductivity or even superconductivity due to the fact that the Cooper electron pairs correlation size is on three orders of magnitude higher than the average distance between the impurities in the chain. We discuss the conditions of the relevant experiments based on existing data for other heavy impurities in solid $p-H_2$.

Keywords: solid hydrogen, thermal conductivity, heavy impurity, impurity chain, electric conductivity.

Влияние тяжёлой атомарной примеси на теплопроводность твёрдого параводорода с неоном и аргоном было хорошо изучено и описано в работах [1-4]. В частности, для квазиизотопической примеси неона [1] в условиях предельно малых концентраций (миллионные части) наблюдался сильный эффект нелинейного роста теплосопротивления образца вследствие интерференции квазилокальных колебаний и других резистивных механизмов с нормальными фонон-фононными процессами, что привело к падению теплопроводности более, чем на порядок, с образованием резонансной ямы в сравнение с её максимумом для чистого параводорода [5,6]. Выращивание образцов производилось из газа при концентрациях, существенно меньших предельной растворимости, что позволяет говорить о системе уединённых примесей В матрице квантового кристалла высокого качества. При быстрой переплавке температурная зависимость теплопроводности параводорода с неоном не претерпевала каких-либо изменений.

Картина влияния на теплопроводность твёрдого параводорода более тяжёлой примеси аргона оказалась несколько иной [3]. Для образцов из газовой фазы также удалось получить резонансную аномалию на кривой, однако примесное влияние в целом оказалось не столь сильным. После переплавок кривые совпали с исходными (концентрации аргона 0,00004 ат. % и 0,00013 ат. %). Это указывало на отсутствие сегрегации примесей на скоростях выращивания, использовавшихся в эксперименте. Интересно отметить, что для образцов с на порядок большими концентрациями аргона кривые теплопроводности практически совпали с чистым параводородом, что можно объяснить распадом твёрдого раствора вследствие значительно меньших величин растворимости аргона (на сегодня не установлена), чем у неона. Таким образом, в отличие от примеси неона, в слабых растворах аргона при десублимации из газа и переплавке распадные процессы (сегрегация в кластеры, нитевидные структуры, выход на границы зёрен и т.п.) не наблюдались. Это можно объяснить меньшими коэффициентами диффузии аргона в твёрдом параводороде, чем у неона. Возможно, что для сегрегации таких тяжёлых примесей, обладающих меньшей подвижностью, требуется более медленная переплавка.

Дальнейшие исследования параводорода с неоном показали, что медленная переплавка для концентраций 0,0001 ат. % и 0,0002 ат. % вместо резонансной ямы может приводить к появлению ранее не наблюдавшегося для кривых теплопроводности симметричного плато: резонансная яма исчезала за счёт уменьшения горбов [7,8]. Объяснение столь интересного эффекта было проведено в рамках представления о перераспределении тяжёлых примесей в линейные структуры вблизи ядер дислокаций при медленном выращивании образца. Учитывая известный факт, что тонкие упругие линейные структуры рассеивают фононы пропорционально их кубу частоты, в рамках кинетического уравнения Больцмана (модель Каллауэя) удалось получить эффект плато, причём без дополнительных подгоночных параметров. При этом оценка плотности цепочек примесей дала величину, характерную для плотности дислокаций в твёрдом параводороде (10¹³ м⁻²).

В работе [9] была предложена одномерная двухуровневая диффузионная модель и проведена оценка коэффициента диффузии неона в параводороде (предплавильная область температур). Он оказался близким коэффициенту самодиффузии водорода, что соответствует высокой подвижности неона в матрице. Было отмечено, что образованию нитевидных структур в параводороде, состоящих из атомов неона, помимо термически активированных перескоков может также способствовать восходящая диффузия примеси (эффект Горского [10]) вблизи ядер дислокаций. Попав в дислокационную трубку, атомы неона оказываются для поперечных к ней движений как бы в более глубокой потенциальной яме. В то же самое время, вдоль ядра дислокации атом способен перемещаться достаточно свободно: в этом направлении его подвижность возрастает на несколько порядков.

Представляется важным подчеркнуть, что наличие резонансной кривой наблюдалось и для случая примеси аргона, когда его концентрация возможно уже не была ниже предельной растворимости, как это имело место для неона в p-H₂. Это позволяет надеяться, что и здесь существует такой режим выращивания, при котором будет иметь место частичная сегрегация аргона в некие промежуточные нитевидные структуры. Отметим, однако, что сам по себе такой поиск не сможет надёжно подтвердить или опровергнуть гипотезу о возникновении плато вследствие сегрегации тяжёлых примесей в нитевидные структуры.

Значительно более интересной примесью, чем аргон, для такого рода исследований является примерно такая же поразмерам, нов двараза более тяжёлая примесь ртути. Дело в том, что при комнатных температурах её упругость пара (табл.1) такова, что при нормальном давлении водорода получаются концентрации ртути в газовой смеси, близкие миллионным частям [12]. Таким образом, не составит труда подготовить в колбе с ртутным зеркалом соответствующую газовую смесь, из которой можно вырастить слабый твёрдый раствор быстрой десублимацией. Интерес здесь состоит в

Таблица 1

Упругость паров ртути в зависимости от температуры [12]. Последняя колонка даёт величину концентрации примеси в колбе над ртутным зеркалом (р_{атм} =760 мм.рт.ст.) в миллионных частях:

t, °C	р, 10 ⁻³ Па	р, 10-5 мм.рт.ст.	10 ⁻⁶ р/р _{атм}
-40	0,239	0,179	0,00236
-30	0,893	0,670	0,00882
-20	2,933	2,200	0,02895
-10	8,976	6,734	0,08860
0	25,31	18,98	0,24974
10	66,28	49,71	0,65408
20	162,66	122,0	1,60526
30	373,46	280,1	3,68553
40	815,71	611,8	8,05000
50	1696,0	1272	16,7368
60	3367,9	2526	33,2368

том, что ртуть – металл. Тогда в случае образования гипотетических нитевидных структур атомов ртути твёрдый р-H₂ станет хотя бы слабо электропроводящим. Это может стать хорошей дополнительной проверкой возможности возникновения примесных нитевидных структур, если на кривой теплопроводности удастся получить одновременно и плато. И хотя в цепочках средние расстояния между примесями в несколько раз превышают их размер, однако следует учитывать, что теперь p-H₂ – квантовый кристалл с подвижными в пустотах ядра дислокации металлическими примесями.

Для сравнения можно привести исследования [13] твёрдого р-Н₂ с примесью молекулярного азота, который также, как и аргон (а тем более – ртуть), имеет очень плохую растворимость. Однако, в отличие от азота, размер атомарной примеси ртути значительно меньше и фактически близок аргону (0,15 нм). Поэтому, представляется возможным вырастить параводород со ртутью десублимацией, как это было сделано для параводорода с аргоном, без заметных распадных процессов. Что касается примеси молекулярного азота (размер 0,37 нм), то здесь визуально наблюдались явные распадные процессы образованием с поликристаллов параводорода с включениями более мелких кристаллов азота. И, тем не менее, полученные результаты [13] весьма информативны и представляют большую научную ценность. Отметим, что скорость выращивания растворов (p-H₂)-N₂ составляла 1 мм/ мин, в то время как для растворов параводорода с неоном и аргоном она была в 4-5 раз меньшей. По видимому, режим выращивания параводорода со ртутью для получения резонансной ямы будет не намного отличаться от такового для примеси аргона, но это можно выявить только в серии экспериментов.

Важно отметить, что, в отличие от образцов с примесью неона, твёрдый параводород с аргоном вследствие более слабого его влияния на теплопроводность уже сам по себе даёт кривую теплопроводности, похожую на платообразную (менее глубокая резонансная яма). Поэтому можно предположить, что интересующий нас режим выращивания для параводорода со ртутью близок к резонансному. Поскольку примесь ртути более тяжёлая и немного больше, чем аргон, то это создаст искажения дополнительные кристаллической решётки. Их можно будет контролировать, наблюдая хроматическую поляризацию [14].

Важность исследования теплопроводности твёрдого параводорода с примесью ртути предельно малой концентрации трудно переоценить. Ведь ртуть – исторически первое вещество, на котором была открыта сверхпроводимость [15]. Её температура перехода в сверхпроводящее состояние равна T_c=4,15 К, что находится в области температурного диапазона

для наблюдавшихся плато и резонансных кривых примесных систем р-Н₂ с неоном и аргоном (плато для аргона в чистом виде пока не наблюдалось). Таким образом, если слабая проводимость в системе (p-H₂)-Hg появится, то, снижая температуру, возможно удастся получить и сверхпроводящее состояние параводорода, не прибегая к высоким давлениям. Такие слабо сверхпроводящие мостики в объёмном образце могут представлять большой интерес. Из оценки среднего расстояния между примесями в цепочке для неона в параводороде следует величина 1 нм [7, 8] (для ртути она, возможно, окажется больше в силу большего числа дислокаций в перенапряжённом образце). В то же время, радиус корреляции куперовских электронных пар на три порядка превышает эту величину, что оправдывает надежды на получение слабой сверхпроводимости.

Действительно, беря величину энергетической щели Δ приблизительно равной $\Delta \approx 10$ K $\approx 1.4 \cdot 10^{-22}$ Дж ≈ 0.001 eB, а для средней скорости электронов оценку $v = 10^6$ м/с, из принципа неопределённостей получаем оценку ξ размера пары [15]:

$$\xi \approx \frac{\hbar v}{\Delta} \approx \frac{10^{-34} \cdot 10^6}{1.4 \cdot 10^{-22}} \approx 10^{-6} \text{ M}$$

Таким образом, задача о влиянии тяжёлой атомарной примеси на теплопроводность твёрдого р-H₂ и другие физические величины представляет большой научный интерес и требует дальнейшего исследования. Нужны новые эксперименты, которые смогут дать ответы на поставленные вопросы. Представленные в данной статье материалы докладывались на конференции [16].

- Т.Н.Анцыгина, Б.Я.Городилов, Н.Н.Жолонко, А.И.Кривчиков, В.Г.Манжелий, В.А.Слюсарев, ФНТ, 18, 417 (1992) [Low Temp. Phys. 18, 283 (1992)].
- Б.Я.Городилов, А.И.Кривчиков, В.Г.Манжелий, Н.Н.Жолонко, О.А.Королюк, ФНТ, 21, 723 (1995) [Low Temp. Phys., 21, 723 (1995)].
- Б.Я.Городилов, А.И.Кривчиков, В.Г.Манжелий, Н.Н.Жолонко, ФНТ, 20, 78 (1994) [Low Temp. Phys. 20, 66 (1994)].
- Physics of Cryocrystals, V.G. Manzhelii, Yu. A. Freiman, M.L. Klein, and A.A. Maradudin (eds.), AIP Press, New York (1996).
- Н.Н.Жолонко, Б.Я.Городилов, А.И.Кривчиков, Письма в ЖЭТФ, 55, 174 (1992) [J. Lett., 55, 167 (1992)].
- Н.Н.Жолонко, ФТТ, 48, 1678 (2006) [Phys. Solid State, 48, 1568 (2006)].
- Н.Н.Жолонко, ФТТ, **49**, 1033 (2007) [Phys. Solid State, **49**, 1086 (2007)].
- Н.Н.Жолонко, ФНТ, 33, 676 (2007) [Low Temp. Phys., 33, 507 (2007)].

- 9. Н.Н.Жолонко, ФНТ, **39**, 722 (2013).
- 10. Я. Е. Гегузин, УФН, **149**, 149 (1986).
- Н.Н.Жолонко, Автореф.канд.дис.ФТИНТ НАН Украины, Харьков (1992).
- Краткий справочник физико-химических величин. Под ред. А.А.Равделя и А.М.Пономарёвой. Санкт-Петербург: Иван Фёдоров (2003).
- Л.А.Алексеева, В.Д.Нацик, В.В.Ромашкин, Л.А.Ващенко, А.С.Гарбуз, В.Ю.Ляхно, ФТТ, 48, 1428 (2006).
- Н.Н.Жолонко, ФТТ, 53, 131 (2011) [Phys. Solid State, 53, 138 (2011)].
- 15. А.А.Абрикосов. Основы теории металлов, Наука, Москва (1987).
- N.N. Zholonko. Abstract book International Conference "Superconductivity for Energy" (S4E-2014). Paestum (Salerno), Italy, May 15-19, p.72.

Константа равновесия димеризации молекул насыщенного пара тяжелой воды согласно второго вириального коэффициента уравнения состояния

С.В.Храпатый¹, В.Н.Махлайчук²

¹Киевский национальный университет им. Т.Г.Шевченко. ²Одесский национальный университет им. И.И.Мечникова.

Работа посвящена определению величины и температурной зависимости константы равновесия димеризации молекул насыщенного пара тяжелой воды по второму вириальному коэффициенту уравнения состояния. Проведено сравнение полученных значений с имеющимися экспериментальными данными. Установлено, что результаты определения констант димеризации на основе экспериментальных значений второго вириального коэффициента вполне удовлетворительно коррелируют с результатами теоретических расчетов. Значения константы равновесия димеризации молекул насыщенных паров легкой и тяжелой воды при температурах более 400 К находятся в удовлетворительном согласии.

Ключевые слова: димеризация, тяжелая вода, константа равновесия, второй вириальный коэффициент.

Робота присвячена визначенню величини і температурної залежності константи рівноваги димеризації молекул насиченої пари важкої води по другому віріальному коефіцієнту рівняння стану. Проведено порівняння отриманих значень з наявними експериментальними даними. Встановлено, що результати визначення констант димеризації на основі експериментальних значень другого віріального коефіцієнта цілком задовільно корелюють з результатами теоретичних розрахунків. Значення константи рівноваги димеризації молекул насичених парів легкої і важкої води при температурах понад 400 К знаходяться в задовільному узгодженні.

Ключові слова: димеризація, важка вода, константа рівноваги, другий віріальний коефіцієнт.

Work is devoted to the definition of the magnitude and temperature dependence the equilibrium constant of the dimerization of the molecules of the saturated vapor of heavy water on the second virial coefficient equation of state. A comparison of the values obtained with the available experimental data. It is found that the results of the determination of the constants of dimerization on the basis of the experimental values of the second virial coefficient satisfactorily correlate with the results of theoretical calculations. The values of the equilibrium constant of the dimerization of molecules of saturated vapor light and heavy water at temperatures above 400 K are in satisfactory agreement.

Keywords: dimerization, heavy water, the equilibrium constant, the second virial coefficient.

Введение

Необычные свойства воды (Н2О) известны с давних времен [1-3]. Многие из них нашли свое объяснение существованием водородных связей, образующихся между молекулами воды и приводящих к образованию молекулярных комплексов – димеров, тримеров и т.д. [4-6]. Открытие тяжелой воды (D2O) и последующее ее изучение показало, что замена водорода на дейтерий приводит к существенному отличию от свойств легкой воды. Так температура тройной точки у D2O выше на 3К, в то время как критическая температура наоборот ниже на ~ 4К [7]. Летучесть тяжелой воды ниже, чем легкой, тяжелая вода более гигроскопична, а уже 30%-й раствор тяжелой воды и обычной является токсичным и приводит к гибели живых организмов. При исследовании паров легкой и тяжелой воды достаточно успешным является применение вириального уравнения состояния, в котором ограничиваются вторым вириальным коэффициентом.

Экспериментальные значения второго вириального коэффициента для легкой и тяжелой воды отличаются в ~ 2.5 – 3 раза во всей области температур [8]. Следует ожидать, что этот факт может оказать значительное влияние на значения константы равновесия димеризации молекул пара тяжелой воды.

Отличия проявляются не только в термодинамических, но и в кинетических свойствах. Так кинематическая вязкость тяжелой воды на ~25% выше кинематической вязкости легкой воды на линии насыщения во всей области температур [8]. По-видимому, роль водородных связей и в тяжелой воде является существенной. В данной работе рассчитывается степень димеризации насыщенного пара тяжелой воды на линии насыщения и проводится сравнение со степенью димеризации насыщенного пара легкой воды.

Расчет константы димеризации молекул

© Храпатый С.В., Махлайчук В.Н., 2014

насыщенного пара

Равновесные свойства процесса димеризации: $m + m \Leftrightarrow d$ полностью описываются методами химической термодинамики. В соответствии с ней химические потенциалы мономеров (m) и димеров (d) удовлетворяют соотношению:

$$\mu_d = 2\mu_m \ . \tag{1}$$

Химические потенциалы мономеров и димеров являются функциями их концентраций, поэтому (1), фактически, является уравнением для определения концентраций. Молярные концентрации мономеров и молекул воды, объединенных в димеры, определяются стандартным образом:

$$c_m = n_m / n_0, \ c_d = 2n_d / n_0,$$
 (2)

где

$$n_0 = n_m + 2n_d, \quad n_0 = N_w / V,$$
 (3)

исходная плотность мономеров в недимеризованном паре. В соответствии с определением концентраций мономеров и димеров, условие их нормировки принимает вид:

$$c_m + c_d = 1. (4)$$

В работе [9] показано, что при малых отклонениях насыщенного пара от идеальности концентрация димеров определяется выражением:

$$c_d \approx \zeta + ..., \ \zeta = 2n_0 T K_p(T)$$
, (5)
где K_p(T) - константа димеризации.

В общем случае, химпотенциалы компонентов смеси мономеров и димеров содержат дополнительные вклады $\mu_i^{(ex)}$, i = m, d, обусловленные взаимодействием между частицами и имеют структуру:

$$\mu_i = \mu_i^{(id)} + \mu_i^{(ex)}, \ i = m, d$$
, (6)

Если константа димеризации, и соответственно $\zeta = 2n_0 T K_p(T)$ неизвестны, то комбинирование (1) с экспериментально задаваемым уравнением состояния

$$P = n_0 T (1 + n_0 B_{\exp}(T) + ...), \qquad (7)$$

позволяет получить явное выражение для K_p(T).

В [9] установлена связь $B_{exp}(T)$ (второй вириальный коэффициент уравне-ния состояния) с $K_p(T)$ и параметрами межмолекулярного взаимо-действия в частично димеризованном водном паре. В линейном по ζ_0 приближении:

$$\zeta = \zeta_{0},$$

$$\zeta_{0} = \frac{B_{\exp}(T) - v_{0}^{(m)} + a_{11}/T}{p_{1}\left(\frac{1}{2}v_{0}^{(d)} - \frac{3}{2}v_{0}^{(m)} - (a_{12} - 2a_{11})/T - 1/(2n_{0})\right)}$$
(8)

где

$$p_1 = 1 + 2n_0 \left(v_0^{(m)} - \left(a_{11} - 0.5a_{12} \right) / T \right)$$
(9)

 $v_0^{(m)}$, $v_0^{(d)}$ -собственные объемы мономера и димера, a_{11} , a_{12} - параметры уравнения состояния Ван-дер-Ваальса газовой смеси, описывающие избы-точное давление, обусловленное силами притяжения мономермономер и мономер-димер соответственно.

В квадратичном по ζ_0 приближении значение ζ определяется разложением:

$$\zeta = \zeta_0 + h \zeta_0^2 + \dots,$$

$$h = p_2 + 2p_1 \left(1 - \frac{3v_0^{(m)} - v_0^{(d)} - (7a_{11} - 4a_{12} + a_{22})/T}{4\left(-\frac{1}{n_0} + v_0^{(d)} - 3v_0^{(m)} - (a_{12} - 2a_{11})/T\right)} \right)$$
(10)
$$p_2 = 2n_0 \left(0.25v_0^{(d)} + v_0^{(m)} - (a_{11} - a_{12} + 0.25a_{22})/T \right)$$

Обработка экспериментальных данных

Для нахождения комбинации $\zeta = 2n_0 T K_p(T)$ необходимо знание экспериментальных значений второго вириального коєффициента $B_{exp}(T)$, величин исключенного объема $U_0^{(i)}$, i = m, d, и констант притяжения a_{mn} , m, n = 1, 2, уравнения Ван-дер-Ваальса.

Значения второго вириального коэффициента насыщенного пара тяжелой воды рассчитывались, исходя из экспериментальных данных по давлению, плотности и температуре на линии насыщения [8].

Величины $U_0^{(i)}$, i = m, d, и a_{mn} , m, n = 1, 2, связанны с поведением потенциалов межмолекулярного взаимодействия. Учтем, что в парообразном состоянии мономеры и димеры воды находятся в постоянном вращении, так что происходит самоусреднение точных микроскопических потенциалов, которые определяют взаимодействие между молекулами воды и димерами [10-13]. Подробное обсуждение операции самоусреднения по ориентациям мономеров и димеров содержится в [14-15].

Усредненные потенциалы взаимодействия между мономерами и димерами воды моделируются потенциалами Сазерленда:

$$U_{ij}(r_{12}) = \begin{cases} \infty, & r_{12} < \sigma_{ij}, \\ -\varepsilon_{ij} \left(\frac{\sigma_{ij}}{r_{12}}\right)^6, & r_{12} > \sigma_{ij}, \end{cases} \quad i, j = m, d. (11)$$

В этом случае значения $U_0^{(m)}$ и a_{11} находятся стандартным образом [16] и равны:

$$v_0^{(m)} = \frac{16\pi}{3} r_m^3, \ a_{11} = \varepsilon_m v_0^{(m)}$$

Вовсех последующих расчетах предполагается, что

Вісник ХНУ, № 1113, серія «Фізика», вип. 20, 2014

исключенные объемы мономеров и димеров совпадают с учетверенными объемами твердых сфер с радиусами

 $r_m = 1,58$ Å и $r_d = 2,98$ Å соответственно. Кроме того, учитывается, что усредненные значения константы взаимодействия принимают значения (см. [14]):

Т	300 K	400 K	500 K	600 K
$\varepsilon_m / k_B T_c$	3.08	3.05	2.70	1.78

Эти значения примерно в четыре раза превышают значение константы дисперсионного взаимодействия [10-13], поскольку индуцированный дипольный момент на каждой из молекул воды создается как флуктуациями электронной плотности на соседних молекулах воды, так и изменением ориентаций затравочного дипольного момента этих молекул (см. [14,15]).

Для нахождения $U_0^{(d)}$ и a_{22} необходимо учитывать вращательное движение димеров, вследствие чего его радиус следует принять равным диаметру мономера:

 $r_d = \sigma_{mm}$. Среднее значение поляризуемости вращающегося димера $\alpha_d \approx 2\alpha_m$, поэтому $\varepsilon_d \approx 4\varepsilon_m$. Тогда:

$$\upsilon_0^{(d)} = \frac{16\pi}{3} r_d^3 \Longrightarrow 8\upsilon_0^{(m)},$$
$$a_{22} = \varepsilon_d \upsilon_0^{(d)} \Longrightarrow 32\varepsilon_m \upsilon_0^{(m)}$$

Таблица 1.

Степень димеризации и константа димеризации в насыщенных парах тяжелой воды в сравнении с парами легкой воды.

T(K)	c _d (D20)	K _p (T) (D20)	c _d (H20) [9]	K _p (T) (H20) [9]
300	0,005	0,1580	0,003	0,0749
325	0,016	0,1279	0,006	0,0430
350	0,034	0,0858	0,011	0,0260
375	0,064	0,0593	0,018	0,0159
400	0,102	0,0387	0,026	0,0097
425	0,149	0,0257	0,036	0,0060
450	0,202	0,0166	0,044	0,0036
475	0,251	0,0104	0,052	0,0021
500	0,295	0,0063	0,059	0,0013
525	0,343	0,0038	0,071	0,0008
550	0,373	0,0022	0,080	0,0005
575	0,439	0,0014	0,112	0,0004
600	0,552	0,0009	0,179	0,0003
625	0,886	0,0008	0,394	0,0004

По тем же причинам, взаимодействие димера и мономера описывается параметрами: $r_{dm} = 3r_m$ и $\varepsilon_{dm} = 2\varepsilon_{mm}$, что позволяет принять:

$$a_{12} \approx \frac{27}{4} \upsilon_0^{(m)} \varepsilon_{mm}$$

Результаты расчетов представлены в таблице 1.

Обсуждение полученных результатов

Как видно из таблицы 1 различие между константами димеризации паров тяжелой и легкой воды является весьма значительным: в зависимости от температуры оно достигает 2–3 раз. С принципиальной точки зрения это связано с различием в характере тепловых возбуждений в димерах тяжелой и легкой воды. Что касается параметров основного состояния димеров, то они близки между собой. Вместе с тем, вращательные постоянные димеров тяжелой и легкой

Рис. 1. Равновесная конфигурация димера воды

Таблица 2.

IOB	H ₂ O			D ₂ O		
Виды потенциал	Q_x	Q_y	Q_z	Q_x	Q_y	Q_z
GSD	0.21	8.65	0.21	0.18	4.32	0.21
SPC	0.23	8.49	0.22	0.20	4.24	0.24
SPC/E	0.24	8.39	0.22	0.20	4.19	0.25
TIPS	0.24	9.42	0.22	0.20	4.71	0.25
TIP3P	0.24	9.44	0.22	0.20	4.72	0.25
SPCM	0.21	9.58	0.23	0.18	4.79	0.21

воды отличаются. Для конфигурации димера изображенной на рис.1 вращательные кванты димеров $Q_i = \hbar^2 / 2I_i$ (в см⁻¹, \hbar - постоянная Планка и I_i -

Таблица 3.

Частоты малых колебаний димера обычной и тяжелой воды для потенциалов SPC и TIPS [18].

SPC				TIPS
	H ₂ O	D ₂ O	H ₂ O	D ₂ O
ω,	70.51	49.86	73.71	52.12
ω2	240.73	170.22	212.63	172.24
ω,	246.00	219.58	243.59	201.72
ω4	310.53	233.37	322.32	227.19

момент инерции относительно *i*-й оси) для различных видов потенциалов межмолекулярного взаимодействия указаны в таблице 2. Отличия составляют ~ 15-20%, для вращений, относительно осей х, z и почти в 2 раза относительно Оу [17].

Заметно отличаются и энергии колебательных *к*_{*p*,atm⁻¹}

Рис.2. Температурная зависимость константы димеризации для насыщенных паров обычной (сплошная линия) и тяжелой воды (пунктирная линия). Красные линии – прямой расчет [18], синие линии – по второму вириальному коэффициенту.

возбуждений. Сравнение частот малых колебаний для димеров обычной и тяжелой воды представлено в таблице 3.

Результаты определения констант димеризации на основе экспериментальных значений второго вириального коэффициента вполне удовлетворительно коррелируют с результатами теоретического определения констант димеризации в работах [19-21].

Сравнение расчетов показано на рис.2.

Как видно из рис.2, значения константы равновесия димеризации молекул насыщенных паров легкой и тяжелой воды при температурах более 400 К находятся в удовлетворительном согласии. При температурах ниже 400 К различие более существенно, т.к. экспериментальные значения второго вириального коэффициента тяжелой воды известны с меньшей точностью, чем при более высоких температурах (данные разных авторов различаются между собой) [8,22].

Авторы выражают глубокую благодарность ак. НАНУ Л.А.Булавину и проф. Н.П.Маломужу за полезные обсуждения результатов работы.

- 1. Эйзенберг Д., Кауцман В.: Структура и свойства воды. Ленинград : Гидрометеоиздат ,1975. 280 с.
- Burrows K., Pike E.R., Vaughan J.M. // Nature. 1976. V. 260.P.131.
- Ashwell G. E., Eggett P. A., Emery R. et al. // Nature. 1974.
 V.247. P. 196.
- Bulavin L.A., Fisenko A.I., Malomuzh N.P. // Chem. Phys. Lett. 2008. V.453 (4–6). P. 183.
- Bulavin L.A., Lokotosh T.V., Malomuzh N.P // J. Mol. Liquids 2008.V.137 (1–3). P.1.
- F. N. Keutsch, R. J. Saykally.// PNAS 2001 vol. 98 ,no. 19,p.10533–10540.
- Физические величины. Под ред. Григорьева И. С., Мейлихова Е. З., М.: Энергоатомиздат, 1991, стр. 297.
- Moscow Power Engineering Institute: Mathcad Calculation Server. http://twt.mpei.ac.ru/
- Маломуж Н.П., Махлайчук В.Н., Храпатый С.В.// ЖФХ, 2014,88,6.
- 10. Jorgensen W. L. // J. Am. Chem. Soc. 1981.V. 103. P. 335.
- Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F. et al. // Intermolecular Forces / edited by B. Pullman. Reidel: Dordrecht. 1981. p. 331.
- Jorgensen W. L., Chandrasekhar J., Madura J. D. et al. // J. Chem. Phys .1983. V.79. P. 926.
- *13.* Berendsen H. J. C., Grigera J. R., Straatsma T. P. // J. Phys. Chem. 1987. V. 91. P. 6269.
- Lishchuk S.V., Malomuzh N.P., Mahlaichuk P.V. // Phys. Lett.A. 2010.V.374. P.2084-2088.
- 15. Махлайчук П.В.Роль водородных связей в формировании свойств воды: Автореф. дис .на соискание уч. степени канд. ф.-мат.наук. Одесса: Одесский национальный университет им. И.И.Мечникова, 2013, 22 с.
- *16. ЛандауЛ.Д.,Лифшиц Е.М.* Статистическая физика, ч.1,М.:Наука, 1978. 583 стр.
- 17. Махлайчук П.В., Мороз К.О. // Вісник КНУ, Серія фізикоматематичні науки, 2012, 4, стр. 289-294.
- 18. Махлайчук П.В., Храпатый С.В.// ЖФХ, в печати.
- *19. Curtiss L. A., Frurip D. J., Blander M.//* J.Chem. Phys., 1979, 71(6), p.2703-2711.
- 20. Shillings A. J. L., Ball S. M., Barber M. J. et al. Atmos. Chem. Phys. 2011. V.11.P.4273.
- 21. M. Yu. Tretyakov, D. S. Makarov // J.Chem.Phys., 2011,V.134,p.084306-1 084306-9.
- 22. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей, М.:Наука, 1972, 721 стр.

PACS: 74. 72.-h

Influence of high pressure on phase separation in underdoped HoBa₂Cu₃O_{7- $\overline{0}$} single crystals

V.S. Krylovskiy, N.R. Vovk

Kharkov National University, 4 Svoboda Sq., 61022 Kharkov, Ukraine

We investigate the influence of high hydrostatic pressure on the electrical resistance in the ab-plane in $HoBa_2Cu_3O_{7-\delta}$ single crystals with oxygen deficiency. It is determined that the high-pressure induced redistribution of the labile oxygen enhances the phase separation, which is accompanied by structural relaxation and ascending diffusion within the volume of the sample. It is determined that the formation of the low-temperature phase can occur at the twin boundaries.

Keywords: HoBaCuO single crystals, hydrostatic pressure, labile oxygen, metal-to-dielectric transition, pseudo-gap anomaly, twin boundaries.

В работе исследовано влияние высокого гидростатического давления на электросопротивление в ab-плоскости монокристаллов HoBa₂Cu₃O_{7.6} с недостатком кислорода. Установлено, что индуцируемое высоким давлением перераспределение лабильного кислорода приводит к усилению фазового расслоения, которое сопровождается процессами структурной релаксации и восходящей диффузии в объеме экспериментального образца. Высказано предположение о том, что зарождение низкотемпературной фазы может происходить на границах двойников.

Ключевые слова: гидростатическое давление, границы двойникования, лабильный кислород, монокристаллы HoBaCuO, псевдощелевая аномалия, переход металл-диэлектрик.

У роботі досліджено вплив високого гідростатичного тиску на електроопір в ab-площині монокристалів HoBa₂Cu₃O₇₋₈ з нестачею кисню. Встановлено, що індукований високим тиском перерозподіл лабільного кисню приводить до посилення фазового розшарування, що супроводжується процесами структурної релаксації і висхідної дифузії в об'ємі експериментального зразка. Висловлено припущення про те, що зародження низькотемпературної фази може відбуватися на межах двійників.

Ключові слова: гідростатичний тиск, межі двійникування, монокристали HoBaCuO, лабільний кисень, псевдощілинна аномалія, перехід метал-діелектрик.

An important characteristic of high temperature superconducting compounds (HTSC) of the system $ReBa_2Cu_3O_{7,\delta}$ (Re = Y or rare earth ion) is the ability to realize a non-equilibrium state under a specific oxygen non-stoichiometry [1-3]. This can be initiated by external means, such as temperature [1] or high pressure [3]. The non-equilibrium state is accompanied by a redistribution process of the labile oxygen and structural relaxation, which in turn can affect substantially the electrotransport parameters of the system [1,3]. Importantly, the conductivity characteristics and the crucial parameters can be modified by substituting Y with rare-earth elements. When yttrium (Y) is substituted with holmium (Ho) that has a large magnetic momentum (more than $10\mu_{\rm B}$) [4], HoBa₂Cu₃O_{7.8} is paramagnetic in the normal state. Nevertheless, as with other rare earth elements, the substitution of Y with the paramagnetic ions Ho or dysprosium (Dy), the superconducting properties in stochiometric ReBa₂Cu₃O_{7- δ} compounds (with $\delta \le 0.1$) do not change substantially [4]. This can be explained by the localization of Ho or Dy away from the superconducting

©Krylovskiy V.S., Vovk N.R., 2014

planes, which in turn interfere with the formation of distant magnetic order. In oxygen deficient HTSC compounds of the 1-2-3 system the rare earth ion is sensitive to the local symmetry of its environment and to the charge density distribution. Their change affects the crystalline field, forming the electronic structure of this ion [5]. A characteristic peculiarity of the oxygen deficit samples (with $\delta \ge 0.3$) is the broadening of the resistivity transfers under pressure [3,6-8]. The reason of such behavior has not been completely determined. In spite of a number of studies on the relaxation processes in the 1-2-3 system under high pressure, many aspects such as the charge transfer and the nature of the redistribution of the vacancy subsystem are still undetermined. Notably, a substantial part of the experimental material was ceramic and polycrystalline samples with a high content of grain boundaries (intergrain bonds) [2,6,7]. In the case of single crystals the existence of twin boundaries (TB) [3] influences the transport properties in the normal state. This aspect is not yet sufficiently studied,

due to experimental difficulties in determining the contribution of these defects. In the present study we investigate the effect of hydrostatic pressure up to 5 kbar on the electro-transport characteristics and the structural relaxation in the *ab*-plane of oxygen deficient HoBa₂Cu₃O₇₋₈ single crystals. Two different kinds of transport current geometry were investigated: (a) parallel (I||TB) when the impact of the TB in the carriers scattering processes is minimized and (b) at an angle of $\alpha = 45^{\circ}$ between I and TB.

 $HoBa_2Cu_3O_{7-\delta}$ single crystals were grown from the flux in a gold crucible using similar technology as for the growth of $YBa_2Cu_3O_{7-\delta}$ single [1,3]. To obtain samples with oxygen concentrations having $\delta \leq 0.15$, the crystals were annealed in an oxygen flow at a temperature of 370-410°C for five days. This procedure is accompanying by the formation of TB system, which effectively minimizes the elastic energy of the crystal lattice in the tetragonal-orthogonal transition [3]. For the resistance measurements the single crystals were selected from the same batch and had dimensions: 1.7 mm X 1.2 mm X 0.2 mm (sample S1) and 1.9 mm X 1.5 mm X 0.3 mm (sample S2). In these samples the c-axis were oriented along the smallest dimension, which had singly-directed TB areas. The experimental geometry was selected so that the transport current vector in the abplane, was either parallel, I||TB, (sample S1), or at an angle of $\alpha = 45^{\circ}$ (sample S2) to the twin boundaries, as it is shown in the insets (a) of Fig.1. To reduce the oxygen concentration, the crystals were annealed in an oxygen

flow at higher temperature range for three to five days. Electric contacts were formed with the standard four-contact scheme by applying silver paste onto the crystal surface and the connection of silver conductor. The resistance in the *a*-*b* plane was measured using the standard method for two opposite directions of a direct current up to 10 mA as it was described in detail previously [1]. The hydrostatic pressure was produced in an autonomous chamber of the piston-cylinder type [3] and was measured using a manganin manometer. The temperature measurements were performed using a copperconstantan thermocouple which was mounted at sample level on the outside surface of the chamber. To determine the influence of the structural relaxation, the measurements were made a few days after the pressure application and removal, when the relaxation processes were completed.

Fig. 1 (a) and (b) shows the temperature dependence of the resistivity in the *ab* plane, $\rho_{ab}(T)$, for the S1 and S2 single crystals measured after the high hydrostatic pressure application-removal procedure. Part of the curves in this and the following figures is not coerced for clarity. The insets (b) of Fig. 1 show the resistivity transitions to the superconducting state in $\rho_{ab}(T)$ coordinates. The analysis of the experimental curves 1, measured before the application of high pressure, show that with the reduction of the oxygen concentration the critical temperature of the sample decreases. Furthermore, this leads to the expansion of the temperature width of the resistivity transition into the superconducting state compared to the initial sample (expansion by more than 10 times from $\Delta T_c \leq 0.3$ K to $\Delta T_c \approx$

Fig. 1. (a) and (b) Temperature dependence of the resistivity $\rho_{ab}(T)$ for samples S1 and S2 at different pressures. Curve 1 was obtained prior the application of pressure; curve 2 –was obtained immediately after the application of pressure 4.8 kbar; curve 3 – was measured after keeping the samples in room temperature under pressure 4.8 kbar within a week; curve 4 – was obtained immediately after the removal of pressure and curve 5 – was measured immediately after keeping the sample for three days under zero pressure. The insets of Fig. 1 show the geometry of the experiment and the resistivity transitions to the superconducting phase.

3.5K). Additionally, the superconducting transition acquires an expressed stepwise form. This indicates that there are at least two phases, having different critical temperatures (T_{c1} and T_{c2}) to the superconducting transition [1,3]. The reduction of the oxygen concentration in both crystals leads in the transition from a quasi-metallic behaviour of $\rho_{ab}(T)$ [1,3] to the dependence with the characteristic thermally activated sagging.

The application of pressure, leads to a decrease of resistance and to an increase of T_c, with a rate $dT_c/dP \approx$ 0.7 K.kbar¹. This value is in consistent with previous studies [3,6-8], concerning oxygen deficient YBa₂Cu₃O_{7.8} samples. Interestingly, the electrical resistivity is decreasing not only as a consequence of the high pressure application, but also in the isobar process of keeping the sample at room temperature just after the application of high pressure. For example, in Fig.1 (a) and (b) curves 2 and 3 show the dependence for the samples S1 and S2 respectively, measured directly after the application of pressure (4.8 kbar), as well as after the isobar process of retaining the sample at room temperature for five days following the application of high pressure. This exposure leads to an additional decrease in electrical resistance from 4-5%. Similar behaviour of $\rho_{ab}(T)$ was also observed after the removal of high pressure. Thus, in Fig. 1 curves 1 and 4 correspond to the dependence, measured before the application and immediately after the removal of pressure. Comparison of these curves indicates that the results are affected on the time that the sample is at room temperature. Immediately after the pressure removal, the value of the electrical resistance of the sample at room temperature, was approximately 4% less than the value measured prior

the application of the pressure and consequently relaxed for three days to its equilibrium value. After this, the $\rho_{ab}(290K)$ value saturates and the $\rho_{ab}(T)$ dependence for both crystals almost completely coincides with the original curves, obtained before the prior the application of pressure. This confirms the reversibility of the process.

From Fig.2 (transition to the superconducting phase in $d\rho_{ab}/dT$ -T coordinates), it is determined that the retention of the sample at room temperature in the application-removal of high pressure process has a significant influence on the width and shape of the superconducting transition. A characteristic feature of the influence of retaining the samples at room temperature for 3-5 days, is the significant peak displacement, up to $\Delta T_c \approx 0.5$ -1.5K, in the $d\rho_{ab}(T)/dT$ dependence (according to [9] the temperature corresponding to this maximum is T_c), upwards and downwards in temperature, which indicates the change of the transport current flow paths. This in turn can occur in the case of strengthening the phase separation of the non-stoichiometric oxygen samples. The latter requires oxygen transport between phases with different T_c .

Comparing curves 2 and 3 shows, that after holding the sample under pressure for a week, the absolute value $d\rho_{ab}(T)/dT$ is reduced by about 1.5 times and the transfer itself significantly spreads. The dependence measured directly after the pressure removal (curve 4) there is change only in the absolute value of T_e, while the transfer width and value $d\rho_{ab}(T)/dT$ both remain practically unaltered. The comparison between curves 4 and 5, demonstrates that after the sample experienced atmospheric pressure for 3 days at room temperature, the width and the transfer regained their initial values. Therefore, when the pressure increases a part

Fig. 2. The temperature dependence $d\rho_{ab}(T)/dT$ in the interval of the transition to the superconducting phase. The numbering of the curves corresponds to the numbers in Fig. 1. The insets show the temporary dependence of the isobar relaxation $T_c(t)$ of the critical temperature for high T_c and low T_c phases (dark and light symbols respectively) for both samples, obtained during the step by step annealing at room temperature after the application of pressure 4.8 kbar.

of the oxygen of the lower T_c phase, migrates to a higher critical temperature phase and when the pressure is reduced, the reverse process takes place. This effect can be possible in the case of the realisation of an ascending diffusion process [10], in which there is an inhomogeneous field of mechanical stresses (eg. due to external compression). In a compressive environment large impurity atoms (with respect to the lattice atoms) will experience larger force compared to the lattice atoms. Atoms with large ionic radius are likely to diffuse to tensile stress regions, whereas atoms with smaller volume diffuse in the region of compression. These concepts of ascending diffusion may also govern point defects [10] as in the present work oxygen vacancies. The reversibility of this effect is also an important feature. For example, when removing the external stress the reverse ordering of the concentration of the point defects in the sample will occur.

The insets to Fig. 2 (a) and (b) show the temporary dependence of the isobar relaxation $T_e(t)$ of the critical temperature for high T_e and low T_e phases (dark and light symbols respectively) for both samples, obtained during the step by step annealing at room temperature after the application of pressure of 4.8 kbar. The solid lines are presented the results by the expression proposed by Jorgencen et al. [11]:

$$T_{c}(t) = T_{c}(\infty) + [T_{c}(0) - T_{c}(\infty)] \exp[-(t/\tau)^{1/2}], (1)$$

where $T_c(\infty)$ and $T_c(0)$ are the equilibrium and the initial value of the critical temperature, respectively, and τ is a characteristic time for the relaxation process.

Calculations with Eq. (1) show that the equilibrium value $T_c(\infty)$ in the step by step annealing is accelerated for the low temperature phases in comparison to the high temperature phases: $\tau(T_{c1})/\tau(T_{c2}) \approx 1.32$. Apparently, this phenomenon is due to a difference of the diffusion path during the high-pressure-induced redistribution of labile components. It appears that, for the same reason, the reverse process (alignment of the labile oxygen's concentrations) is occurring, after the pressure removal. In the second case, the oxygen atoms have to overcome smaller distances to leave the high-temperature (oxygen richer) phase that in the first case when the atoms of the labile oxygen have to overcome greater distances in order to find a vacancy in the low-temperature (oxygen depleted) phase.

Using the values of τ , obtained by Eq. (1) using our experimental data, we can determine the activation energy of the relaxation process in our samples [8] using the Arrhenius law:

$$\tau = \tau_0 \exp\left(\frac{E_A}{k_B T}\right),\tag{2}$$

where $\tau_0 = 1.4.10^{-12}$ s is the characteristic period [2], which, according to [8], is independent the pressure. The activation energy value obtained from our data $E_{A} \approx 0.94 \text{ eV}$ is slightly lower than the typical values for the YBa₂Cu₃O_{7.8} compounds with reduced oxygen concentration [12]. It should also be noted that all the characteristic shape changes in the temperature dependence and absolute values of the resistivity parameters that where observed in the isobaric annealing process at room temperatures, in HoBa₂Cu₂O_{7.8} were more pronounced compared to $YBa_2Cu_3O_{7-\delta}$. In Ho $Ba_2Cu_3O_{7-\delta}$ the Ho ion (which has larger ionic radius than Y) plays an important role to the structural order of the system affecting the oxygen ions interactions in the CuO planes. Previous studies confirmed that when we substitute Y to rare-earth elements with larger ions significant qualitative changes are evident regarding the $T_c(\delta)$ dependence in ReBa₂Cu₂O_{7.8} [5]. Herewith, the characteristic for YBa₂Cu₃O_{7.8} dependence $T_c(\delta)$ with two plateaus at 60 K and 90 K degenerates in a more sharp monotonical dependence. Additionally, the Ortho-II structure is not realized at all [5]. It can be assumed that oxygen hypostoichiometric HoBa2Cu2O25 compounds have a more extended disordered oxygen hyperstructure than the $YBa_2Cu_3O_{7-\delta}$ compounds.

In previous works [13, 14], the value of critical temperature in YBa₂Cu₃O_{7- δ} was correlated with the number of holes in the CuO₂ layers via:

$$T_{c} = T_{c}^{\max} \left[1 - 82.6(n - n_{opt})^{2} \right], \qquad (3)$$

where T_c^{max} is the maximum critical temperature and $n_{opt} = 0.25$ is the optimal number of holes in the surface (layer) for this compound. According to Eq. 3 when we increase the pressure at room temperature, the number of carriers for the low-temperature phase is reduced by about 2-3%, whereas at the same time in the high-temperature phase the reverse process is taking place as the number of holes increases. This is consistent with the concept that the application of high hydrostatic pressure leads to a diffusion redistribution of the labile components from the phase of lower critical temperature to the high-temperature superconducting phase. It is an important confirmation of the interrelation between structural and electro-transport anomalies in the system. In our case, one of the possible reasons of the phase separation could be the origination of the low Tc in the TB boundaries. Indeed, experiments on the vortex structure [15,16] have shown that the density of vortices in TB increases compared with their density in the volume of the superconductor, indicating the suppression of T_o in the TB. This can be due to the low oxygen concentration in the TB plane, which effectively implies the high concentration of oxygen vacancies [17], as a consequence of mechanical tensions. Vacancies create strong attractive fields (i.e, repulsion field for the oxygen

atoms)

This assumption can be justified by the different forms of superconducting transitions obtained with the different experimental geometries (here I || TB and an angle between I and the TB of 45°). Figure 2 shows that for I TB the height of the peak of the $d\rho_{ab}(T)/dT$ dependency of the low-temperature phase is almost 3 times lower than the height of the peak corresponding to the high-temperature phase. Together with this, the more pronounced maximum, corresponding to high-temperature phase. In the second experiment geometry (angle between I and the TB of 45°) we observed an inverse $d\rho_{ab}(T)/dT$ dependence with a more pronounced maximum, corresponding to low-temperature phase. Since in the first case, the TB is parallel to the transport current there is a high probability of percolation paths mediating the current flow in the high-temperature phase. When the TB is oriented at an angle of 45° relative to the transport current vector (measurement of electrical resistance of the single crystal S2), the percolation paths of current flow in the high-temperature superconducting phase are missing. Therefore, the intensity of current carriers scattering should be minimal when the experiment geometry is I || TB, which is reflected in the transformation of the shape in the corresponding $d\rho ab(T)/dT$ dependence. The latter preposition is indirectly confirmed by the difference of the absolute value of resistivity at room temperature, which is less than 7% in the case of the experiment geometry I TB, in comparison with the case of the experiment geometry when the angle between I and TB is 45°.

It should be noted that the final conclusion about the nature of the impact of TB on the phase separation in HoBa₂Cu₂O₇₋₈ single crystals, requires additional experimental studies. A future direction should be the investigation of superconducting transitions in untwining and twinning single crystals with a specific distribution of TB planes. In one segment of the crystal the transport current vector has to be oriented in parallel, and in another perpendicular to the TB plane. In the latter case, $I^{\perp}TB$, the transport current will cross over the TB plane in one of the segments of the single crystal. As it can flow within the volume of the superconductor it passes by the TB plane in the other segment of the crystal (when I || TB). The measurements in the untwined crystals provide data regarding the existence (or lack) of the step-like form of the transition to the superconducting phase, as well as the difference $(T_{c1}-T_{c2})$ in the absence of plane defects in the sample.

To conclude, twin boundaries are effective scattering centres of normal carriers in $HoBa_2Cu_3O_{7-\delta}$ compounds. Reducing the oxygen stoichiometry of $HoBa_2Cu_3O_{7-\delta}$ single crystals, results to an uneven distribution of oxygen in the volume of the crystal and the formation of phases with different critical temperatures. Herewith, the substitution

of yttrium with holmium significantly affects the charge distribution and the effective interaction in the CuOplanes, thereby stimulating the disordering in the oxygen subsystem. Induced by high pressure the redistribution of labile oxygen is enhances the phase separation in the volume of oxygen deficient HoBa₂Cu₃O₇₋₈ single crystals. Additionally, it stimulates ascending diffusion processes between the superconducting phases with different oxygen stoichiometry.

- Vovk R.V. Structural relaxation, metal-to-insulator transition and pseudo-gap in oxygen deficient HoBa₂Cu₃O_{7-δ} single crystals / R.V.Vovk, M.A.Obolenskii, A.A. Zavgorodniy, I.L. Goulatis, V.I. Beletskii, A. Chroneos // Physica C. – 2009. –V.469. – P. 203-206.
- Veal B.W. Time-dependent superconducting behavior of oxygen-deficient YBa₂Cu₃O_x: Possible annealing of oxygen vacancies at 300 K / B.W. Veal, H. You, A.P. Paulicas et al. (6 auth.) // Phys. Rev. B. -1990. -V.42, № 3. -P.4770-4773.
- Vovk R.V. Effect of high pressure on the fluctuation conductivity and the charge transfer of YBa₂Cu₃O_{7.δ} single crystals/R.V.Vovk, M.A. Obolenskii, A.A. Zavgorodniy, A.V. Bondarenko, I.L. Goulatis, A.V. Samoilov, A.I. Chroneos // Journal of Alloys and Compounds. – 2008. -V.453. - P.69-74.
- Гинзберг Д.М. Физические свойства высокотемпературных сверхпроводников / Д.М. Гинзберг. - М.: Мир, 1991. -С.543.
- Lutgemeier H. A different type of oxygen order in ReBa₂Cu₃O_{6+x} HT_c superconductors with different Re ionic radii / H. Lutgemeier, S. Schmenn, P. Meuffels, O. Storz, R. Schollhorn, C. Niedermayer, I. Heinmaa , Y. Baikov // Physica C. - 1996. - V.267. - P.191-203.
- Driessen A. Pressure dependence of the T_c of YBa₂Cu₃O₇ to 170kbar / A. Driessen, R. Griessen, N Koeman, E. Salomons, R. Brouwer, D.G. de Groot, K. Heeck, H. Hemmes, J. Rector // Phys. Rev., B36 (1987), 5602-5607.
- Borges H.A. Pressure study of the paraconductivity of high T_c superconductors / H.A. Borges, M.A. Continentino // Solid State Commun. -1991. - V.80. -P.197-199.
- Sadewasser S. Pressure dependence of T_c to 17 GPa with and without relaxation effects in superconducting Y₁Ba₂Cu₃O_x / S. Sadewasser, J.S. Schilling, A.P. Paulicas, B.M. Veal // Phys. Rev. B. -2000. -V.61, №1. -P.741-749.
- Mendonca Ferreira L. Effect of pressure on the fluctuation conductivity of YBa₂Cu₃O₇ / Ferreira L. Mendonca, P. Pureur, H.A. Borges, P. Lejay // Phys. Rev. B. -2004. - V.69. -P.212505.
- Косевич А. М. Как течет кристалл / А. М. Косевич // Усп. Физ. Наук. -1974. –114, 3, с.509-532.
- Jorgencen J.D. Time-dependent structural phenomena at room temperature in quenched YBa₂Cu₃O_{6.41} / J.D. Jorgencen, P. Shiyou, P. Lightfoot, H. Shi, A.P. Paulikas, B.M.W. Veal // Physica C. -1990. -V.167, №3,4. -P.571-578.

- Chroneos A.I. Oxygen transport in perovskite oxides: A brief review / A.I.Chroneos, R.V.Vovk, I.L.Goulatis, L.I. Goulatis. // Journal of Alloys and Compaunds 494 (2010) p.190-195.
- Presland M.R. General trends in oxygen stoichiometry effects on T_c in Bi and Tl superconductors / M.R.Presland, J.L.Tallon, R.G.Buckley, R.S.Liu, N.E.Flower //Physica C -1991. –V.176. Iss.1-3. –P.95-105.
- Tallon J.L. Generic superconducting phase behavior in high-T_c cuprates: T_c variation with hole concentration in YBa₂Cu₃O_{7.δ} / J.L. Tallon, C. Berhnard, Snaked H., R. L. Hitterman, J.D. Jorgensen, //Phys. Rev., -1995. -V.51. -P.12911-12914.
- Vinnikov L.Y. Direct observation of the lattice of Abrikosov vortices in high-T_c superconductor YBa₂Cu₃O_x single crystal / L.Y. Vinnikov, L.A. Gurevich, G.A. Yemelchenko, Y.A. Ossipyan // Solid State Commun. -1988. -V.67, №4. -P.421-423.
- Duran C. Real-time imaging of the magnetic flux distribution in superconducting YBa₂Cu₃O_{7-delta} / C.Duran, P.L.Gammel, R.Wolfe //Nature 357 (1992) 474-477.
- Blatter G. Vortices in high-temperature superconductors / G. Blatter, M.V. Feigel'man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur // Rev. Mod. Phys. -1994. -V.66. -P.1125-1388.

РАСS: 42.70.Gi, 78.66.-w, 78.20. Gi УДК 535.32/58 ; 539.216.2

Фотоиндуцированная периодическая структура (ПС) из наночастиц Ag, ее превращение в (ПС) из частиц AgI и связанный с этими ПС дихроизм

В.М. Резникова, Л.А. Агеев, В.К. Милославский

Харьковский национальный университет имени В.Н. Каразина, физический факультет, т. 707-51-25, e-mail : l.ageev@karazin.ua, ni91.2011@mail.ru

В волноводной композитной пленке AgCl-Ag, толщина которой соответствует возбуждению предельной TE₀ моды в слое AgCl, под действием линейно поляризованного (направление поляризации E₀) лазерного пучка (λ=407 нм) получена периодическая структура (ПС) с периодом d=266 нм. Штрихи ПС образованы наночастицами Ag и закреплены на подложке после удаления AgCl в фиксирующем растворе. Спектры поглощения ПС, измеренные в поляризациях E||, ±E₀ дают дихроизм с наибольшей величиной в ближней ИК области. Показано, что ПС из Ag легко превращается в ПС из AgI после обработки парами I₂. Обнаружено, что несмотря на изменения морфологии ПС после иодирования ее период и дихроизм сохраняются, но максимальный дихроизм при этом наблюдается уже в ближней УФ области.

Ключевые слова: фоточувствительные тонкие пленки ; лазерное излучение ; волноводная мода ; периодическая структура ; спектр оптической плотности ; линейный дихроизм.

У хвилеводній композитній плівці AgCl-Ag, товщина якої відповідає збужденню граничної TE₀ моди у шарі AgCl, під дією лінійно поляризованого (напрям поляризації E₀) лазерного пучка (λ=407 нм) отримана періодична структура (ПС) з періодом d=266 нм. Штрихи ПС сформовані наночастинками Ag і закріплені на підкладці після видалення AgCl у фіксуючому розчині. Спектри поглинання ПС, які виміряні у поляризаціях Е||, ⊥E₀, дають дихроїзм з найбільшою величиною у ближній IЧ області. Показано, що ПС з Ag легко перетворюється у ПС із AgI після обробки парами I₂. Встановлено, що не дивлячись на зміни у морфології ПС після йодування її період і дихроїзм зберігаються, однак максимальний дихроїзм при цьому спострерігається вже у ближній УФ области.

Ключові слова: фоточутливі тонкі плівки ; лазерне випромінювання ; хвилеводні моди ; періодична структура ; спектр оптичної густини ; лінійний дихроїзм.

In the waveguide composite film of AgCl-Ag which thickness corresponds to excitement of limited TE0 mode in AgCl layer, under the influence of linearly polarized (the direction of polarization of E_0) laser beem (λ =407 nm) the periodic structure (PS) with the period of d=266 nm is received. Strokes of PS are formed by Ag nanoparticles and fixed on a substrate after removal of AgCl in fixing solution. Absorption spectra of PS absorption measured in the polarization $E\parallel$, $\perp E_0$ give dichroism with the greatest size in near IR range. It is shown that PS from Ag easily turns into PS from AgI after processing by I2 vapor. It is revealed that despite the changes of morphology of PS after iodination its period and dichroism remain, but the maximum dichroism is observed already in near UV range **Keywords**: photosensitive thin films; laser radiation; the waveguide mode; periodic structure; spectrum of optical density; linear

dichroism.

Введение

Фоточувствительность к прямому действию света известна давно для пленок халькогенидных стеклообразных полупроводников и галогенидов металлов [1,2]. Для увеличения светочувствительности и расширения спектральной области чувствительности в исследованиях часто используют тонкопленочные композиции полупроводник-металл. Наиболее известными являются тонкопленочные системы As₂S₂-Ag и AgCl-Ag [3,4]. В первом случае фотоиндуцированные процессы приводят к

образованию продуктов связи серебра с мышьяком и серой и позволяют приготавливать, при действии на пленку двух сходящихся лазерных пучков, рельефные голографические дифракционные решетки. При исследовании решеток уделяется внимание поляризации света в пучках дифракции [2]. В AgCl-Ag исследуются фотоиндуцированные изменения в пленке при действии одного пучка. Фоточувствительность связана с возбуждением локализованных плазмонов в островковой пленке Ag и не сопровождается фотохимическими реакциями. Она определяется фотоструктурными превращениями в пленке Ag, при которых проявляют себя волноводные свойства прозрачной пленки AgCl. Действие линейно поляризованного (направление поляризации Е₀) лазерного пучка, за счет интерференции пучка с рассеянной в пленке волноводной модой, приводит к образованию периодической структуры (ПС), самонастраивающейся на ввод в пленку AgCl волноводной моды. Недавно показано [5], что система AgCl-Ag имеет свойства, сходные с искусственными металл-волноводными композициями, в которых проводятся исследования плазмон-волноводных поляритонов [6,7]. В работе [5] также впервые обнаружена поляризация спектров поглощения (линейный дихроизм) в структуре ПС из частиц Ад, освобожденной от AgCl методом фиксирования. Важно, что поляризация света проявляет себя в нулевом пучке, а не в пучках дифракции, как это обычно имеет место для дифракционных решеток. В настоящей работе показано, что ПС из Ад можно превратить в ПС из частиц AgI с сохранением периода ПС и дихроизма, но при существенных изменениях морфологии ПС и дисперсии дихроизма.

Описание эксперимента

Методика эксперимента, в части получения ПС в AgCl-Ag, совпадает с описанной в работе [5]. Композитная пленка AgCl-Ag приготовливалась последовательным термическим вакуумным напылением на стеклянную подложку. Толщина h ≈ 25 нм диэлектрического слоя AgCl определялась массой испаренного вещества И нанесенный сверху гранулярный слой Ag имел массовую толщину ≈ 8 нм. Характеристики композиции выбраны так, чтобы при ее облучении линейно поляризованным пучком с λ=407 нм от полупроводникового лазера развитие ПС происходило за счет возбуждения предельной ТЕ,моды, постоянная распространения β которой для ассиметричного планарного волновода [8] равна

 $\beta = \frac{2\pi}{\lambda} \cdot n_s$, где $n_s = 1.53$ - показатель преломления

подложки (стекло К-8). Условие генерации ПС за счет возбуждения предельной TE_0 -моды выполняется при толщине волноводного слоя $h \leq h_0=27$ нм. Толщина отсечки h_0 моды TE_0 вычислена по характеристическому уравнению при заданных значениях $\lambda,\,n_s$ и показателю преломления AgCl n=2.18 [5].

Приготовленный образец облучался нормально падающим лазерным пучком. Непрерывная мощность в пучке Р ≈ 100 мВт, облучалась площадка с размерами S $\approx 6x9$ мм, время экспозиции t=0.5 час. При такой экспозиции фотоструктурные превращения в пленке развивались до стадии насыщения. Главное

внимание уделено измерениям спектров поглощения, которые выполнены на спектрофотометре СФ-46 в области спектра 320-1000 нм. Спектр образца до его облучения имеет резонансную полосу поглощения с максимумом при λ =525 нм. Полоса поглощения связана с возбуждением локализованных плазмонов в гранулярной пленке Ag, которая образуется при нанесении Ag на поверхность слоя AgCl. Плазменное поглощение в Ад определяет светочувствительность образца, т.к. усиленное плазменными колебаниями световое поле на наночастицах приводит к эмиссии фотоэлектронов, их захвату ловушками в AgCl и к последующему массопереносу серебра при диффузии ионов Ag⁺ в диэлектрической матрице AgCl. Важно, что массоперенос происходит преимущественно на границу с подложкой, чему способствует, по-видимому, наибольшая концентрация глубоких дефектов-ловушек а также локализация максимума поля предельной ТЕ, моды на этой границе [8].

После облучения спектры поглощения измерены в поляризованном свете с помощью кристаллического линейного поляризатора, закрепленного на выходной щели СФ-46. Облучение создает две различные полосы поглощения для поляризаций $\mathbf{E} ||, \perp \mathbf{E}_0$, т.е. приводит к линейному дихроизму. При этом, в полосе $\mathbf{E} || \mathbf{E}_0$ образуется довольно глубокий минимум поглощения на длине волны облучения. Спектральный провал в поглощении связан с образованием из наночастиц Ag ПС, которая автоматически настраивается на ввод предельной TE₀ моды в волноводную пленку AgCl. Как и в работе [7], наличие провала можно связывать с возбуждением плазмонно-волноводного поляритона.

ПС представляет собой несовершенную дифракционную решетку, штрихи которой состоят из скоплений наночастиц Ag. Несовершенство ПС связано с тем, что она состоит из набора микрорешеток, которые образуются и растут на отдельных центрах рассеяния по механизму положительной обратной связи между дифракцией на микрорешетке и

рассеянной модой. Вектора К ($K = \frac{2\pi}{d}$, d - период

решетки) микрорешеток имеют угловой разброс относительно преимущественного направления $K \perp E_0$. Это приводит к тому, что при наблюдении дифракции от ПС с помощью узкого лазерного пучка, пучок дифракции растягивается вдоль направления поляризации E_0 . В то же время, микрорешетки имеют

один и тот же период
$$d = \frac{2\pi}{K} = \frac{2\pi}{\beta} = \frac{\lambda}{n_s} = 266$$
 нм. При

формировании ПС лазерным пучком, падающим на пленку по нормали выполняется условие $K=\pm\beta$ и для компонент $k_d=\beta$ -sin ϕ волн дифракции порядков m= ± 1

Рис. 1. Поляризованные спектры оптической плотности D (λ): а) - для ПС Ag, b) - для ПС AgI; 1 - измерения при E||E₀, 2 - при E \perp E₀.

углы дифракции равны $\phi_d = \pm \frac{\pi}{2}$. Таким образом

волны дифракции совпадают с модами и дают симметричные пучки вдоль границы пленка-подложка, выходящие в воздух через торцы подложки [9]. В то же время эти пучки растянуты вдоль Е0 из-за указанного выше углового разброса векторов К микрорешеток. При прохождении через ПС моды дают дифракцию в нулевой пучок и она проявляет себя в появлении так полос малоуглового называемых рассеяния в отраженном и проходящем свете. Полосы рассеяния также вытянуты вдоль Е... Появление и постепенное усиление пучков из торцов подложки и малоуглового рассеяния в нулевых пучках позволяют следить за развитием ПС и исследовать кинетику этого процесса [9].

Период ПС измеряется по углу дифракции ϕ_a пучка порядка m=-1, когда измерительный пучок падает на ПС под углом ϕ и дает пучок дифракции под углом ϕ_a =- ϕ (условие автоколлимации). В данном случае $\phi_a = \arcsin\left(\frac{\lambda}{2d}\right) = 49.9^\circ$. Сильное изменение угла

падения на пленку может привести к изменению самой ПС, т.к. d ПС зависит от φ , а фоточувствительность композитной пленки все время сохраняется при наличии в ней AgCl. Дифракция представляет собой Фурье-образ морфологии ПС и позволяет судить о ее строении. Однако более детальную информацию дает непосредственное микроскопическое изображение ПС. Изображение ПС можно получить с помощью электронного просвечивающего (TEM), сканирующего (SEM) или атомного силового микроскопа (ACM). В случаях ТЕМ и SEM электронный пучок разлагает AgCl. ACM показывает рельф структуры, которая может сглаживаться пленкой AgCl. Поэтому при подготовке к микроскопии необходимо удалять AgCl из пленки. Пленка AgCl-Ag легко освобождается от AgCl путем фиксирования - растворением AgCl в фиксаже (водный раствор гипосульфита). При этом Ag на поверхности подложки не вымывается при фиксировании и строение ПС, которая образовалась при облучении, сохраняется. Мы повторили процедуру, которая впервые была реализована в работе [5]. Измерения поляризованных спектров показали, что дихроизм в фиксированной ПС сохраняется (рис.1,а). Дихроизм и его дисперсия определяются разностью $\Delta D(\lambda) = D_1(\lambda) - D_1(\lambda)$ и для фиксированной пленки

Рис.2. Спектры дихроизма ΔD (λ); 1 - для ПС Ag, 2 - для ПС AgI.

дисперсия показана кривой 1 на рис.2. С помощью сканирующего микроскопа JSM 840 получен также снимок этой ПС (рис.3,а).

Далее, впервые в настоящей работе выполнена процедура превращения серебренной ПС в ПС из частиц AgI. Для этого образец помещался на столик закрытого эксикатора, на дне которого находится небольшой кусочек кристаллического йода. В эксикаторе образуются пары I₂ и под их действием Ag превращается в AgI. Полное йодирование происходит

Puc.3. Микроскопические фотографии ПС : a) - ПС Ag ; b) - ПС AgI ; преимущественная ориентация штрихов - вдоль **E**_a.

за время t \approx 2-3 мин. Дифракционные измерения периода ПС, образованной частицами AgI, дают тот же период d=266 нм, который имела ПС из Ag. Измеренные поляризованные спектры для ПС из AgI показаны на рис1,b и спектр дихроизма на рис.2, кривая 2. Получен также снимок ПС (рис.3,b) с помощью ACM (микроскоп Silver Pro).

Обсуждение результатов

Ранее спектральные исследования ПС проводились, главным образом, после облучения волноводных пленок пучками от He-Ne лазера с λ=633 нм [9]. При этом, для образцов, настроенных на возбуждение предельной ТЕ₀ моды образуется ПС с d=418 нм, в спектре Е||Е₀ всегда наблюдается провал в поглощении вблизи λ облучения и дихроизм максимален в районе этой же λ . Однако, после фиксирования дихроизм и провал не сохранялись. В данной работе λ =407 нм и d=266 нм существенно меньше и сохранение дихроизма в фиксированной пленке, по-видимому, нужно связывать именно с этим фактом. На рис.3,а видно, что штрихи состоят, главным образом, из отдельных, но близко расположенных, наноразмерных и преимущественно сферических (или полусферических) частиц. Штрихи не соответствуют набора металлических модели периодического нанопроводов [7,10]. С другой стороны, наблюдаемая структура не соответствует и модели вытянутых в одном направлении анизотропных отдельных частиц (эллипсоидов, коротких цепочек, игл) [11]. По-видимому, в наблюдаемой структуре дихроизм следует связывать с возбуждением локализованных поляризованным плазмонов светом, как вдоль направления штрихов (Е||Е,), так и в поперечном направлении ($E \perp E_{0}$), но при этом учитывать различие

во взаимодействии плазмонов (как дипольных излучателей) для этих двух поляризаций. Теоретически такие модельные представления пока что не разработаны, что затрудняет количественный анализ наблюдаемого дихроизма.

Йодистое серебро (AgI) и его оптические свойства давно известны в связи с применениями галогенидов серебра в фотографии [12]. В современных исследованиях привлекают внимание такие свойства AgI, как наличие экситонных полос поглощения, наблюдаемых в видимой области спектра даже при комнатной температуре, высокая ионная проводимость этого соединения и проявления нелинейных и размерных эффектов в малых частицах [13,14].

Рассмотренный здесь простой способ превращения серебрянной ПС в анизотропную структуру, состоящую из частиц AgI, имеет смысл только в том случае, если йодирование не приводит к полному перекрытию и сглаживанию штрихов структуры. Для оценки реальных изменений в морфологии нужно знать, как изменяется объем вещества при превращении Ag в AgI. В литературе есть данные, относящиеся к случаю йодирования пленок Ag [15]. Известно, что при полном превращении в AgI сплошной пленки Ag толщины h_1 , толщина h_2 полученной после йодирования пленки AgI увеличивается примерно в 4

раза :
$$h_2 = h_1 \cdot \frac{A_2 \cdot \rho_1}{A_1 \cdot \rho_2} = 4.03 \cdot h_1$$
, $\rho_{1,2}$ - плотности, $A_{1,2}$ -

молекулярные веса. Другой предельный случай - когда пленка Ag состоит из равномерно распределенных по подложке сферических гранул, не контактирующих между собой. Тогда йодирование превращает сферу Ag в сферу AgI. Для пленки, состоящей из одинаковых сфер, максимальная ее толщина равна диаметру сфер. Поэтому для модели сфер толщина слоя AgI должна быть равна: $h_2 = \sqrt[3]{4,03} \cdot h_1 = 1.59 \cdot h_1$. Предельные значения отношения толщин (4.03 и 1.59) были проверены и подтверждены экспериментально в работе [15].

В данной работе при приготовлении пленки AgCl-Ag наносился слой Ag с массовой толщиной ≈8 нм. Однако, размеры частиц в штрихах в результате структурных превращений при облучении должны существенно измениться по сравнению с этой цифрой и их следует оценивать по снимку ПС (рис.3,а). На снимке а) показан масштабный отрезок в 1 мкм, который неизбежно содержит ошибку, связанную с процедурой градуировки увеличения микроскопа. На рис.3, в показана лишь масштабная шкала (нм) чернобелого контраста, для определения высоты частиц. В плоскости снимков наиболее точные данные о масштабе дает измеренный по дифракции света период ПС d=266±0.3 нм, одинаковый для a) и b). Снимок a) показывает примерно одинаковую ширину штрихов a и промежутка b между ними и т.к. d=a+b, находим *a*=*b*=133 нм. На рис.b) видно, что размеры частиц после йодирования изменились, ширина штрихов увеличилась а промежутки между ними уменьшились. Будем считать, что штрихи на рис.3,а состоят из близких полусферических частиц Ад, лежащих своей плоской стороной на подложке и их радиус равен а/2=66.5 нм. При йодировании сферы Ад ее высота (диаметр) увеличился бы в 1.59 раза [15], а в случае полусферы во столько же раз увеличится ее радиус (высота) и составит 106 нм. На шкале высоты снимка b) показана метка регулировки контраста 107 нм. Она же примерно показывает среднюю высоту рельефа. Эта цифра очень близка к величине высоты 106 нм, которая найдена для модели превращения полусферы Ag в полусферу AgI. При таком представлении ширина штрихов на снимке b) должна быть равна 212 нм, т.е. удвоенному радиусу полусфер AgI. Вычитая ширину из периода, получаем среднее расстояние между штрихами 54 нм.

Расширение И сближение штрихов при йодировании изменяет общий вид структуры. На многих участках штрихи соприкасаются, а вдоль штрихов во многих местах отдельные частицы соединяются друг с другом. Однако, несмотря на существенное изменение морфологии, периодичность в структуре сохраняется и определяет ее структурную и оптическую анизотропию. Кривые дихроизма при этом показывают, что до фиксирования (рис.2, кривая 1) дихроизм в длинноволновой области связан с поглощением света за счет возбуждения колебаний свободных электронов в наноразмерных частицах Ад, а после йодирования дихроизм резко переключается на коротковолновую область, где поглощение связано с возбуждением экситона (пик *λ*≈430 нм) и межзонных

переходов в AgI (рис.2,кривая 2).

Заключение

В работе измерены в поляризованном свете спектры оптической плотности периодических структур (ПС), состоящих из частиц Ag и AgI. ПС, состоящая из частиц Ag, получена в волноводной фоточувствительной пленке AgCl-Ag при ее облучении линейно поляризованным лазерным пучком при нормальном падении, затем освобождена от AgCl и закреплена на поверхности стеклянной подложки методом фиксирования. Измерены спектры, период ПС, получено изображение ПС на электронном микроскопе. Затем, идентичная ПС из частиц Ад обработана парами I, до полного ее превращения в ПС из частиц AgI. Измерены спектры, период и получен АСМ снимок этой ПС. Выполненные исследования впервые показали, что структурная и оптическая анизотропия (дихроизм) в ПС, полученной после йодирования, сохраняются, но при этом существенно изменяется дисперсия дихроизма в соответствии со спектром поглощения AgI.

- Индутный И.З., Костышин М.Т., Касярум О.П., Минько В.И., Михайловская Е.В., Романенко П.Ф. Фотоиндуцированные взаимодействия в структурах металл-полупроводник.-Киев.-Наук. Думка, 1992.-240 с.
- Венгер Е.Ф., Мельничук А.В., Стронский А.В. Фотостимулированные процессы в халькогенидных стеклообразных полупроводниках и их практическое применение.-Киев.-Академпериодика,2007.-243 с.
- 3. Ageev L.A., Miloslavsky V.K. Photoinduced effects in lightsensitive films // Optical Engin.-1995.-V.34, № 4.-P.960-972.
- Милославский В.К., Агеев Л.А. Светоиндуцированные спонтанные решетки в волноводных пленках // Физическая инженерия поверхности.-2003.-Т.1, № 1.-С.59-81.
- Агеев Л.А., Милославский В.К., Маковецкий Е.Д., Волосенко В.М. Периодические структуры, образованные наночастицами Ад в волноводной пленке AgCl-Ag под действием фиолетового лазерного излучения // Журн. прикл. спектроскопии.-2013.-Т.80, № 3.-С.403-408.
- Linden S., Kuhl J., Gessen H. Controlling the interaction between light and gold nanoparticles : selective suppression of extinction // Phys. Rev. Letters.-2001.-V.86, № 20.-P.4688-4691.
- Гиппиус Н.А., Тиходеев С.Г., Крист А., Куль Й., Гиссен Плазмон-волноводные поляритоны в металлодиэлектрических фотонно-кристаллических слоях // ФТТ.-2005.-Т. 47, № 1.-С.139-143.
- М. Адамс. Введение в теорию оптических волноводов.-М.:Мир, (1984), 37-40.
- 9. Агеев Л.А., Милославский В.К., Ельашхаб Х.И., Блоха

Вісник ХНУ, № 1113, серія «Фізика», вип. 20, 2014

В.Б. Учебные эксперименты и демонстрации по оптике. Учебное пособие.-Харьков.: ХНУ, 2000.-262 с.

- Kottmann J.P., Martin O.J.F. Plasmon resonant coupling in metallic nanowires // Optics Express.-2001.-V.8, № 12.-P.655-663.
- Miloslavsky V.K., Ageev L.A., Makovetsky E.D., Maskevich S.A. Optical properties of nanostructures // Fuctional Materials.-2008/-V.15, № 3.-P.313-331.
- Мейкляр П.В. Физические процессы при образовании скрытого фотографического изображения.-М.: Наука, 1972.-400 с.
- Андреева О.В., Сидоров А.И., Стаселько Д.И., Хрущева Т.А. Синтез и оптические свойства гибридных «плазмон-экситонных» наноструктур на основе AgI в нанопористом силикатном стекле // ФТТ.-2012.-Т.54, № 6.-С.1215-1219.
- Сечкарев Б.А., Титов Ф.В., Дягилев Д.В., Бодак К.А., Владимиров А.А. Получение наноразмерных частиц AgI // Ползуновский вестник.-2009.-№ 3. - С.150-152.
- Агеев Л.А., Милославский В.К., Шкляревский И.Н. Фактор заполнения в тонких слоях γ -AgI // Укр. физ. журн.-1972.-Т.16, № 10.-С.1593-1596.

УДК: 538.93 PACS: 66.30.-h

Au, Mg and Zn diffusion in GaN

V. Bogdanov¹, D. Kolesnikov², W. Lojkowski³

¹⁾ Karazin Kharkiv National University, Svobody Sq. 4, 61022, Kharkiv, Ukraine bogdanov@karazin.ua
 ²⁾ Belgorod State University, Pobedy 85, 308015, Belgorod, Russia kolesnikov_d@bsu.edu.ru
 ³⁾ Institute of High Pressure Physics PAN, Sokolowska 29/37, Warsaw, Poland wl@unipress.waw.pl

Transmission electron microscopy was used to study the defects generated in GaN heteroepitaxial layers during diffusion of Au, Zn and Mg in the temperature range 900°C – 1200°C. The diffusion annealings were carried out under N₂ pressure of 1 GPa in oder to avoid decomposition of GaN. Diffusion of the metals into the GaN layers was connected with formation of voids and nanotubes along dislocation cores. Reasons and mechanisms of their formation were discussed. The penetration profiles were measured by means of SIMS. The effective diffusion coefficients and the activation energy for Au diffusion in GaN were calculated.

Keywords: diffusion, GaN heteroepitaxial layer, structural defects.

Методами просвечивающей электронной микроскопии изучали образование дефектов в гетероэпитаксиальных слоях GaN в процессе диффузии Au, Zn и Mg при температурах 900°С – 1200°С. Во избежание разложения нитрида галлия при высоких температурах диффузионный отжиг проводили в атмосфере азота под давлением 1 ГПа. Диффузия металлов в GaN сопровождалась образованием пор и нанотрубок вдоль линий дислокаций. Обсуждены причины и механизмы их образования. Методами масс-спектрометрии вторичных ионов (SIMS) измеряли профили распределения концентрации в зоне диффузии. На их основе рассчитали эффективные коэффициенты и энергии активации диффузии Au в GaN.

Ключевые слова: диффузия, гетероэпитаксиальный слой GaN, структурные дефекты.

Методами трансмісійної електронної мікроскопії досліджували створення дефектів у гетероепітаксійних шарах GaN під час дифузії Au, Zn i Mg за температур 900°C – 1200°C. Аби уникнути розпаду нітриду галія за високих температур дифузійний відпал здійснювали в атмосфері азота під тиском 1 ГПа. Дифузія металів у GaN супроводжувалася створенням пор та нанотрубок вздовж ліній дислокацій. Обговорено причини і механізми їх створення. Методами мас-спектрометрії вторинних іонів (SIMS) вимірювали профілі розподілу концентрації у зоні дифузії. На їх підставі розрахували ефективні коефіціенти та енергії активації дифузії Au y GaN.

Ключові слова: дифузія, гетероепітаксійний шар GaN, структурні дефекти.

Introduction

GaN heteroepitaxial layers grown on Al₂O₂ substrates are widely used in blue-light optoelectronic devices. The challenge of development blue-light emitting lasers and high power optoelectronic devices requires improved control of diffusion processes taking place in GaN. Due to a large lattice misfit between the sapphire and GaN, a high density of so-called "threading dislocations" is present in the GaN. The fast diffusion along dislocation leads to deterioration of electrical contacts to GaN, thus limiting the lifetime of GaN based lasers. There are practically no quantitative data about diffusion in GaN. One of the reasons is the technical difficulty of carrying out such diffusion annealings: diffusion in GaN in conditions of thermodynamic stability at temperatures 1000°C and above must be studied under nitrogen overpressure of 1 GPa or more. On the other hand it is known that diffusion of impurities in GaAs and other III-V compounds can cause generation of voids [1]. It can therefore be expected that diffusion of metals will lead to formation of defects in GaN as well.

The purpose of the present work was to investigate the diffusion of selected metals, such as Au, Mg and Zn, from evaporated layers into heteroepitaxial GaN layers and to characterize the microstructure after the diffusion anneals. Au was selected as one of the components for electrical contacts to GaN, and a non-reactive metal suitable for basic studies of diffusion processes. Zn and Mg diffusion is of interest since both metals are p-dopants in GaN.

1. Experiment

In the first set of the experiments thin films of Au, Zn and Mg of 20 nm thickness were deposited in vacuum of 10^{-7} mm Hg on the (0001) surface of 1,7 µm thickness GaN epitaxial layer grown on the sapphire substrate. Such layers produced by CREE company have block structure with average disorientation angle of about 0,1°. These layers were characterized by high density of threading dislocations 10^{14} m⁻² (Fig.1.1).

Fig.1.1. Typical TEM image of microstructure of the cross section of nonannealed GaN epitaxial layer grown on the sapphire substrate (CREE company production).

Isothermal anneals of prepared samples were done at hydrostatic N₂ pressure conditions ($P_{N_2} = 1$ GPa) in the temperature range 900 – 1200 °C during 10 min according to procedures described in [5,8]. The crucible with the GaN layers contained also GaN powder. The annealing procedure ensured the thermodynamic stability of the GaN layers. After anneals distributions of Au, Zn and Mg concentration in the direction normal to the (0001) atomic plate were obtained using SIMS method (Secondary Ion Mass Spectrometry).

In the second set of the experiments thin films of Au of 20 nm thickness were deposited on the (0001) surface of GaN single crystal. From the diffusion experiments with heteroepitaxial layers it was found that GaN surface shift was strongly degraded with Mg and Zn diffused into the GaN layer. It was the reason therefore to provide the diffusion experiments with Zn and Mg from gaseous phase. GaN single crystal was placed inside the crucible together with

Mg or Zn peace. Samples were anneal in the temperature range 900 – 1400 °C during 2–4 h. Concentration profiles of Au, Zn and Mg were obtained using SIMS method.

2. Experimental results and discussion 2.1. Au/GaN-monocrystal system

It wasn't found any structural changes in GaN single crystal as a result of Au diffusion in it. All substance of the gold film was penetrated into the GaN single crystal during diffusion experiment (except part of gold was evaporated). The typical penetration profiles of Au diffused into the GaN single crystal at 1 GPa nitrogen pressure are presented on Fig.2.1 a.

Considering the process as a gold diffusion in a semiinfinite solid from the instantaneous source concentration dependence Au from coordinate and time may be present as

$$C(X,t) = C(0,t) \exp\left(-\frac{X^2}{4D_b t}\right),$$

where X is the depth from the surface; D_b is the bulk diffusion coefficient of Au in GaN. From the slopes of the plots ln I vs X² (Fig. 2.1 b) values of the Au diffusion coefficients in GaN were calculated (Table I).

2.2. Au/GaN-heteroepitaxial system

Diffusion of Au into the dislocated heteroepitaxial GaN layer was accompanied by wide short crater formation (Fig. 2.2 a).

It was typical for all GaN layers covered by Au film annealed in temperature range 900 - 1200 °C. The craters are located at the places where threading dislocations emerge at the surface. In addition as it is shown on the Fig. 2.2 b, Au diffusion accompanied by voids appearing along dislocation lines. The void formation takes place in the whole temperature range but becomes more pronounced

Fig. 2.1. a – The typical penetration profiles of Au diffused into the GaN single crystal at 1 GPa nitrogen pressure; b – ln I vs X² plot for Au diffusion in GaN.

	Table I
T°C	D_b , m ² s ⁻¹
900	5.6×10 ⁻¹⁹
1200	9.25.10-18
1400	3.3×10 ⁻¹⁷

	Table II
T°C	$\mathrm{D}'a$, $\mathrm{m}^3\mathrm{s}^{-1}$
900	4,3×10 ⁻²²
1050	7,9×10 ⁻²²
1200	1,3×10 ⁻²⁰

Table III

T 11

T°C	D_b^{Zn} , $\mathrm{m}^2\mathrm{s}^{-1}$	D_b^{Mg} , ${ m m}^2{ m s}^{-1}$
1200	1,6×10 ⁻¹⁸	1,6×10 ⁻¹⁹

at higher temperatures. The formation of small voids takes place also in the GaN bulk around of the dislocations. The SIMS penetration profiles of Au in the GaN heteroepitaxial layers are presented on the Fig. 2.3.

The estimation of the depth of the Au penetration into the GaN bulk during annealing for heteroepitaxial layer shows that diffusion of Au into the dislocated layer is realized in B regime [4]. It means that diffusion of Au along the short-circuiting paths followed by leakage, i.e., lateral diffusion into the bulk from the dislocation:

$$a < \sqrt{\mathrm{D}_{\mathrm{b}} \mathrm{t}} < \frac{\lambda}{2},$$

where *a* is the dislocation core radius, λ is the average

distance between the short-circuiting paths.

In our case $\lambda \sim 100$ nm, $\sqrt{D_b t} \sim 20-30$ nm for different temperatures. Therefore the average concentration value estimated by SIMS method at the depth X from the surface is described by Suzuoka solution [2]:

$$\overline{C}(X,t) = C(0,t) \left[exp\left(-\frac{X^2}{4D_b t} \right) + \frac{2\sqrt{D_b t}}{\lambda} (C_1 + C_2) \right],$$

where C_1 is the contribution to $\overline{C}(X)$ of diffusion along the dislocations, C_2 is the contribution to $\overline{C}(X)$ of the

volume diffusion laterally from the dislocations. If we use the Le Claire's parameter [3]

$$\beta = \frac{D'}{D_b} \frac{a}{2\sqrt{D_b t}} \tag{1}$$

where D' is the diffusion coefficient along dislocation then the value D'a may be calculated from the relationship obtained in the framework of the Suzuoka solution [4]

$$-\frac{\partial \lg \overline{C}}{\partial \left(\frac{X}{\sqrt{\beta D_b t}}\right)^{6/5}} = 0,72\beta^{0,008}$$

For fixed t and T $\sqrt{\beta D_b t}$ = const and so

$$-\frac{\partial \lg \bar{C}}{\partial X^{\frac{6}{5}}} = 0,72^{\beta_{-0,592}} \left(D_b t \right)^{-0,6}$$
(2)

The β value is calculated from the slope of $\lg \overline{C}$ vs $X^{6/5}$ plot. Then from (1)

Fig. 2.2. a – Bright-field TEM image of the crater structure formed at the surface of GaN heteroepitaxial layers with deposited Au film as a result of annealing at temperatures in the range 900 - 1200 °C. b – TEM bright field image of voids along dislocations.

Fig. 2.3. The typical SIMS penetration profiles of Au in the GaN heteroepitaxial layers (t=10 min, P=1 GPa).

$$D'a = 2\beta D_b^{3/2} t_2^{1/2}$$

The results of calculation of the value D'a are presented on the Table II.

For understanding of structural changes taking place in heteroepitaxial GaN layers during Au diffusion it is necessary to make some assumption about mechanism of Au, Ga and N atom diffusion migration in GaN lattice.

In wurtzite-type GaN structure (Fig. 2.4 a,b) the strong electronegativity of nitrogen leads to a strong localization of the electron density around the nitrogen atoms. Nitrogen atom requires 3 electrons for completing of 2p electron shell. Gallium atom have 3 valence electrons ($4s^2$ and 4p) and 4 nearest nitrogen neighbors. So it can be assumed that the valence electrons realize the three bonds that are close to the ionic ones; and the fourth bond (in the [0001] direction) is the covalent one and can be realized by one of the 3d electrons of gallium atom and by one of the 2s electrons of nitrogen atom (Fig. 2.4 c). As a result the gallium atoms in GaN lattice have the charge of about (+3) and nitrogen atoms have the charge of about (-3).

As long as Ga and N atomic bonds in GaN lattice are closed to the ionic ones as Ga³⁺ and N³⁻migrate in the

own sublattice. If the migration occurs by the vacancy mechanism than Au atoms diffusion may be realized in both sublattices (in supposition that Au atoms are not ionized in GaN lattice).

Generally speaking the Ga³⁺ and N³⁻ ions diffusivity mast be greater then the Au atoms one because the jump frequency for example of Ga³⁺ to the V_{Ga}^{3-} vacancy is $C_V^ \Gamma_V$ and the jump frequency of Au atom to vacancy is $(C_V^ +C_V^+)C_{Au}\Gamma_V$ (Γ_V is the frequency of diffusion jumps of vacancies in crystal, C_V^- , C_V^+ – vacancy concentrations, C_{Au}^- <1 is Au atoms concentration in GaN lattice).

After assumptions have done it become to be understandable the void formation effect as along dislocation lines as in the bulk. As it was above mentioned dislocation structure of GaN heteroepitaxial layer is presented by threading dislocations which are normal oriented to the surface of the layer. The diffusion flow of Au atoms along dislocations as well as in volume laterally from short circuits is accompanied by more powerful flow of the more mobile Ga3+ and N3- from volume towards the short circuits and then along dislocations towards the GaN layer surface. The difference of this flows must be compensated by cation $V_{\rm Ga}^{\rm 3-}$ and anion $V_{\rm N}^{\rm 3+}$ vacancy flow from the surface along dislocations and then in volume of crystal. We have observed the display of this process as the Kirkendall effect: the voids formation along dislocation lines as well as in crystal volume near the dislocations. The edge dislocations are good absorbers of the excess vacancies but in wurtize-type structure absorption of the vacancies by the edge dislocations leads not to their climb but to the cavity formation on it. The edge dislocation structure in wurtzite GaN is presented on the Fig. 2.5 a. The strained and 'dangling' bonds present in the dislocation core could permit impurities and intrinsic defects to be trapped there. The trapping of cation and anion vacancies leads to the cavity formation on the dislocation's core as it is represented on Fig. 2.5 b-d.

Fig. 2.4. Schematic picture of the wurtzite-type structure of GaN. The gallium and nitrogen atoms are presented as grey and black disks, respectively. The covalent bonds are presented as interrupted lines.

Fig. 2.5. a – The schematically presented top view (in [0001]) of the threading edge dislocation core in GaN; b,c,d – the successive stages of cavity evolution on the dislocation caused by trapping of cation and anion vacancies by the dislocation core.

Au atom moving from dislocation to the bulk is also accompanied by the vacancy flow directed from dislocation to the bulk. As the opposite charged vacancies have a tendency to form ($V_{Ga}^{3-} - V_N^{3+}$) complexes (Fig. 2.6), then the cavities in the bulk are form from the supersaturated vacancy solution.

Formation of wide short craters located at the places where threading dislocations emerge at the surface possibly connected with weak GaN solubility in liquid Au that occurs preferably in the defect places of lattice.

2.3. Mg, Zn/GaN-single crystal system

Zn or Mg diffusion from gaseous phase in GaN may be considered as diffusion in a semi-infinit solids with

constant surface concentration. Typical penetration profiles for Zn and Mg diffusion into the GaN monocrystal are represented in Fig.2.7.

Measured concentration distribution may be approximated as erfc-function:

$$C(X) = C_0 \operatorname{erfc}\left(\frac{X}{2\sqrt{D_b t}}\right)$$

From the slope of $erfc^{-1}(C/C_0)$ vs $(X/2\sqrt{t})$ plot one can obtain the bulk diffusion coefficient D_b . The calculated values of D_b are presented in Table III.

Fig.2.6. Schematic picture of the $(V_{Ga}^{3-} - V_{N}^{3+})$ complex in GaN.

2.4. Zn, Mg/GaN-heteroepitaxial system

The surface of GaN layers was strongly modified, and the average thickness of the GaN layer decreased by several hundred of nanometers. Fig. 2.8 shows a typical structure of GaN layers after annealing in Zn vapor. Long tubes which are filled partly by zinc are observed, with thicknesses in the range of 10 - 20 nm. Diffusion of Zn and Mg is accompanied with creation of voids along dislocation lines (Fig.2.9a) as well as at some distance from the dislocation lines. Fig. 2.9b shows a set of small V-shaped voids surrounding a larger V-shaped void. Other defects observed after Zn and Mg diffusion are nanotubes with smooth and saw-tooth-like walls (Fig. 2.10).

The GaN surface corrugations (Fig. 2.8) and decrease

Fig. 2.8. Typical structure of GaN layers after annealing in Zn vapor at temperature of 1200°C.

Fig. 2.7. Penetration profiles for Mg and Zn diffusion into the GaN single crystal from gaseous state at 1 GPa nitrogen pressure and temperature of 1200°C;

of layer thickness indicate that GaN was destroyed near the surface at the temperature of the diffusion anneal. These surface corrugations made it impossible to estimate the diffusion coefficients.

It is generally accepted that diffusion of Zn and Mg atoms in compounds, based on the elements of groups III and V of the periodic table occurs via an interstitialsubstitutional exchange mechanism [6,7], and that Zn or Mg is incorporated substitutionally on group III sublattice sites where it acts as a shallow acceptor.

Describing the structure changes during of Zn or Mg diffusion in GaN it is necessary to take into account the fact that the II-valence impurity atoms became twice ionized in GaN lattice. In this case electrons of the impurity atom (Mg $-3s^2$, Zn $-4s^2$) realize the ion bonds with two of the three N⁻³ anions located in (0001) plate. The covalent bond with the third anion is established. It caused p-type conductivity of GaN because electron was trapped from valence zone for creation of this bond. As the twice ionized impurity atom substitute the three time ionized Ga atom in GaN lattice then the effective impurity atom charge is about (-1). So substitution of Ga atom by the two-valent impurity atom leads to reconstruction of the electron configuration and to displacement of the neighboring nitrogen atoms outwards with respect to the ideal lattice sites [9] (Fig. 2.11a).

In this case the impurity atom have weaker bonds in lattice in comparison with Ga atoms located near by the displaced nitrogen atoms (Fig. 2.11 b).

Thus doping of II-valent impurity in GaN must lead to the reducing of the Ga atoms diffusivity because of increasing of activation energy of Ga atom migration and of V_{Ga}^{3-} vacancy formation energy. This conclusion is in agreement with results of V_{Ga}^{3-} in GaN concentration measurements at different Mg content [10]. In [10] using positron annihilation method was found that V_{Ga}^{3-} concentration reduced down to 0 with Mg concentration

Fig. 2.9. a – voids formed along dislocation lines after annealing; b – a colony of small voids around larger V-shaped void.

increasing in GaN.

Since the activation energy of II-valent impurity atom migration $E_m^{imp} < E_m^{Ga}$ then diffusion coefficient of the impurity $D_{imp} > D_{Ga}$. So impurity atom diffusion from the surface to the volume of GaN must be accompanied by the V_{Ga}^{3-} vacancy flow directed from the volume to the surface. In this case the void formation in the GaN bulk is impossible.

The reason of nanotube and void formation can be participation of oxygen in diffusion process. There is experimental evidence that oxygen acts as a donor in bulk GaN [16] and total energy calculation show that O sits on a N site [17] where it has the effective charge of about (+1). It means that the neighboring Ga atoms replace from the ideal lattice positions as it shown on Fig. 2.12 a. As seen from Fig. 2.12 b it leads to reduce of the activation energy

Fig. 2.10. Morphologies of nanotubes in GaN heteroepitaxial layers after Zn and Mg diffusion. a – elongated voids with smooth walls; b – nanotubes with faceted wall structure.

Fig. 2.11. a - The nitrogen atoms outward relaxationwith respect to the regular GaN lattice sites after the two-valent impurity was incorporated substitutionally on the Ga sublattice site. Impurity Mg atom is presented as lightgray disk; b - alteration of the potential relief for the Ga sublattice sites around of the impurity. $E_{\rm m}^{\rm Mg}~$ and $E_{m}^{\text{Ga}}\,$ are the activation energy for migration of Mg and of Ga atoms, respectively.

Fig. 2.12. a - The gallium atoms outward relaxationwith respect to the regular GaN lattice sites after the oxygen was incorporated substitutionally on the nitrogen sublattice site. Oxygen atom is presented as disk (+); b - alteration of the potential relief for Ga sublattice sites around oxygen.

Fig. 2.13. a – The (Mg– O^+) complex formation in GaN. O and Mg atoms are presented as (+) and (-) disks, respectively; b - alteration of potential relief for Ga sublattice sites around of $(Mg - O^+)$ complex.

for migration of Ga atoms as well as of the V_{Ga}^{3-} formation energy.

In the case of oxygen participation in Mg or Zn diffusion in GaN the great probability of (Mg⁻-O⁺) or (Zn-O+) complexes formation is exists. From the Fig.2.13 a,b one can see that formation of such complex leads to the increasing of the activation energy for impurity atom diffusion and to the reducing of the activation energy

Fig. 2.14. Top view (in [0001]) of the relaxed core of the open-core screw dislocation. The three fold coordinated atoms 1 (Ga) and 2 (N) adopt a hybridisation similar to the (10 10) surface atoms [13].

Fig. 2.15. The (000 1) cavity surface in GaN passivated by MgO layer growing from supersaturated vacancy solution in presence of oxygen (light discs) and magnesium (light-grey discs) atoms.

for Ga atom diffusion.

So the direction of the preferential vacancy flow during diffusion of Zn or Mg in GaN will depend from the oxygen quantity taking part in the diffusion process. The diffusion flow of the impurity atoms may be presented as sum of the two flows:

 $J_{imp} = J_1 + J_2,$ where J₁ is the flow of the mobile 'free' impurity atoms, J₂ is the flow of slow 'impurity-oxygen' complexes.

The nanotubes and voids formation observed in our experiments means that the preferential vacancy flow is directed from the surface to the volume of GaN. It means that $J_{imp} < J_{Ga}$, i.e. the main contribution in J_{imp} makes diffusion of the complexes1.

¹ In our experiments we have observed the distance of the

Fig. 2.16. The schematic presentation of top (a) and side view (b) of the void in GaN faceted by high density packed surfaces passivated by MgO.

Since transport of charged V_{Ga}^{3-} vacancies is limited by electroneutrality requirement it is clear that not single vacancies but neutral complexes for example (V_{Ga}^{3-} - V_N^{3+}) and (V_{Ga}^{3-} - 3 O_N^+) are move.

The directed flow of vacancies and oxygen along the dislocations can leads to the cavity formation on it. The fact that we have observed two types of nanotubes in Zn/GaN and Mg/GaN systems is connected with presence in the epitaxial grown GaN layer of two type of threading dislocations.

Threading screw dislocations in GaN lies along [0001] with a full Burgers vector b=c[0001]. They nucleate in the early stages of growth at the sapphire interface arising from the collisions of islands during growth and threading to the surface of the crystallites [11]. At a screw dislocation there is a non-vanishing edge on the surface which favors the crystal growth. Therefore the screw dislocations are essential for the growth process and are the typical extended defects of epitaxial grown crystals.

The strong distortion in the core and thus high line energy of screw dislocation (4.88 eV/Å [13]) makes it favorable to open the core of the dislocations and to formation of the nanopipes. The energy required to form the surface at the open-core wall is compensated by the energy gained by reducing the strain. This opening has been observed by Liliental-Weber et al. who found some of the screw dislocations to have holes which are three atomic rows wide [12]. The theoretical calculations shows that the equilibrium diameter of the open-core is approximately 0.7 nm and the line energy of the relaxed dislocation core is 4.55 eV/ Å [13] (Fig. 2.14). A further opening gave a higher line energy because it leads to increasing of the surface energy of core walls.

Growth of GaN on sapphire by vapor phase epitaxy is often associated with the appearance of long nanopipes parallel to c-axis which have hexagonal cross sections with uniform diameters ranging from 5 to 25 nm [14]. Liliental-Weber et al. [15] have found that the density of nanopipes is increased in the presence of impurities, e.g. O, Mg, In and Si and have argued that these impurities decorate the (10_{-10}) walls of the nanopipes inhibiting overgrowth.

The internal surfaces of screw dislocations are very similar to those of the low energy (10_10) surface. In [18] was found that the energy of O in N position is 0.8 eV lower at the relaxed (10_10) surface. This shows that there is a tendency for O to segregate on surface.

Calculations showed that (V_{Ga}^{3-} - 3 O_N^+) is more stable at surface than in bulk by 2.15 eV [18]. Two O neighbours of the surface vacancy lie below the surface and each is bonded to three Ga neighbours. But the surface O is bonded to only two subsurface Ga atoms in a normal oxygen bridge site. The defect is electrically inactive with the O atoms passivating the vacancy in the same way as VH₄ in Si [18].

So oxygen has a tendency to segregate on the (10_10) surface and forms stable and chemically inert (V_{Ga}^{3-} - 3

Zn atoms spreading in GaN greater than of the Mg atoms one. This evidently is connected with the greater bond energy of the (Mg⁻-O⁺) complex in comparison with (Zn⁻-O⁺) complex, so that the number of the 'bound' Mg atoms is greater than the number of Zn ones.

 O_N^+) defects. These defects increase in concentration when the internal surfaces grow out. When a critical concentration of order of a monolayer is reached, further growth is prevented. This leads to nanopipes with (10_10) walls coated with GaO and supports the suggestions of Liliental-Weber et al. that nanopipes are linked to the presence of impurities [15].

Since in our experiments along with atoms of oxygen impurity atoms or its complexes with oxygen are diffused the nanotube walls adsorbs the impurity atoms as well. It apparently reduce the nanotube surface energy and leads to the growth of its diameter up to the equilibrium one for present value of surface energy. This is how the nanotubes with the smooth walls appear. Au adsorbtion evidently weakly change the surface energy so we didn't observe nanotubes in experiments with Au.

Pure edge dislocations in GaN lie on {10_10} planes and $\mathbf{b} = \mathbf{a} = \begin{bmatrix} 1 & 210 \end{bmatrix}/3$ is their Burgers vector. They are dominant species of dislocation, occurring at extremely high densities of approximately $10^8 - 10^{11}$ cm⁻² in hexagonal GaN grown by MOCVD on (0001) sapphire and in analogy to screw dislocations are thought to arise from the collisions of islands during growth [19]. From a supercell calculation, in [9] was obtained a line energy of 2.19 eV/Å for the threading edge dislocation that is considerably lower than the one found for the screw dislocation with a narrow opening. This can be interpreted by noting that the edge dislocation has a smaller number of three fold coordinated atoms than the open-core screw dislocation as well as a smaller elastic strain energy. Therefore the open-core of pure edge dislocations is not observed. But being the short circuits for the impurity diffusion and the good absorbers for the excess vacancies the edge dislocation are the regions for the voids vormation.

Let us consider the diffusion spreading of II-valent impurity along edge dislocation process for Mg as an example. Ionized atoms of Mg, (Mg^--O^+) as well as $(V_{Ga}^{3-} - V_N^{3+})$ and $(V_{Ga}^{3-} - 3O_N^+)$ complexes are moved along the dislocation from the GaN layer surface into the GaN volume. Process of Mg and O accumulation in GaN volume accompany with the process of Ga by Mg and N by O substitution. Simultaneously cavities nucleate from the supersaturated vacancy solution in the core of edge dislocations as well in crystal volume near dislocations. Since oxygen has a tendency to segregate on the surface it replace nitrogen first of all on the cavity surface. As it move as a complex with magnesium then the cavity surfaces became covered by MgO.

The cavity growth in wurtzite GaN in presents of oxygen occurs anisotropically because not all the crystallographic directions are equal with respect to the oxidation process.

As is known the GaN surfaces presented by high density packed $\{0001\}$ and $\{1010\}$ planes have minimal energy and faceted the growing crystal. But the (0001) and (000_1) surfaces have different degrees of the chemical activity.

The gallium terminated (0001) surface presented by 3 time ionized Ga atoms which valent electrons are localized around N atoms located deeper under the surface. That is why this surface is very stable with respect to the outside chemical influence.

The nitrogen terminated (000_1) surface is presented by N atoms with complete 2p electron shell. But being in contact with atoms having lesser ionization potential than Ga atoms have the nitrogen atoms tear up the bonds with Ga and make bonds with more active donors.

That is why inside the nucleated primarily isomeric cavity (000_1) surface will oxidize first of all. It become so to be passivated by MgO layer and don't take part in further cavity growth process (Fig. 2.15).

Another surfaces of the cavity dissolve as the vacancy coming in by diffusion along dislocation core. Since part of the V_{Ga}^{3-} vacancies diffuse not only as the ($V_{Ga}^{3-} - V_N^{3+}$) complexes but in the composition of the ($V_{Ga}^{3-} - 3O_N^+$) complexes than the number of V_{Ga}^{3-} vacancies coming into the GaN volume exceed the number of V_N^{3+} ones (the $C_V^{Ga} - C_V^N$ difference is determined by amount of oxygen that takes part in the diffusion). That is why the process of diffusive dissolution of the high density Ga packed (0001) surface will be the fastest. It leads to the form of the faceted cavity formed on the edge dislocation as well in the GaN bulk was observed experimentally. The cavity growth process stop when all its surfaces will be passivated by oxygen. The cavity surface is cover by MgO when Mg diffuse simultaneously with O. (Fig. 2.16 a,b).

Of course the cavities nucleate and grow faster on the dislocation then in volume. Growing together they form the faceted nanotubes we have observed. The growing up small cavities formed in the bulk close to the dislocation line grow into the big cavities as seen in (Fig. 2.9).

The rare faceted voids that was observed in our experiments with Au diffusion in GaN are thought to appear as a result of the (V_{Ga}^{3-} - 3 O_N^+) complexes diffusion. The diffusion mobility of this complexes is rather lower than mobility of the (Mg⁻-O⁺) or (Zn⁻-O⁺) complexes which transport oxygen during Mg or Zn diffusion in GaN.

 Martina Luysberg, W. Jäger, K. Urban, M. Perret, N.A. Stolwijk and H. Mehrer (1989). Defect Formation During Zn Diffusion into GaAs. MRS Proceedings, 163, 659 doi:10.1557/PROC-163-659.

- 2. T. Suzuoka, Trans. Japan. Inst. Metals, 2, (1961), 25.
- 3. A.D. Le Claire, Brit. J. Appl. Phys. 14 (1963) 351-366).
- 4. J. Philibert, *Atom Movements. Diffusion and Mass Transport in Solids*, Les Éditions de Physique, (1991), 578.
- 5. R.E. Howard, and A.B. Lidiard, *Rep. Prog. Phys.* 27 (1964) 161.
- B. Tuck, Atomic Diffusion in III-V Semiconductors, Adam Hilger Bristol, 1988.
- T.Y. Tan, U. Gösele and S.Yu, Crit. Rev. Sol. St. Mater. Sci., 17 (1991) 47.
- J. Domagala, M. Leszczynski, T. Suski, J. Jun, P. Przystawko, H. Teisseyre: Thin Solid Films 1 (1999), 338.
- C. Fall and R. Jones, *Compound Semiconductor*, June 2001, p.57.
- K. Saarinen, Abstr. of the Conf. ,Doping Issues in Wide-Gap Semiconductors', Exeter, UK, 21-23 March (2001).
- X.J. Ning, F.R. Chien, and P. Pirouz, J. Mater. Res. 11, 580 (1996).
- 12. Z. Liliental-Weber, priv. comm. at the EDS (1998).
- J. Elsner, A. Th. Blumenau, Th. Frauenheim, R. Jones, M.I. Heggie, MRS Internet J. Nitride Semicond. Res., 5S1, W9.3 (2000).
- 14. W. Qian, M. Skowronski, K. Doverspike, L. B. Rowland, and D. K. Gaskill, J. Cryst. Growth, 151 396, (1995).
- 15. Z. Liliental-Weber, Y. Chen, S. Ruvimov, and J. Washburn, Phys. Rev. Lett. 79, 2835 (1997).
- C. Wetzel, T Suski, J.W. Ager, E.R. Weber, E.E. Haller, S. Fischer, B.K. Meyer, R.J. Molnar and P. Perlin, Phys. Rev. Lett., 78, 3923 (1997).
- J. Neugebauer and C.G. Van de Walle, Festkörperprobleme, 35, 25 (1996).
- J. Elsner, R. Jones, M. Haugk, R. Gutierrez, Th. Frauenheim, M.I. Heggie, S. Öberg and P.R. Briddon, Appl. Phys. Lett., 73, 3530 (1998).
- X.J. Ning, F.R. Chien and P. Pirouz, J. Mater. Res., 11, 580 (1996).

PACS numbers: 71.20.Eh; 72.10.-d; 74.40.+k; 74.72.-h;

In-plane paraconductivity of $ReBa_2Cu_3O_{7-\delta}$ (Re=Y, Ho) single crystals with a given topology of planar defects and a mono-domain sample

A.N. Sokolov, S.V. Savich, V.V. Sklyar, Z. F. Nazyrov, R. V. Vovk

Kharkov National University, 4 Svoboda Sq., 61077 Kharkov, Ukraine <u>Ruslan, V. Vovk@univer.kharkov.ua</u>

In this experimental study we present a comparative analysis between the normal and the fluctuating conductivity of the $ReBa_2Cu_3O_{7,\delta}$ (Re=Y, Ho) single crystals (with a given topology of plane defects) and a mono-domain sample (without twin boundaries). It is demonstrated that the twin boundaries are efficient scattering centers for the normal and fluctuating carriers. The Lawrence-Doniach theoretical model is an appropriate description of the temperature dependence of the excess conductivity. The values of the coherence length perpendicular to the ab-plane $x_e(0)$ are in good agreement with the values derived from magnetic measurements of stoichiometric YBa₂Cu₃O_{7, δ} single crystals.

Keywords: fluctuation conductivity, $YBa_2Cu_2O_{7,\delta}$ single crystals, twin boundaries, crossover, coherence length.

У роботі проведено порівняльний аналіз нормальної і флуктуаційної провідності монокристалів ReBa₂Cu₃O₇₋₆ (Re=Y, Ho) із заданою топологією площинних дефектів та бездвійникового однодоменного зразка. Показано, що двійникові межі є ефективними центрами розсіювання нормальних і флуктуаційних носіїв. При цьому значення довжини когерентності перпендикулярно базисній площині х_с(0), отримані при апроксимації температурної залежності надлишкової провідності теоретичною моделлю Лоуренса-Доніаха, задовільно узгоджуються із значеннями отриманими з магнітних досліджень для оптимально допованих киснем монокристалів YBa₂Cu₃O₇₋₈

Ключові слова: флуктуаційна провідність, монокристали YBa2Cu3O7.8, межі двійників, кросовер, довжина когерентності.

В работе проведен сравнительный анализ нормальной и флуктуационной проводимости монокристаллов ReBa₂Cu₃O₇₋₈ (Re=Y, Ho) с заданной топологией плоских дефектов и бездвойникового мононодоменного образца. Показано, что двойниковые границы являются эффективными центрами рассеивания нормальных и флуктуационных носителей. При этом значения длины когерентности перпендикулярно базисной плоскости x_c(0), полученные при аппроксимации температурной зависимости избыточной проводимости теоретической моделью Лоуренса-Дониаха, удовлетворительно согласуются со значениями, полученными из магнитных исследований для оптимально допированных кислородом монокристаллов YBa₂Cu₃O₇₋₈.

Ключевые слова: флуктуационная проводимость, монокристаллы YBa₂Cu₃O₇₋₈, границы двойников, кроссовер, длина когерентности.

Introduction

Various different fluctuating pairing modes of carriers have been studied extensively since the early studies of high-temperature superconductors [1-4]. The composition and the topology of the defect assembly that defines the flow conditions of the transport current and the carrier transport scattering mechanisms are significant. Compounds from the system ReBa₂Cu₃O₇₋₈ (Re=Y or rare earth ion), are technologically important and their study is motivated from previous work on single crystals production technology. It should also be noted that in this system it is easy to substitute yttrium (Y) with most rare earth ions.

In the past, most experimental work has been focused

on ceramics, films and textured samples, with different methodologies. As a result, numerous aspects of the realization of different fluctuating pairing modes of carriers have remained unclear until now. It must also be appreciated that in YBa₂Cu₃O_{7- δ} single crystals, there exist plane defects such as twin boundaries [4,5] that affect the transport current properties in the normal and the fluctuating conductivities. This effect has not been investigated thoroughly due to the experimental difficulties in determining the contribution of twin boundaries. The aim of the present study is to investigate the evolution of the fluctuating conductivity regime in single crystals containing a controllable defect structure but differing in the transport current geometry. For

comparison a mono-domain sample, in which the plane defects where removed by using special procedures was considered.

Experimental techniques

The single crystals of $\text{ReBa}_2\text{Cu}_3\text{O}_{7-\delta}$ (Re=Y, Ho) were grown using the solution-melt technique in a gold crucible described in a previous study [4]. In previous experiments [4,5], it was demonstrated that when the YBa₂Cu₃O_{7-\delta} compounds were saturated with oxygen, the structure transforms from tetragonal to orthorhombic. This structural change is associated with the crystal twinning to minimize the elastic energy. Figure 1 is a photograph of the characteristic twin grid of the YBa₂Cu₃O_{7-\delta} single crystal (sample K1).

For the resistivity measurements thin single crystals were selected with permeable twin boundaries. In these single crystals the area with uniform direction of twin boundaries had dimensions of 0.5×0.5 mm². This geometry enabled to cut out bridges with parallel twin boundaries with a width of 0.2 mm. The area with uniform direction of twin boundaries bridges had a contact spacing of 0.3 mm (see insets of Figure 2).

Bridges B2 and B3 were cut from the same batch of the crystal (K1 sample, YBa₂Cu₃O_{7- δ}) and bridges B4 (K2 sample, HoBa₂Cu₃O_{7- δ}) and B5 (K3 sample, HoBa₂Cu₃O_{7- δ}) were grown from the same batch and had practically identical resistivity parameters. The experimental geometry was selected so that the transport current vector, **I**, was either parallel, **I**||TB (B2 bridge, K1 sample, YBa₂Cu₃O_{7- δ}) and B4 bridge, K2 sample, HoBa₂Cu₃O_{7- δ}), perpendicular, **I**_TB (B3 bridge, K1 sample, YBa₂Cu₃O_{7- δ}), or under an angle of α =45° (B5 bridge, K3 sample, HoBa₂Cu₃O_{7- δ}), to

Fig. 1. Photograph (polarized light x 550) of the $YBa_2Cu_3O_{7.\delta}$ (sample K1) single crystal where its characteristic twin grid is visible.

the twin boundaries. A part of the K1 single crystal was cut to acquire a sample without twin boundaries (bridge B1), with dimensions of $1 \times 0.3 \times 0.2$ mm³ (the *c* axis oriented along the smallest dimension). After the selection, the sample was untwinned in a special cellule with a temperature of 720 K and a pressure range of 30-40 GPa, according to the method described in a previous study [5]. In order to have stoichiometric oxygen concentration, the crystal was annealed in an oxygen atmosphere flow for three days. The high quality of the experimental samples and the stoichiometry in the oxygen content is proved by the narrow superconducting transition width $(\Delta T_{<} < 0.5 K)$, the high critical temperature $(T_{\sim} \approx 92 K)$ and the low electrical resistivity ($\rho \approx 120-150 \ \mu\Omega.cm$). The derived experimental parameters are given in Table 1.

The electric contacts were formed according to the

Fig. 2. Temperature dependence of the in-plane resistivity $\rho_{ab}(T)$ for bridges (a) B1, B2, B3 and (b) B4, B5. The schematic representation of the experimental geometry is shown in the corresponding insets.

Fig. 3. Resistivity transition into the superconducting condition in (a), (b) $\rho_{ab-}T$ coordinates and in (c), (d) $d\rho_{ab}/dT - T$ coordinates, for bridges (a), (c) B1, B2, B3 and (b), (d) B4, B5 (curves 1 – 5, respectively).

standard four-contact scheme by applying silver paste onto the crystal surface and the connection of silver conductors (0.05 mm in diameter) followed by 3 hours annealing at 200 °C in an oxygen atmosphere. This procedure provided a contact transition resistance of less than 1 Ω and made it possible to measure the resistivity at transport currents up to 10 mA in the abplane, in the temperature drift mode, for two opposite directions of the transport current. The temperature was measured with a copper-constantan thermocouple; the voltage was measured across the sample and the reference resistor with V2-38 nano-voltmeters.

Results and discussion

Figure 2 shows the temperature dependence of the electric resistivity in the *ab*-plane, $\rho_{ab}(T)$, for the five analyzed samples. Figure 3 illustrates the resistive superconducting transitions in ρ_{ab} - T [Figure 3 (a) and (b)] and in $d\rho_{ab}/dT - T$ [Figure 3 (c) and (d)] coordinates. According to previous studies [2,3], the maximum point, corresponding to the inflection point, in the $d\rho_{ab}(T)/dT$ dependence, is the critical temperature of the resistive superconducting transition. The narrow superconducting transition width ($\Delta T_c < 0.5$ K) shows the high quality of the samples. It can be determined (from Figure 3 and Table 1) that the untwined sample has the lowest superconducting transition width ($\Delta T_c \approx 0.2$ K). The samples with I||TB geometry (bridges B2 and B4) have $\Delta T_c \approx 0.3$ -0.4 K, when the twin boundaries impact to the carrier scattering processes is minimized. An additional lower peak (maximum point) in the curve, corresponding to I \perp TB [bridge B3, Figure 3(c)] and $\alpha=45^{\circ}$ [bridge B5, Figure 3(d)] can be due to the effect of twin boundaries provided that the ordering parameter is somewhat suppressed [6].

It can be seen from Figure 2 that the $\rho_{ab}(T)$ dependence has a metallic character for all the samples considered. For the YBa₂Cu₃O_{7.8} crystals the resistivity for the untwinned sample and for the sample with the I||TB orientation, at room temperature, is about 5-7% lower than that for I \perp TB. For HoBa₂Cu₃O_{7- δ} crystals the resistivity of the sample with the I||TB orientation is lower than the α =45° sample. As the vector **I** is oriented relative to crystallographic axes in the same way for all the cases considered the greater ρ_{ab} value at I \perp TB and α =45° is explained by the current carrier scattering at the twin boundaries. The electron free path in the single crystals has been estimated to be 0.1 μ m [7]. The value of the electron free path is one order smaller The maximum resistance than the twin spacing.

Fig. 4. The temperature dependence of the excess conductivity $\Delta\sigma(T)$ for bridges B1-B5 (curves 1 – 5, respectively) in $\ln\Delta\sigma$ - $\ln\epsilon$ coordinates, respectively. The numbering of the curves is consistent to Figures 2 and 3. Arrows indicate the 2D-3D crossover points.

increase due to scattering at the twin boundaries is 10%. The observed 5 -7% increase in ρ_{ab} is due to the efficient carrier scattering at the twin boundaries.

Above 150 K, the temperature dependence of the resistivity is approximately linear (see Figure 2). Below 150 K, the resistivity deviates from linearity and there exists an excess conductivity determined by:

$$\Delta \sigma = \sigma - \sigma_0 \tag{1}$$

where σ_0 is the conductivity value determined by extrapolating the linear section of $\sigma = (A+BT)^{-1}$ to zero temperature and σ is the experimental conductivity in the normal state. The electron subsystem dimensionality in layered superconductors is defined by the relationship between the coherence length along the c axis (ξ_c) and the 2D layer thickness (d). For the case when d < ξ_c , the interaction between the fluctuating pairs occurs within the whole superconductor volume (3D mode). On the other hand, when d > ξ_c , the interaction is possible only in superconductive layers (2D mode). Two basic theoretical models have been proposed to describe the fluctuation conductivity mode in layered superconductors [8,9]. In the Lawrence and Doniach model [9], the temperature dependence of the fluctuation conductivity is described by:

$$\Delta \sigma = \frac{e^2}{16d\hbar\varepsilon} \left\{ 1 + \left[\frac{2\xi_c(0)}{d} \right]^2 \varepsilon^{-1} \right\}^{-1/2}$$
(2)

where $\varepsilon = (T-T_c)/T_c$ and e is the electron charge.

Near T_c , at $\xi_c >> d$ (3D mode), this equation is transformed into [7]:

$$\Delta \sigma_{3D} = \frac{e^2}{32\hbar \xi_c(0)} \varepsilon^{-1/2},\tag{3}$$

Far from T_c , at $\xi_c \ll d$ (2D mode), into:

$$\Delta \sigma_{2D} = \frac{e^2}{16\hbar d} \varepsilon^{-1},\tag{4}$$

It is important for the analysis of the experimental data to have a precise determination of the T_c .

In Figure 4 the temperature dependence of the excess conductivity (in $\Delta \sigma$ - T and ln $\Delta \sigma$ - ln ϵ coordinates) is given. In this figure, T_c is defined as the critical temperature value T_c^{mf} in the approximation of mean field theory at the point:

$$\left(\frac{\partial^2 \rho}{\partial T^2}\right)_{T=T_c^{mf}} = 0 \tag{5}$$

This corresponds to the maximum in the $d\rho_{ab}/dT$ dependence in the superconductive transition [2,3]. In Figure 4, near T_c, the $\Delta \sigma$ (*T*) dependence is approximated well by equation (3) (power index -0.5), thus evidencing the 3D character of fluctuating superconductivity within this temperature range. As the temperature increases further, the slope of $ln\Delta \sigma$ ($ln \varepsilon$) relationship increases significantly. This can be considered as an indication of the fluctuation conductivity dimensionality change. Equations (3) and (4) are equal in the 2D-3D-crossover point and therefore the following relation must be satisfied:

$$\xi_c(0)\varepsilon^{-1/2} = d/2 \tag{6}$$

Having determined the $\epsilon_{_0}$ value in the 2D-3D crossover point and taking d = 11.7 Å for ReBa₂Cu₃O_{7.8} (Re=Y, Ho) [10], it is possible to determine the $\xi_0(0)$ value. These results as well as the characteristic slope values of the $\ln\Delta\sigma(\ln\epsilon)$ function are presented in Table 1. It should be stressed that this methodology does not allow the consideration of possible errors in the resistivity measurements when determining the fluctuation values within spatially inhomogeneous systems, which are associated with the presence of small inclusions of other phases, even in high quality single crystals [6]. Consequently, when comparing with the experimental data, the $\xi_c(0)$, d and T_c values in equations (2) – (4), are considered to be fitting parameters. An additional scaling multiplier, the C-factor, to assist in the calculation of the inhomogeneity of the current transport distribution in each specific sample is required [1]. Using this methodology equation (2) has the best agreement with the experimental data. The coherence length $\xi_{c}(0)$ is 2±0.3 Å for the ReBa₂Cu₃O_{7.8} compound, when the orientation is I \perp TB and 2.2 ± 0.3 Å for the untwined sample, as well as in the case of I||TB orientation. Comparing the data obtained from the experiment and the magnetic susceptibility data measured in a previous study [11], the diamagnetic contribution of the area with high T_e, is proportional to the volume of this phase. The ξ_c value obtained was $\xi_{a}=2.3\pm0.5$ Å, closer to the values calculated using the second method. Nevertheless, the difference between the $\xi_{c}(0)$ values calculated with both methodologies for the I \perp TB, α =45° and I||TB bridges and for the untwined sample

are consistent. Specifically, they are 10% to 14%, and provide evidence of the influence of twin boundaries on the formation processes of the fluctuating Cooper pairs.

Conclusions

The resistance increase within the linear section of $\rho(T)$ between the transport current perpendicular LLTB, α =45°, as compared to the case of I||TB and the untwined sample, is due to an efficient scattering of normal carriers at the twin boundaries. The excess conductivity functions, $\Delta\sigma(T)$, are described by the Lawrence-Doniach theoretical model. Twin boundaries in the crystal intensify the depairing processes of the fluctuating carriers and swift the 2D-3D crossover point.

- B. Oh, K. Char, A.D. Kent, M. Naito, M.R. Beasley, T.H. Geballe, R.H. Hummond, A. Kapitulnik and J.M. Graybeal, Phys. Rev. B 37 (1988) 7861.
- H.A. Borges and M.A. Continentino, Solid State Commun. 80 (1991) 197.
- L. Mendonca Ferreira, P. Pureur, H.A. Borges and P. Lejay, Phys. Rev. B 69 (2004) 212505.
- M.A. Obolenskii, R.V. Vovk, A.V. Bondarenko and N.N. Chebotaev, Fiz. Nizk. Temp. 32 (2006) 746.
- J. Giapintzakis, D.M. Ginzberg and P.D. Han, J. Low Temp. Phys. 77 (1989) 155.
- L.F. Rybalchenko, I.K. Yanson, N.L. Bobrov, V.V. Fisun, M.A. Obolenskii, A.V. Bondarenko, Y.D. Tretyakov, A.R. Kaul and I.E. Graboi , Fiz. Nizk. Temp. 16 (1990) 58.
- B.B. Moschalkov, I.G. Muttik and N.A. Samarin, Fiz. Nizk. Temp. 14 (1988) 988.
- L.G. Aslamazov and A.I. Larkin, Fiz. Tverd. Tela (Leningrad) 10 (1968) 1104.
- W.E. Lawrence and S. Doniach, in Proc. 12th Int. Conf. on Low Temperature Physics, Kyoto (Japan) 1970, Ed. E. Kanda, Keigaku, Tokyo 1971, p. 361.
- G.D. Chryssikos, E.I. Kamitsos, J.A. Kapoutsis, A.P. Patsis, V. Psycharis, A. Kafoudakis, C. Mitros, G. Kallias, E. Gamari-Seale and D. Niarchos, Physica C 254 (1995) 44.
- M.A. Obolenskii, A.V. Bondarenko and V.I. Beletskii, Fiz. Nizk. Temp, 16 (1990) 574.

Bridge	T _c , K	$\Delta T_{c}, K$	ρ _{ab} (300), μΩ.cm	е ₀	tana _{3D}	tana _{2D}	ξ _c (0), Å
B1 (without TB)	91.734	0.2	153	0.070	-0.501	-1.008	1.55
B2 (I TB)	91.738	0.3	156	0.065	-0.498	-1.017	1.49
B3 (I⊥TB)	91.743	0.5	163	0.057	-0.512	-1.044	1.40
B4 (I TB)	91.301	0.4	129	0.103	-0.489	-0.998	1.88
B5 (α=45°)	91.325	0.5	138	0.092	-0.505	-1.015	1.77

Material properties as determined at different bridges.

Table 1.

РАСS: 61.80.Jh; 61.82.Pv УДК 541.183.4

Дослідження оптимальних умов створення трекових мембран з діаметром пор ≥50 нм на основі ПЕТФ плівок, опромінених іонами аргону

І.В. Воробйова¹, Б.В. Зайцев², А.Ф. Кобець²

¹Харьківский національний університет ім. Каразіна, Україна, 61077, Харків, пл. Свободи, 4 ²Національний науковий центр "Харківський фізико-технічний інститут", Україна, 61108, Харків, вул. Академічна, 1

Досліджені методи сенсибілізації для створення трекових мембран з нанорозмірними порами на основі ПЭТФ (поліетилентерефталат) плівок, опромінених іонами аргону. Встановлені оптимальні умови хімічної обробки плівок для створення мембран, якість яких не відрізняється від якості мембран, створених з використанням більш важких іонів. Ключові слова: іони аргону, опромінення, травлення наскрізних пор, електронна мікроскопія, трекові мембрани.

The methods of sensibilization and etching the through pores of small radii in polyethylenetherephthalate films irradiated with Ar ions having the energy of 1 MeV/nucl was studied. The most effective conditions of the films processing for obtaining the track membranes with the same properties as membranes irradiated by more heavy ions were established.

Keywords: Ar ions, irradiation, through pore etching, electron microscope, track membranes.

Исследованы методы сенсибилизации для создания трековых мембран на основе полиэтилентерефталатных пленок, облученных ионами аргона с энергией 1 МэВ/нукл. Определены оптимальные условия химической обработки пленок для получения трековых мембран, качество которых не хуже, чем у мембран, полученных после облучения более тяжелыми ионами.

Ключевые слова: ионы аргона, облучение, травление сквозных пор, электронная микроскопия, трековые мембраны.

Вступ

Одержання зразків полімерних трекових мембран для виконання якісної ультратонкої фільтрації вимагає проведення теоретичних і експериментальних досліджень для виявлення оптимальних умов опромінювання та фізико-хімічної обробки полімерних плівок.

На Харківському лінійному прискорювачі важких іонів ЛУМЗІ удосконалені усі системи іонного опромінюючого комплексу, що дає можливість підвищення інтенсивності і стабільності прискореного пучка іонів аргону на виході передобдиркової секції. Мінімізовані втрати пучка прискорених іонів в іонопроводі на шляху його транспортування до мішені і забезпечений рівномірний розподіл треків по поверхні, що опромінюється. Використання іонів аргону значно здешевлює вартість трекових мембран у порівнянні з використанням більш важких іонів [1, 2]. Тому розробка повного циклу (опромінення, сенсибілізація, травлення) створення мембран з нанорозмірними порами з використанням іонів аргону має велике практичне значення.

З використанням прискорених іонів аргону пори з діаметрами ≥50 нм можна отримати лише за рахунок неординарних методів сенсибілізації, які потрібно здійснити перед травленням, щоб збільшити швидкість травлення вздовж треку. В цій статті виконані більш детальні, ніж у попередніх працях [3-7], дослідження методів сенсибілізації з метою встановлення найбільш простих та ефективних умов обробки полімерної плівки для отримання якісних трекових мембран з використанням іонів аргону.

Матеріал і методи досліджень

Опромінювання поліетилентерефталатної (ПЕТФ) плівки товщиною 6 мкм виконувалося прискореними іонами аргону з енергією 1 МеВ/ нуклон. Прискорені в передобдірковій секції лінійного прискорювача ЛУМЗІ тризарядні іони аргону обдирали до дванадцятикратного стану на вуглецевій фользі, відхиляли магнітом, розсіювали квадрупольними лінзами і рівномірно опромінювали полімерну плівку в пристрої іонного опромінювання. Доза опромінювання відповідала щільності треків 5·10⁶ – 10⁷ треків/см⁻².

Для підвищення швидкості травлення треків методи сенсибілізації, використовуються різні що передують хімічному травленню. Найчастіше використовують два методи сенсибілізації: перший – традиційний, заснований на опроміненні ультрафіолетом (УФ) [8-10], другий – полягає в обробці опромінених плівок різними розчинниками [11, 12]. Дія опромінення УФ на кінетику розтравлювання пор у ПЭТФ плівці, орпроміненої іонами Ar, у залежності від температури та концентрації травника досліджена у [3-7]. Встановлено, що для досягнення максимальної швидкості травлення час опромінення УФ з максимум випромінювання в інтервалі довжин хвиль 320 - 360 нм, повинен бути не менше 4 годин. Такий спосіб сенсибілізації дав можливість отримати пори, мінімальний діаметр яких дорівнює (70±10) нм. У якості розчинника досліджена дія диметілформаміду (ДМФ), який дає можливість збільшити швидкість травлення треків іонів Хе у більше ніж 30 разів [11, 12]. Ми використали новий метод, який полягає в спільній дії опромінення УФ і обробки розчинником. Ідея такого сполучення полягає у такому. Під дією УФ уламки полімерних ланцюгів, що утворилися при прольоті прискореного важкого іона, нейтралізуються і не мають можливості з'єднатися, тобто зберігається стійка дефектність у зоні треку. Під дією розчинника збільшується вільний обсяг у зоні треку внаслідок кристалізації. При спільній дії УФ і розчинника травник швидше проникає в ядро треку за рахунок збільшення вільного обсягу, а уламки полімерних ланцюгів, зафіксовані УФ опроміненням, легше виводяться з зони треку.

У статті досліджена температурна та часова залежність швидкості травлення пор у зразках, оброблених диметілформамідом за різні проміжки часу при різних температурах. Усі зразки були опромінені УФ протягом 4 годин. Встановлена також залежність якості мембран від способів промивання зразків після обробки ДМФ. Після сенсибілізації зразки протравлювалися у 2N розчині NaOH при (55±1)°C різні проміжки часу. Пористу структуру на верхній і нижній поверхнях плівки досліджували за електронномікроскопічним методом реплік в трансміссійному електронному мікроскопі (TEM-125). Пори на торцевих відколах досліджували у растровому електронному мікроскопі JSM-840.

Результати та обговорення

Досліджено залежність швидкості травлення пор від часу обробки зразків у ДФМ при фіксованій температурі. Зразки занурювали в ДФМ при температурі 55°С і витримували v ньомv різні проміжки часу, які становили: 5, 10, 15 і 30 хвилин. Після витримки в ДФМ зразки промивали у воді з подальшим травленням. Травлення проводили в 2N розчині NaOH при 55°C протягом 30 хвилин. При такому часі травлення в контрольних зразках, опромінених тільки УФ, ми взагалі не виявляли пор, що протравилися. Експерименти показали, що витримка в ДФМ приводить до істотнього збільшення швидкості травлення пор, так як в зразках, оброблених ДФМ, пори добре видно при тому ж збільшенні. Встановлено, що діаметр пор досягає максимального значення після витримки у ДМФ протягом 10 хвилин і не збільшується при більш тривалому часі витримки. Тому обробка ДМФ може не перевищувати 10 хвилин.

Однак, ці експерименти показали, що обробка ДФМ із наступним промиванням у воді має і побічні негативні дії. У результаті витримки в ДФМ зразки псуються: на їхній поверхні утворюються непрозорі плями, псується рельєф поверхні, зразки стають мутними. Проведено серію експериментів з метою встановлення таких умов промивання зразків, які б не ушкоджували поверхню. У цих експериментах після витримки протягом визначеного часу в ДФМ зразки або висушували, або промивали у воді або у спирті.

Puc. 1. а) Зразок протравлений без обробки ДФМ. b) Зразок перед травленням витриманий у ДФМ і промитий у спирті. c) Зразок перед травленням витриманий у ДФМ і промитий у воді.

Рис. 2. Пори в ПЭТФ плівці, обробленій ДФМ і протравленій в 2N розчині NaOH при T=55°C. Час травлення: а. t = 0.5 години. b. t = 1 година. c. t = 1.5 години. Опромінення УФ протягом 5 годин. Збільшення 32000.

Потім зразки протравлювали і проглядали в оптичному мікроскопі при збільшенні в 1000 разів. Встановлено, що найменше зразки псуються, якщо після витримки в ДФМ їх просто висушувати. Після промивання в спирті і більше всього після промивання у воді зразки значно псуються. На рис. 1 показані характерні види поверхні зразків: а) без обробки ДФМ, б) обробленого ДФМ і промитого в спирті, с) обробленого в ДФМ і промитого у воді. Усі зразки одночасно протравлювали в 2N розчині NaOH при 55°C.

Видно, що в зразку, неопрацьованому ДФМ, пори практично не протравилися. У зразку, обробленому ДФМ і промитому в спирті, пори протравилися, а структура поверхні мало змінилася в порівнянні з неопрацьованим ДФМ зразком. У зразку, промитому після ДФМ у воді, на поверхні, крім пор, з'явилась велика кількість макроскопічних плям. У таблиці 1 наведено дані про середнє число плям на однаковій площі, рівній 1.2×10⁻⁴ см², у зразках, оброблених різними способами.

Ці експерименти показали, що при усіх видах промивання при витримці в ДФМ при 55°С поверхня зразків гірша, ніж поверхня неопрацьованих у ДФМ зразків. Псування зразків може бути пов'язане з тим, що при 55°С під дією ДМФ не тільки збільшується вільний обсяг у зоні треку, а й виникають хімічні реакції на поверхні плівки [11]. Тому було досліджено залежність швидкості травлення пор від температури ДФМ. Зразки витримували у ДФМ протягом 10 хвилин при різних температурах: 55°С, 41°С, 35°С, 30°С. Щораз, одночасно зі зразками, які опромінювали УФ і витримували у ДФМ, протравлювався зразок, оброблений тільки УФ. Після витримки в ДФМ зразки висушували. Травлення всіх зразків проводилося в 2N розчині NaOH при 55°С.

Експерименти показали, що після обробки в ДФМ при всіх температурах пори протравлювалися набагато швидше, ніж у зразку без обробки в ДФМ. Чим вищою була температура ДФМ, тим більша кількість нових плям з'являється на поверхні. Встановлено, що поверхня плівки практично не змінюється після обробки в ДФМ при температурі 30°С (додаткові плями не з'являються). Що особливо важливо – швидкість травлення пор у зразках, оброблених у ДФМ при 30°С, практично така ж, як і при обробці ДФМ при більш високих температурах.

З проведених експериментів можна зробити висновки, що витримка в ДФМ істотно збільшує швидкість травлення пор. Витримка у ДМФ може не перевищувати 10 хвилин. Поверхня зразків найменше псується, якщо їх тільки висушувати або промивати в спирті. Тому при виготовленні мембран найбільш

Рис. 3. Пори в ПЭТФ плівці, протравленої в 2N розчині NaOH при T = 55°C. Час травлення: а. t = 0.5 години, b. t = 1 година, c. t = 1.5 години. Опромінення УФ протягом 4 годин. Збільшення 32000.

ефективним є такий режим фізико-хімічної обробки опромінених іонами аргону зразків:

 Опромінення УФ протягом проміжку часу ≥4 годин.

2. Витримка у ДФМ при 30°С протягом 10 хвилин.

3. Висушування або промивання в спирті.

4. Тавлення зразків у розчинах NaOH різної концентрації.

Встановлені умови сенсибілізації ми використали залежності середнього діаметра для дослідження пор від часу травлення у 2N розчині NaOH. Як показали наші попередні дослідження, травник такої концентрації дозволяє отримувати мембрани з порами, які мають найменший діаметр. Проведені електронномікроскопічні дослідження, що дають можливість побачити канали на початкових стадіях травлення. У цих дослідженнях з поверхні зразків, як оброблених так і необроблених у ДФМ і одночасно протравлених у 2N розчині NaOH при 55°С різні проміжки часу, знімали відтінені золотом вуглецеві репліки. Репліки вивчали з використанням трансміссійного електронного мікроскопа (ТЕМ-125). Встановлено, що на всіх етапах травлення діаметри пор значно більші в зразках, оброблених ДФМ (рис. 2 і 3). Після травлення протягом 30 хвилин діаметри пор

у плівці, обробленої ДФМ, досягають (50±10) нм. У плівці без обробки у ДФМ при такому ж часі травлення пори взагалі не виявлені (рис. 3а).

За електронномікроскопічними мікрофотографіями визначені середні значення діаметрів пор у залежності від часу травлення. Дані про значення середніх діаметрів пор занесені в таблицю 2.

На рис. 4, відповідно до даних таблиці 2, представлені графіки залежності діаметра пор від

Рис. 4. Залежності діаметра пор від часу травлення. Верхня пряма – зразок витримано у ДФМ. Нижня без витримки в ДФМ.

Рис.5. Пори на торцевих відколах. а – зразок необроблений ДМФ, b- зразок оброблений ДМФ.

часу травлення для зразків як оброблених так і необроблених ДФМ. Видно, що для діаметрів пор >100 нм нахил прямих практично однаковий для обох зразків. Це свідчить про те, що швидкості збільшення діаметрів пор мало відрізняються. Цей результат не ϵ несподіваним, тому що при таких діаметрах пор протравлюється вже об'єм плівки, а не лише дефектна область треків. Основна різниця у швидкості травлення спостерігається на початковій стадії, коли ще

Таблиця	1
---------	---

Tahmung ?

Зразок, не оброблений ДФМ,	Зразок, оброблений ДФМ і промитий у воді	Зразок, оброблений ДФМ і промитий у спирті	Зразок, оброблений ДФМ і висушений
30	60	40	35

	Тиолици					
t, година	0,5	1	1,5	4,5	5,5	
d, нм, ДФМ	50±10	140±20	180±30	520±30	600±30	
d, нм, без ДФМ	_	80±20	120±20	400±30	520±30	

виявляються розходження дефектності в ядрі треків в оброблених і необроблених ДФМ зразках. Радіус 25 нм (найменший, який ми отримали) також більше радіуса ядра треку, який для іонів Хе ≈15 нм [13] і має бути менше для іонів Аг такої ж енергії. По тому, що в зразках, неопрацьованих ДФМ, при травленні протягом 30 хв пори взагалі не протравилися, можна зробити висновок, що дефектність у ядрі треку у цьому випадку мала для того, щоб швидкість травлення уздовж треків була набагато більше швидкості травлення неушкодженої плівки. У зразку, обробленому ДФМ, при цьому ж часі травлення пори протравилися, що свідчить про те, що ядро треку після обробки ДФМ протравлюється зі значно більшою швидкістю. В плівках, оброблених ДМФ, підвищена швидкість травлення зберігається до досягнення радіуса ≈25 нм. При більшій тривалості травлення пори протравлюються в обох зразках, їх радіус перевищує радіус ядра треку і травлення в них відбувається з однаковою швидкістю.

Для переконання в тому, що отримані канали є наскрізними, а пори мають правильну циліндричну форму, було досліджено торець протравлених плівок. Для таких досліджень плівки після травлення розколювали у рідкому азоті і на поверхню розколу напилювали шар вуглецю. Торцеві відколи досліджували з використанням скануючого електронного мікроскопа. Характерний вигляд пор в об'ємі плівці після травлення протягом 0.5 години у 2N розчині NaOH показаний на рис.5.

Добре видно, що в зразку обробленому ДМФ протравилися наскрізні пори, а в зразках необроблених ДМФ пори протравилися на третину товщини плівки. Діаметр отриманих наскрізних пор не перевищує 50 нм.

Висновки

Виконані дослідження показують, що ПЕТФ плівки, опромінені іонами аргону, можна ефективно використовувати для створення мембран 3 наскрізними порами, діаметр яких можна змінювати від 50 нм до декількох мікрон часом травлення. Метод сенсибілізації, який складається з опромінювання плівок ультрафіолетовим випромінюванням та подальшим витримуванням у ДМФ, значно збільшує швидкість травлення вздовж треку. Це дозволяє мембрани з нанорозмірними порами, створювати діаметр яких не змінюється вздовж усієї товщини плівки.

- P. Apel, A. Schulz, R. Shpor. C.Trautman, V. Vutsadakis, Nucl. Instr. and Meth. B 146, 468 (1998).
- B. Sartowska, M. Buczkowski, W. Starosta, Materials Chemistry and Physics, v. 81, 352 (2003).
- 3. M.T. Bryk, A.F. Kobets, A. Kryshtal, I.V. Vorobyova, B.V.

Zajtsev, Nucl. Instr. and Meth. B 251, 419 (2006).

- V.A. Bomko, A.F. Burban, A.F. Kobets, I.V. Vorobyova, B.V. Zajtsev, Nucl. Instr. and Meth. B 266 256 (2008).
- И.В. Воробьёва, Б.В. Зайцев, А.Ф. Кобец, Вісник ХНУ імені И.Н. Каразіна, с. Фізика, 865, в.12, 35 (2009).
- И.В. Воробьёва, Б.В. Зайцев, А.Ф. Кобец, Вісник ХНУ імені И.Н. Каразіна, с. Фізика, 1075, в.18, 24 (2013).
- И.В. Воробьёва, Б.В. Зайцев, А.Ф. Кобец, Вісник ХНУ імені И.Н. Каразіна, с. Фізика, 962, в.15, 49 (2011).
- И.В. Воробьёва, Б.В. Зайцев, А.Ф. Кобец, Вісник ХНУ імені И.Н. Каразіна, с. Фізика, 651, в. 8, 59 (2005).
- Л.И. Самойлов, П.Ю. Апель, Коллоидный журнал, т.58, в.1, 140 (1996).
- Z. Zhu, Y. Maekawa, H.Koshikawa at all, Nucl. Instr. and Meth., B 217, 449 (2004).
- H.B. Luck, H.Matthes , B. Gemende at all, Nucl. Instr. and Meth., B 50, p. 395, 1990.
- 12. Y.D. Luck , Nucl. Instr. and Meth., v. 213, p. 507, 1983.
- P. Apel, A. Schulz, R. Spohr at all, Nucl. Instr. and Meth., B 146, p. 468, 1998.

PACS: 74. 72.-h

Влияние всестороннего сжатия на проводимость монокристаллов Y_{0.95}Pr_{0.05}Ba₂Cu₃O₇₋₅ с системой однонаправленных двойниковых границ

Г.Я. Хаджай¹, А.Н. Соколов¹, С.В. Савич¹, В.В. Скляр¹, Р.В. Вовк¹, К.А. Котвицкая², В.С. Морозов², Я.Г. Ленив²

¹Харьковский национальный университет имени В.Н. Каразина, 61022, пл. Свободы 4, Харьков, Украина ²Украинская государственная академия железнодорожного транспорта, пл. Феербаха 7, Харьков, Украина

В работе исследовано влияние высокого гидростатического давления до 17 кбар на проводимость в базисной ab-плоскости слабо допированных празеодимом ($x\approx0.05$) монокристаллических образцов $Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}$ с системой однонаправленных двойниковых границ. Обнаружено, что, в отличие от беспримесных образцов $YBa_2Cu_3O_{7-\delta}$ с оптимальным содержанием кислорода, приложение высокого давления приводит к двойному возрастанию величины барической производной dT_c/dP . Обсуждаются возможные механизмы влияния высокого давления на критическую температуру и фазовое расслоение в объеме экспериментального образца.

Ключевые слова: монокристаллы YBaCuO, допирование, гидростатическое давление, фазовое расслоение, восходящая диффузия.

В роботі досліджено вплив високого гідростатичного тиску до 17 кбар на провідність в базисній аb-площині слабо допованих празеодимом (х≈0.05) монокристалічних зразків Y_{1-x}Pr_xBa₂Cu₃O_{7-δ} з системою односпрямованих двійникових меж. Встановлено, що ,на відміну від бездомішкових зразків YBa₂Cu₃O_{7-δ} з оптимальним вмістом кисню, прикладання високого тиску призводить до збільшення вдвічі величини баричної похідної dT_c/dP. Обговорюються можливі механізми впливу високого тиску на T_c і фазве розшарування в обємі експериментального зразка.

Ключові слова: монокристали YBaCuO, допування, гідростатичний тиск, фазове розшарування, висхідна дифузія

In the present work we investigate the influence of high hydrostatic pressure up to 17 kbar on the conductivity in the basal abplane of lightly doped praseodymium (x ≈ 0.05) YBa₂Cu₃O_{7.8} single-crystals with unidirectional twin boundaries. It is determined that, in contrast to the undoped YBa₂Cu₃O_{7.8} samples with optimal oxygen content, the application of high pressure leads to a doubling of the pressure derivative value dT_c/dP. The possible mechanisms explaining the high pressure influence on critical temperature (T_c) and the phase segregation in the sample volume are discussed.

Keywords: YBaCuO single crystals, doping, hydrostatic pressure, phase segregation, ascending diffusion.

B отсутствия полноценной условиях микроскопической теории высокотемпературной сверхпроводимости (ВТСП) [1] применение высоких давлений продолжает оставаться одним из важнейших инструментов не только определения адекватности многочисленных теоретических моделей, но и поиска эмпирических путей улучшения критических параметров ВТСП-материалов [2,3]. Одними из наиболее перспективных для исследований, в этом аспекте, являются соединения так называемой системы 1-2-3 (Y₁₋Pr_xBa₂Cu₃O₇₋₈), с частичной заменой иттрия на празеодим [4]. Как известно, замена в этом соединении иттрия на другие редкоземельные элементы не приводит к существенному изменению его резистивных характеристик [5]. Исключение представляет только случай замены иттрия на празеодим (так называемая аномалия празеодима), способствующий подавлению

резистивных параметров [3-6]. Это, в свою очередь, дает возможность относительно просто варьировать сверхпроводящие характеристики соединения путем изменения концентрации празеодима в конкретном экспериментальном образце. При этом практически не изменяется структура кристаллической решетки и кислородный индекс соединения [4,5]. Последнее является особенно важным, поскольку позволяет исключить возможность возникновения неравновесного состояния, которое может быть индуцировано, в беспримесных, нестехиометрических по кислороду образцах, посредством приложения давления [2,3] или скачкообразного изменения температуры [7]. Несмотря на то, что в литературе имеется несколько сообщений, посвященных исследованию влияния давления на критическую температуру (Т_) соединений Y_{1-x}Pr_xBa₂Cu₃O_{7-δ} (см., например, обзор [4]), данные,

© Хаджай Г.Я., Соколов А.Н., Савич С.В., Скляр В.В., Вовк Р.В., Котвицкая К.А., Морозов В.С., Ленив Я.Г., 2014

приводимые в этих работах, зачастую являются достаточно противоречивыми. При этом сообщается о регистрации как положительной, так и отрицательной барической производной dT/dP, а в отдельных случаях и об изменении знака dT/dP [4], о чем более подробно будет сказано ниже. Важное значение здесь имеет тот факт, что значительная часть экспериментальных данных была получена на керамических, пленочных и текстурированных образцах весьма различной технологической предыстории [4,5]. В случае же монокристаллических образцов определенные сложности может создавать присутствие в системе достаточно разупорядоченной структуры двойниковых границ (ДГ) [8,9]. Последние, являясь протяженными двумерными дефектами, а также местом стока дефектов более низкой размерности, в свою очередь, сами представляют собой мощные центры рассеяния нормальных и флуктуационных носителей [10], тем самым оказывая заметное влияние на процессы переноса заряда в конкретном экспериментальном образце. Следует так же отметить, что в литературе практически отсутствуют экспериментальные данные, полученные при исследовании влияния давления в соединениях с концентрацией празеодима x<0.1. При этом именно в образцах слабо допированных празеодимом зачастую наблюдаются интересные явления подавления псевдощелевого состояния и аномального расширения температурного участка линейной зависимости [11,12]. Учитывая вышесказанное, в настоящей работе были проведены исследования влияния давления на резистивные характеристики слабо допированных празеодимом (x≈0.05) монокристаллических образцов Y₁, Pr, Ba, Cu₃O₇₋₈ сгеометриейпротекания транспортного тока IIIДГ, позволяющей минимизировать эффекты рассеяния на двойниковых границах [13,14].

ВТСП-монокристаллы соединений Y_{1-х}Pr_xBa₂Cu₃O_{7-δ} выращивали по раствор-расплавной технологии в золотом тигле, согласно методике [6,10,12]. Для проведения резистивных исследований отбирали кристаллы прямоугольной формы размером 3×0.5×0.03мм³. Наименьший размер кристалла соответствовал направлению с - оси. Электрические контакты создавали по стандартной 4-х контактной схеме путем нанесения серебряной пасты на поверхность кристалла с последующим подсоединением серебряных проводников диаметром 0.05 мм и трехчасовым отжигом при температуре 200°С в атмосфере кислорода. Такая процедура позволяла получить переходное сопротивление контактов менее одного Ома и проводить резистивные измерения при

Рис. 1. Температурные зависимости электросопротивления в базисной плоскости ρ_{ab}(T) монокристалла Y_{1-x}Pr_xBa₂Cu₃O_{7-δ}, измеренные при давлениях 0;4,52;9,17;12,74;17,05 – кривые 1-5, соответственно. Вставка (а): резистивные переходы в сверхпроводящее состояние. Вставка (а):барические зависимости T_c и ρ_{ab}(300).

транспортных токах до 10 мА в аb-плоскости. Как известно, при насыщении кислородом в соединениях YBaCuO происходит тетра-орто структурный переход, который, в свою очередь, приводит к двойникованию кристалла, минимизирующего его упругую энергию. Для получения образцов с однонаправленными границами двойников из кристалла вырезался мостик шириной 0.2 мм и расстоянием между парами контактов 0.3 мм. При этом геометрия эксперимента выбиралась таким образом, чтобы вектор транспортного тока был параллелен плоскостям двойникования Ι [14]. Гидростатическое давление создавали мультипликаторе типа поршень-цилиндр [3]. Величину давления определяли с помощью манганинового манометра, температуру - медь-константановой термопарой, вмонтированной в наружную поверхность камеры на уровне положения образца.

На рисунке 1 показаны температурные зависимости электросопротивления в базисной плоскости $\rho_{ab}(T)$ монокристалла $Y_{1-x}Pr_{x}Ba_{2}Cu_{3}O_{7-\delta}$, измеренные при различных давлениях. На вставке (а) показаны резистивные переходы в сверхпроводящее состояние. Как следует из рисунка 1 значения Т и р_а(300) при атмосферном давлении составили 86 К и 195 мкОм см, соответственно. Таким образом, по сравнению с беспримесными монокристаллическими образцами YBa₂Cu₃O₇₋₈, критическая температура уменьшилась на 5÷7 К при одновременном увеличении ρ_{ab}(300) на 30÷40 мкОм.см, что в целом согласуется с литературными данными [4,5]. При этом на резистивных переходах в сверхпроводящее состояние наблюдается ступенчатая форма, что может свидетельствовать о проявлении признаков фазового расслоения [7] в объеме экспериментального образца.

В настоящее время существует целый ряд теоретических моделей, посвященных исследованию причин деградации сверхпроводящих и нормальных характеристик соединений YBa₂Cu₃O₇₋₅ под влиянием примеси празеодима. Наиболее известными среди них являются, так называемые, "hole filling model", "pair breaking phenomena", а также модели, предполагающие локализацию дырочных носителей и, обусловленные взаимодействием с ионами празеодима, различные механизмы перестройки зонных состояний (обзор [4]). Учитывая ограниченный объем нашего сообщения, мы не проводим здесь подробный анализ этих явлений, оставляя его для отдельной работы.

Как следует из вставки (b), для нашего образца $dT_c/dP\approx0.18$ К/кбар, что несколько меньше чем у соединений с х ≥0.1 [4], но больше чем у беспримесных монокристаллов YBa₂Cu₃O_{7-δ} [13]. Вообще говоря, такое значение барической производной dT_c/dP можно объяснить посредством традиционного использования для качественного анализа зависимостей $T_c(P)$

известной формулы Макмиллана [15,16]:

$$T_{c} = \frac{\theta_{D}}{1.45} \exp\left[-\frac{1.04(1+\lambda)}{\lambda - \mu^{*}(1+0.62\lambda)}\right], \quad (1)$$

где θ_D – температура Дебая, μ^* - экранированный кулоновский псевдопотенциал, характеризующий отталкивание электронов, λ - константа электронфононного взаимодействия, которая, в свою очередь, зависит от параметров электронного и фононного спектра сверхпроводника:

$$\lambda = \frac{N(\varepsilon_F) \left\langle I^2 \left(\vec{k} - \vec{k'} \right) \right\rangle}{M \theta_D^2}, \qquad (2)$$

где $N(\varepsilon_{F})$ – плотность состояний на уровне Ферми, I – усредненный по поверхности Ферми матричный элемент электрон-фононного взаимодействия, M – масса иона.

В предположении, что при сжатии образца, наряду с ростом температуры Дебая увеличивается и матричный элемент электрон-фононного взаимодействия [17], значения $dT_c/dP<0.2$ К/кбар представляются вполне разумными. При этом, однако, следует отметить, что у образцов с концентрацией примеси празеодима x>0.3 величина абсолютного значения барической производной dT_c/dP может достигать значений больше 0.6 К/кбар [4]. Кроме того, как отмечалось выше, в некоторых работах наблюдалось изменение знака dT_c/dP . Все вышесказанное не позволяет однозначно интерпретировать полученные данные в рамках теории БКШ.

Относительно слабое влияние давления на величину Т слабо допированных празеодимом образцов может быть объяснено в рамках модели, предполагающей наличие сингулярности Ван Хова в спектре носителей заряда [18,19], которая характерна для решеток с сильной связью. Как известно, для кристаллов с высокой Т ≈90 К уровень Ферми лежит в долине между двумя пиками плотности состояний, при этом плотность состояний на уровне Ферми N(E_n) существенно зависит от величины, так называемой, орторомбической дисторсии (a-b)/а [18]. Увеличение отношения (a-b)/а приводит к увеличению расстояния между пиками плотности состояний и, соответственно, к уменьшению N(E_F) и T_c. Уменьшение же отношения (а-b)/а приводит к сближению пиков плотности состояний, что приводит к росту N(E_F) и T_c. Такая закономерность изменения Т_с наблюдалась при исследовании влияния одноосного сжатия вдоль осей а и b на критическую температуру монокристаллов с Т ≈90К [20]: при приложении нагрузки вдоль оси а критическая температура повышалась, а при приложении нагрузки вдоль оси b она уменьшалась.

При воздействии гидростатического давления величина отношения (a-b)/а изменяется слабо, поскольку она определяется только различием модулей сжатия вдоль осей **a** и **b**. Поэтому изменение критической температуры у образцов с высокой T_c при воздействии гидростатического давления относительно мало.

Для кристаллов с пониженной Т ≈60 К уровень Ферми, может быть сдвинут с середины зоны (в том числе, вследствие допирования замещающими элементами [21]) и расположен в стороне от пика плотности состояний. Поэтому, если величина критической температуры, в первую очередь, определяется плотностью электронных состояний, то смещение уровня Ферми в сторону пика плотности при воздействии гидростатического состояний давления может, тем самым, приводить к значительному возрастанию абсолютного значения dT/dP.

На рисунке 2 показаны резистивные переходы в сверхпроводящее состояние в координатах dp/dT - T, измеренные при разных давлениях. Видно, что на этих кривых наблюдается несколько отчетливо выраженных пиков, отвечающих ступенькам на соответствующих зависимостях, показанных на вставке (а) к рисунку 1. Как было установлено в работах [3], подобная форма сверхпроводящих переходов свидетельствует о присутствии в объеме экспериментального образца нескольких фаз с различными критическими температурами (T_{c1} и T_{c2}), которые, в свою очередь, соответствуют точке максимума на каждом из пиков. При этом, согласно известной параболической зависимости [1], каждая из таких фаз характеризуется соответствующей концентрацией носителей тока.

Как следует из рисунка 2 и вставки (а), увеличение величины приложенного давления приводит к некоторому уширению сверхпроводящих переходов и изменению высоты и формы ступенек, а также смещению

Рис. 2. Резистивные переходы в сверхпроводящее состояние в координатах dp/dT - T, измеренные при разных давлениях. Нумерация кривых соответствует рис.1.

по температуре точек максимума. Это, в свою очередь, может свидетельствовать о существенном изменении путей протекания транспортного тока, обусловленного изменением размеров и состава кластеров с различной T_c. В случае беспримесных образцов YBa₂Cu₃O₇₋₈, нестехиометрического по кислороду состава, такого рода явления могут наблюдаться вследствие реализации в системе процесса восходящей диффузии [3].

Как видно из рисунка 2, возрастание величины приложенного давления приводит к увеличению разности (Т_{с1}-Т_{с2}), что может свидетельствовать о наличии фазового расслоение в нашем образце. В тоже время следует отметить, что, как отмечалось выше, содержание кислорода в нашем случае было близко к стехиометрическому, что должно минимизировать влияние перераспределения лабильного кислорода вышеописанные процессы. Действительно, на как было показано в работах [2,13], приложение высокого давления в случае образцов YBa₂Cu₃O_{7.8} стехиометрического состава, как правило, не приводит к возникновению процессов структурной релаксации, которые обычно происходят вследствие диффузии лабильного кислорода в объеме образца.

По-видимому, фазовое расслоение пол давлением, наблюдаемое в нашем случае может быть обусловлено изменением размера и состава кластеров, характеризующихся различным содержанием празеодима [12]. В тоже время, следует отметить, что увеличение содержания празеодима в локальном элементе объема экспериментального образца, как правило, приводит к эффекту диаметрально противоположному эффекту увеличения содержания кислорода. В то время как увеличение концентрации кислорода приводит к возрастанию Т и улучшению проводящих характеристик отдельно взятой фазы [7,10,14], увеличение содержания празеодима способствует подавлению и проводимости и понижению Т. [4,12]. Таким образом, можно предположить, что фазовое расслоение, наблюдаемое в соединении Y_{1-x}Pr_xBa₂Cu₃O₇₋₈, под действием высокого давления, в отличие от случая беспримесных образцов YBa₂Cu₃O_{7.8}, представляет собой более сложный и неоднозначный процесс. Однако проверка справедливости этого предположения требует проведения дополнительных исследований влияния всестороннего сжатия на критическую температуру соединений Y_{1-x}Pr_xBa₂Cu₃O_{7-δ} в том числе в более широком интервале концентраций празеодима, в том числе с применением структурных измерений на образцах с более высокой степенью допирования празеодимом.

- 1. J. Ashkenazi, J. Supercond. Nov. Magn. 24, 1281 (2011).
- S. Sadewasser, J.S. Schilling, A.P. Paulicas, B.M. Veal // Phys. Rev. B. -2000. -V.61, №1. -P.741-749.

- R. V. Vovk, G.Ya. Khadzhai, Z. F. Nazyrov, I. L. Goulatis, A. Chroneos, Physica B 407, 4470 (2012).
- 4. Akhavan M. / Physica B 321, 265 (2002).
- D. M. Ginsberg (ed), Physical properties high temperature superconductors I. – Singapore: Word Scientific, 1989.
- R. V. Vovk, Z. F. Nazyrov, I. L. Goulatis, A. Chroneos // Physica C 485 (2013) p. 89-91 http://dx.doi.org/10.1016/j. physc.2012.09.017.
- M. A. Obolenskii, A. V. Bondarenko, R. V. Vovk, and A. A. Prodan, Low Temp. Phys. 23, 882 (1997) [Fizika Nizkikh Temperatur (Kharkov) 23, 1178 (1997)].
- G. Lacayc, R. Hermann, G. Kaestener // Physica C. -1992.
 -V.192. -P.207-214.
- R. V. Vovk, M. A. Obolenskii, A. A. Zavgorodniy, I. L. Goulatis, and A. I. Chroneos, J. Mater. Sci.: Mater. Electron. 20, 858 (2009).
- R.V. Vovk, M.A. Obolenskii, Z.F. Nazyrov, I.L. Goulatis, A. Chroneos, and V.M. Pinto Simoes, J. Mater Sci.: Mater. Electron., 23, 1255 (2012).
- 11. A.L. Solovyev, V.M. Dmitriev, Low Temp. Phys. **32** (2006) 753.
- R. V. Vovk, N. R. Vovk, O. V. Shekhovtsov, I. L. Goulatis, A. Chroneos, Supercond. Sci. Technol. 26, 085017 (2013).
- R.V. Vovk, N.R. Vovk, G.Ya. Khadzhai, I.L. Goulatis, A. Chroneos / Physica B V. 422 (2013), P.P. 33–35 http://dx.doi. org/10.1016/j.physb.2013.04.032.
- R.V. Vovk, N.R. Vovk, A.V. Samoilov, I.L. Goulatis, A. Chroneos / Solid State Communications 170 (2013) 6-9.
- 15. W. L. McMillan. Phys. Rev. 167, 331 (1968).
- M.A. Obolenskiy, D.D. Balla, A.A. Zavgorodniy, R.V. Vovk, Z.F. Nazyrov, I.L. Goulatis, M.Januszczyk, J.N.Latosińska / Acta Physica Polonica A Vol.122 (2012) №1 p.1111-1113.
- 17. Evan S.R., Ratti V.K., Gyorffy B.L. / J. Phys. F **3**, №10 (1973) p. 199-202).
- 18. V.M. Gvozdicov, Physica C, 235-240, 2127 (1994).
- 19. A.Perali and G.Varelogiannis, Phys. Rev. B 61, 3672 (2000).]
- U.Welp, M.Grimsditch, S.Flesher, W.Nessler, J.Downey, G.W.Crabtree, and J.Guimpel, Phys. Rev. Lett. 69, 2130 (1992).
- U. Schwingensclogl and C. Schuster / Appl. Phys. Lett. 100, 253111 (2012).

РАСS: 78. 55.-m УДК 547.722.3:[539.1.074.3:546.33'15'683+546.36'15'33]

Процессы гидратации в приповерхностных слоях сцинтилляторов NaI(TI) и CsI(Na)

В.Ю. Гресь¹, А.М. Кудин²

1 – УкрДАЗТ, 2 - Институт монокристаллов НАН Украины

Досліджено процеси гідратації і дегідратації поверхні сцинтиляторів NaI(Tl) і CsI(Na), які призводять до утворення так званого «мертвого» шару (MШ). Показано, що динаміка формування і структура МШ в кристалах NaI(Tl) і CsI(Na) різна. У NaI(Tl) формування МШ є результатом виключно адсорбції води поверхнею кристалів. Для NaI(Tl) можливе існування двох типів МШ: перший пов'язаний з руйнуванням активаторних центрів світіння, другий - з дифузійним виходом носіїв заряду на поверхню. В CsI(Na) процес утворення МШ - двостадійний. На першій стадії відбувається розпад пересиченого твердого розчину вакансій, на другий - розпад твердого розчину активатора.

Ключові слова: сцинтилятори, кристали NaI(Tl) і CsI(Na), мертвий шар, твердий розчин вакансій, твердий розчин активатору.

Исследованы процессы гидратации и дегидратации поверхности сцинтилляторов NaI(Tl) и CsI(Na), которые приводят к образованию так называемого «мертвого» слоя (MC). Показано, что динамика формирования и структура MC в кристаллах NaI(Tl) и CsI(Na) различна. В NaI(Tl) образование MC является результатом исключительно адсорбции воды поверхностью кристаллов. Для NaI(Tl) возможно существование двух типов MC: первый связан с разрушением активаторных центров свечения, второй - с диффузионным выходом носителей заряда на поверхность. В CsI(Na) процесс образования MC - двухстадийный. На первой стадии происходит распад пересыщенного твердого раствора вакансий, на второй - распад твердого раствора активатора.

Ключевые слова: сцинтилляторы, кристаллы NaI(Tl) и CsI(Na), «мертвый» слой, твердый раствор вакансий, твердый раствор активатора.

The surface processes of hydration and dehydration of the surface of the scintillators NaI(Tl) and CsI(Na), which lead to the formation of so-called «dead» layer (DL) were investigated. It is shown that the dynamics of formation and structure of DL in NaI(Tl) and CsI(Na) crystals is different. The formation of DL in NaI(Tl) is the result of water adsorption by the crystals surface.

For NaI(Tl) there may be two types of DL: the first is associated with the destruction of an activator luminescence centers, second - diffusion output of the charge carriers to the surface. The process of DL formation in CsI(Na) is prolonged and consists of two stages. The decomposition of supersaturation solid solution of vacancies proceeds at the first stage and the decomposition of activator solid solution – at the second.

Keywords: scintillators, Nal(Tl) and CsI(Na) crystals, «dead» layer, solid solution of vacancies, activator solid solution.

Постановка проблеми та аналіз досліджень і публікацій

Известно, что возле свободной поверхности гигроскопичных сцинтилляторов NaI(Tl), CsI(Na) и малогигроскопичного CsI(Tl), после кратковременного контакта с влагой образуется так называемый «мёртвый» слой (MC) - слой глубиной до 20 мкм с пониженной сцинтилляционной эффективностью η [1]. Существующие точки зрения [1, 2] объясняют его образование постепенным разрушением активаторных центров свечения (иногда ИХ «отравлением» кислородсодержащими примесями). При этом подразумевается, что центрами свечения являются ионы Tl⁺ в NaI и Na⁺ (околоактиваторный экситон) в CsI. Известны способы предотвращения образования этого слоя, однако рассматривавшиеся механизмы его образования противоречивы [1,3].

Цель статьи

Целью данной работы было изучение процессов, приводящих к образованию MC в кристаллах NaI(Tl) и CsI(Na).

Методика експерименту

Исследовались кристаллы NaI(Tl) с различной концентрацией Tl: 5×10^{-2} , 1×10^{-1} масс.%; кристаллы CsI(Na) с концентрацией Na: 7×10^{-4} , 2.5×10^{-3} масс.% и неактивированные кристаллы CsI, NaI. Процесс

образования МС в кристаллах NaI(Tl) изучался в ходе гидратации и дегидратации поверхности. Состав образующихся фаз анализировался методом сканирующей электронной микроскопии с рентгеновским микроанализом на электронном микроскопе JSM-820 с системой энергодисперсионного микроанализа Link AN 101853. Сцинтилляционные свойства кристаллов CsI(Na) – световой выход L и энергетическое разрешение R – исследовались при возбуждении сцинтилляций рентгеновским и мягким γ -излучением радионуклидов Fe-55 (E=5.9 кэВ), Am-241 (E = 17 кэВ и 60 кэВ).

Результати досліджень та їх обгрунтування

Исследования показали, что в кристаллах NaI(Tl) MC образуется только в результате адсорбции воды поверхностью кристаллов. Следует различать два типа таких слоёв. Первый формируется вследствие разрушения активаторных центров

Рис.1. Структура дегидратированной поверхности (а, б). Изображение получено на электронном микроскопе в режиме характеристического рентгеновского излучения от атомов Na (а) и Tl (б). Спектры характеристического рентгеновского излучения (в, г): для основного вещества (в) и второй фазы (г).

свечения [1]. В результате изучения процессов гидратации и дегидратации поверхности нами было установлено следующее. В процессе гидратации на поверхности кристалла образуется растворённый водой слой, толщина которого растёт со временем. дегидратации испарение При воды приводит к пересыщению раствора, образовавшегося на поверхности, и кристаллизации растворённых веществ. Результат процесса дегидратации - образование на поверхности кристалла рыхлого поликристаллического слоя NaI с вкраплениями фазы Tll диаметром до

1 мкм (рис. 1).

Энергия падающего излучения, особенно мягкого рентгеновского, частично теряется в экранирующем слое и вызывает свечение в области 310 нм, характерное для неактивированных кристаллов NaI. Активаторное свечение 410 нм возбуждается в монокристалле и в значительной мере ослаблено пропорционально степени гидратации и глубине образовавшегося экранирующего слоя.

Второй тип МС образуется при наличии малых количеств влаги на поверхности, чаще всего в результате водной обработки поверхности (шлифовки, полировки). Его объяснение может быть связано с эффектами, наблюдавшимися в [3] при возникновении МС в результате радиационно-стимулированных процессов на поверхности кристаллов КІ. При облучении кристаллов образующееся поле объёмного заряда способствует выходу электронов на поверхность с глубин порядка 10 мкм (что приблизительно соответствует толщине МС). Отток зарядов из глубины к поверхности приводит к взаимодействию молекул воды, адсорбированной на поверхности, с компонентами электронно-дырочных пар, в результате чего молекулы воды разрушаются на радикалы Н⁺ и OH^- : $H_2O + e^- = H^+ + OH^-$. Образовавшиеся OH^- группы могут играть роль ловушек электронов, захват на которых препятствует излучательной рекомбинации электронов на центрах свечения, что проявляется в ухудшении сцинтилляционных свойств кристалла.

В кристаллах CsI (Na) образование MC не связано непосредственно с адсорбцией воды поверхностью. На рис. 2 показана зависимость удельного световыхода *L/E* от энергии падающего излучения (от глубины исследуемого слоя) на разных стадиях контакта с влагой. Видно, что процесс формирования MC разбивается на два этапа.

На первом происходит релаксация точечных структурных дефектов (бивакансий), возникших в структурно нарушенном после механической обработки приповерхностном Бивакансии слое. являются дополнительными центрами свечения [4], которые обусловливают повышенное по сравнению с объёмом значение L/Е приповерхностного слоя (рис. 2, кривая 1). В ходе первого этапа они коагулируют в вакансионные кластеры или выходят на свободную поверхность. Скоростью этих процессов определяется длительность первого этапа - 12-14 дней. Отметим, что при возбуждении радионуклидом Am-241 (E = 17 кэВ и 60 кэВ, глубины 90% ослабления излучения которого равны 113 мкм и 650 мкм, соответственно) значение *L/Е* остаётся практически неизменным.

Второй этап образования MC связан с гетерогенным распадом твердого раствора активатора и является результатом первого. В роли очагов распада

Puc. 2. Изменение удельного световыхода кристалла CsI(Na) при возбуждении γ-квантами в зависимости от времени старения на воздухе после полировки: 1 – свежеполированная поверхность; 2 – через 19; 3 – через 22 суток. На вставке указана толщина слоя 90-% ослабления γ-излучения в веществе для соответствующих энергий.

могут выступать кластеры вакансий [5]. Условием, способствующим распаду, является большая степень неизоморфности ионов Na⁺ в решётке CsI. Если содержание натрия велико, происходит выпадение фазы NaI в решетке CsI [5]. В результате распада средняя концентрация Na⁺ заметно уменьшается, что приводит к дальнейшему снижению L/E (рис. 2, кривые 2, 3). Вблизи свободной поверхности, на глубине меньшей, чем среднее расстояние между кластерами, доминирующим процессом на втором этапе будет выход активатора за пределы кристалла. После образования фазы NaI на поверхности CsI(Na) наблюдаются эффекты, аналогичные рассмотренным в NaI(Tl).

Висновки

Итак, исследования показали, что природа мёртвого слоя в гигроскопичных кристаллах NaI(Tl) и CsI(Na) различна. В NaI(Tl) образование MC является результатом исключительно адсорбции воды поверхностью кристаллов. Для NaI(Tl) возможно существование двух типов MC: первый связан с разрушением активаторных центров свечения, второй - с диффузионным выходом носителей заряда на поверхность. В CsI(Na) процесс образования MC двухстадийный. На первой стадии происходит распад пересыщенного твердого раствора вакансий, на второй - распад твердого раствора активатора.

- Аверкиев В.В., Ляпидевский В.К., Прорвич В.А. Особенности применения неорганических сцинтилляционных детекторов для рентгеновской диагностики плазмы. ПТЭ. - 1982. - №3. - с. 152-154.
- 2. Сотников В.Т., Старжинский Н.Г. Термостимулированная экзоэлектронная эмиссия гидратированных кристаллов иодида натрия. УФЖ.-1984. т.29. №2. с. 235-240.
- Александров А.Б., Алукер Э.Д., Васильев И.А. Введение в радиационную физикохимию поверхности ЩГК. Рига «Зинатне», 1989.-241 с.
- C.W.Bates, J.Schneider et.al. Strain-induced Room Temperature Photoluminescence in CsI and CsI(Na). - Sol. St. Comm., 1976, v. 18, p. 101-103.
- Розенберг Г.Х. Исследование низкотемпературного распада твердых растворов на основе ЩГК методом вакуумного декорирования. Автореферат дисс. канд. физ.-мат.наук, ВНИИМ. - Харьков, 1980. - 21 с.

УДК 530.122, 514.823, 523.163 PACS 95.30.Sf, 98.62.Sb

N – точечные мультиплоскостные гравитационные линзы

А.Т. Котвицкий, Д.В. Крючков

Харьковский национальный университет kotvytskiy@gmail.com, kryuchkov dm@mail.ru

В данной работе мы рассматриваем совокупность массивных точек образующих гравитационную линзу. В первом разделе очень кратко вводятся нужные нам основные понятия и определения. Во втором разделе изучена гравитационная линза, состоящая из N точек в одной плоскости. Определен алгоритм построения каустик и критических кривых для такой линзы в случае произвольного распределения точечных масс. С помощью этого алгоритма построены каустики и критических кривых для такой линзы в случае произвольного распределения точечных масс. С помощью этого алгоритма построены каустики и критические кривые для 3-х и 4-х точечных линз в случая симметричного распределения равных точечных масс. В третьем разделе рассмотрена гравитационная линза, состоящая из P плоскостей. В общем случае введён параметр ξ_0 обобщающий понятие радиуса Эйнштейна-Хвольсона и с его помощью введено полное обезразмеривание уравнения гравитационной линзы. В качестве конкретного примера рассмотрена гравитационная линза, представляющая собой систему из двух плоскостей: в первой плоскости находится бинарная линза, а во второй – одна точечная масса. Приведены каустики и критические кривые для такой гравитационной линзы, а также построен ряд изображений от кругового источника.

Ключевые слова: гравитационная линза, каустика, критическая кривая, радиус Эйнштейна-Хвольсона.

В даній роботі ми розглядаємо сукупність масивних точок, які утворюють гравітаційну лінзу. У першому розділі коротко вводяться потрібні нам основні поняття і визначення. У другому розділі вивчена гравітаційна лінза, що складається з N точок в одній площині. Визначено алгоритм побудови каустик і критичних кривих для такої лінзи у випадку довільного розподілу точкових мас. За допомогою цього алгоритму побудовані каустики та критичні криві для 3-х і 4-х точкових лінз у випадку симетричного розподілу рівних точкових мас. У третьому розділі розглянута гравітаційна лінза, що складається з P площин. У загальному випадку введено параметр ξ_0 , який узагальнює поняття радіуса Ейнштейна Хвольсона, і з його допомогою введено повне обезразмірювання рівняння гравітаційної лінзи. Як конкретний приклад розглянута гравітаційна лінза, що представляє собою систему з двох площин: у першій площині знаходиться бінарна лінза, у другій - одна точкова маса. Наведено каустики і критичні криві для такої гравітаційної лінзи, а також побудовано ряд зображень від кругового джерела.

Ключові слова: гравітаційна лінза, каустику, критична крива, радіус Ейнштейна-Хвольсона.

In the work an aggregate of massive points that is gravitational lens is researched. There is brief overview of the basic concepts and definitions in the first section. In the second section a gravitational lens formed by N points in a single plane is researched. The algorithm for constructing of caustics and critical curves for a lens with an arbitrary allocation of mass points is developed. Also there are caustics and critical curves that constructs by the algorithm for 3^{th} and 4^{th} points lenses with symmetric allocation of equal mass points. In the third section a gravitational lens formed by P planes is researched. The parameter ξ_0 , that generalizes the notion of Einstein Khvolson radius, is introduced. Using the parameter, the dimensionless equation form for P plane lens is obtained. As a concrete example the following two-plane lens is researched: the first plane contains a binary lens, the second plane contains a single mass point. There are caustics and critical curves for the lens and images of circular source.

Key words: gravitational lens, caustic, critical curve, Einstein-Khvolson radius.

Основные понятия и определения

Впервые правильную формулу для угла отклонения луча света, проходящего вблизи точечного источника гравитации (линзы) получил Эйнштейн [1], которую принято записывать в виде

$$\mathcal{G} = \frac{2r_g}{\xi} = \frac{4GM}{c^2\xi},\tag{1}$$

где r_g - гравитационный радиус, M – масса линзы, G - гравитационная постоянная, c - скорость света в вакууме, ξ - минимальное расстояние, на которое свет приближается к линзе (другими словами это расстояние

в плоскости линзы между линзой и изображением наблюдаемого объекта). Подробный вывод этой формулы можно найти во многих классических учебниках, см. например [2-4].

Изобразим ход лучей на рис. 1. Тогда, для малых углов отклонения имеем

$$\eta = \frac{D_s}{D_d} \xi - \frac{2r_g D_{ds}}{\xi},\tag{2}$$

где η - расстояние в плоскости источника от центра источника до оси линзы (это ось, проходящая через наблюдателя и центр масс линзы); D_s – расстояние между наблюдателем и источником; D_d – расстояние

между наблюдателем и линзой; D_{ds} – расстояние между линзой и источником.

Полученное уравнение в литературе называется уравнением гравитационной линзы и подробно рассмотрено в [5,6].

При $\eta = 0$, то есть когда источник света расположен на оси линзы, имеем квадратное уравнение на ξ . Решение которого принято обозначать как ξ_0

$$\xi_0 = \sqrt{\frac{4GM \cdot D_{ds} \cdot D_d}{c^2 \cdot D_s}} \tag{3}$$

ыоскость источника плоскость линзы

Рис. 1. Схема и ход лучей для гравитационной линзы.

Если точечный источник, точечная линза и наблюдатель находятся на одной прямой, то мы будем видеть окружность радиуса ξ_0 . Этот радиус обычно называют радиусом Эйнштейна-Хвольсона [7,8]. Вводя безразмерные параметры

$$x \equiv \frac{\xi}{\xi_0}, \quad y \equiv \frac{D_d}{D_s} \frac{\eta}{\xi_0} \tag{4}$$

уравнение гравитационной линзы (2) приобретает вид

$$y = x - \frac{1}{x}.$$
 (5)

Так как распространение света происходит в трехмерном пространстве, то для описания отклонения лучей удобно использовать векторный вид уравнений. Для этого вводят векторный угол отклонения

$$\vec{\mathcal{G}} = \frac{\zeta}{D_{ds}} = \frac{4GM}{c^2 \xi^2} \vec{\xi} \quad , \tag{6}$$

тогда уравнение гравитационной линзы в векторной форме приобретает следующий вид

$$\vec{\eta} = \frac{D_s}{D_d} \vec{\xi} - D_{ds} \frac{4GM}{c^2 \xi^2} \vec{\xi} .$$
 (7)

Или в безразмерных координатах

$$\vec{y} = \vec{x} - \frac{\vec{x}}{x^2},\tag{8}$$

где векторы \vec{x} и \vec{y} лежат соответственно в плоскостях линзы и источника.

Одним из центральных понятий для анализа гравитационных линз является $det[A_{ij}]$, где матрица A_{ij} есть матрица 2х2 и определяется как

$$A_{ij} = \frac{\partial y_i}{\partial x_j}.$$
 (9)

Так как матрица A_{ij} переводит вектор $\Delta \vec{x}$ в вектор

 $\Delta \vec{y}$, то выражение обратное ее детерминанту является

множителем пропорциональности между площадями отображаемых фигур. Другими словами площадь фигуры в плоскости \vec{x} будет в $1/\det[A_{ij}]$ раз больше площади прообраза данной фигуры в плоскости \vec{y} . Данное выражение носит название коэффициента усиления.

Кривая, в плоскости \vec{x} (плоскости линзы) которая определяется уравнением

$$\det[A_{ij}] = \det\left[\frac{\partial y_i}{\partial x_j}\right] = 0 \tag{10}$$

называется критической кривой. Прообраз этой кривой в плоскости \vec{y} (плоскости источника) называется каустикой.

Физический смысл каустики заключается в том, что когда точечный источник пересекает данную кривую, то коэффициент усиления стремится к бесконечности.

Для одноточечной линзы (когда источник гравитационной линзы представляет собой одиночную точечную массу) - критическая кривая представляет собой окружность (кольцо Эйнштейна), а каустика это точка в начале координат [5,6].

N – точечные одноплоскостные гравитационные линзы

Естественным обобщением одноточечной гравитационной линзы является рассмотрение N – точечных гравитационных линз в одной плоскости. Такое обобщение заметно усложняет задачу и делает невозможным полное аналитическое решение. Однако исследование структуры каустик позволяет лучше понять природу реальных гравитационных линз существующих в нашей Вселенной.

Рассмотрим случай, когда гравитационную линзу можно представить в виде нескольких точек с массами M_i , положение которых определяется векторами $\vec{\xi}_i$ в плоскости линзы, тогда (в приближении слабого поля), полный угол отклонения определяется векторной

суммой углов отклонения от каждой *i* – ой массы [5,6]

$$\vec{\mathcal{G}} = \sum_{i} \frac{4GM_{i}}{c^{2} \left| \vec{\xi} - \vec{\xi}_{i} \right|^{2}} \left(\vec{\xi} - \vec{\xi}_{i} \right), \tag{11}$$

где суммирование осуществляется по всем точкам.

Уравнение многоточечной линзы (в безразмерной форме) имеет вид:

$$\vec{y} = \vec{x} - \sum_{i} \mu_{i} \frac{\vec{x} - \vec{x}_{i}}{\left| \vec{x} - \vec{x}_{i} \right|^{2}},$$
(12)

где \vec{x}_i - радиус-векторы точечных масс входящих в линзу, $\mu_i = \frac{M_i}{\sum_{k} M_k}$ - безразмерные массы. Очевидно что

 $\sum_i \mu_i = 1.$

Случай N=2 (бинарные гравитационные линзы) очень детально рассмотрены во многих работах. Бинарные линзы с равными массами и произвольным соотношением между массами изучались во многих работах, см. например [6,9-11]. Так как двухточечные линзы являются достаточно сложными, то случай N>2 рассматривают крайне редко. Краткий обзор по этой тематике имеется в [6], а более детально разобрано в [12].

Наш подход отличается от работ [6,12], но также позволяет получить некоторые выражения в общем виде которые затем удобно использовать при численном моделировании.

Из уравнения линзы (12) имеем

$$\frac{\partial y_i}{\partial x_j} = \delta_{ij} - \sum_{n=1}^N \mu^{(n)} \frac{\delta_{ij} \left((x_1 - R_1^{(n)})^2 + (x_2 - R_2^{(n)})^2 \right) - 2(x_i - R_i^{(n)})^2 (x_j - R_j^{(n)})^2}{\left((x_1 - R_1^{(n)})^2 + (x_2 - R_2^{(n)})^2 \right)^2}, \quad (13)$$

где $\vec{R}^{(n)}$ - радиус вектор *n*-го источника гравитации в плоскости линзы с координатами ($R_1^{(n)}, R_2^{(n)}$).

Тогда для детерминанта получаем

$$\det\left[\frac{\partial y_i}{\partial x_j}\right] = 1 - \left(\sum_{n=1}^N \mu^{(n)} \frac{(x_1 - R_1^{(n)})^2 - (x_2 - R_2^{(n)})^2}{\left((x_1 - R_1^{(n)})^2 + (x_2 - R_2^{(n)})^2\right)^2}\right)^2 - 4 \left(\sum_{n=1}^N \mu^{(n)} \frac{(x_1 - R_1^{(n)})(x_2 - R_2^{(n)})}{\left((x_1 - R_1^{(n)})^2 + (x_2 - R_2^{(n)})^2\right)^2}\right)^2$$
(14)

Введём параметры

$$B^{(n)} = (x_1 - R_1^{(n)})^2 - (x_2 - R_2^{(n)})^2$$

$$C^{(n)} = (x_1 - R_1^{(n)})(x_2 - R_2^{(n)})$$

$$D^{(n)} = \left((x_1 - R_1^{(n)})^2 + (x_2 - R_2^{(n)})^2\right)^2$$
(15)

Заметим что

$$B^{(n)2} + 4C^{(n)2} = D^{(n)}.$$
(16)

Тогда детерминант принимает вид

$$\det\left[\frac{\partial y_i}{\partial x_j}\right] = 1 - \left[\sum_{n=1}^N \frac{\left(\mu^{(n)}\right)^2}{D^{(n)}} + 2\sum_{k=1}^{N-1} \sum_{l=k+1}^N \left(\mu^{(k)}\mu^{(l)} \frac{B^{(k)}B^{(l)} + 4C^{(k)}C^{(l)}}{D^{(k)}D^{(l)}}\right)\right].$$
(17)

Вісник ХНУ, № 1113, серія «Фізика», вип. 20, 2014

Окончательно получаем уравнение критической кривой, для произвольной одноплоскостной линзы в виде

$$\prod_{m=1}^{N} D^{(m)} - \sum_{n=1}^{N} \left(\left(\mu^{(n)} \right)^{2} \prod_{m=1,m < n}^{N} D^{(m)} \right) - 2 \sum_{k=1}^{N-1} \sum_{l=k+1}^{N} \left(\mu^{(k)} \mu^{(l)} \left(B^{(k)} B^{(l)} + 4C^{(k)} C^{(l)} \right) \prod_{\substack{m=1...N\\m < k,m < l}} D^{(m)} \right) = 0 \quad (18)$$

Такой вид уравнения уже не сложно обработать на компьютере. Поэтому, в системе Mathematica была реализована программа, которая строит это уравнение и решает его численным методом.

На рис. 2, 3 приведены каустики и критические кривые для различных трех- и четырехточечных линз.

Мультиплоскостные гравитационные линзы

Следующим шагом в обобщении гравитационных линз является анализ мультиплоскостных линз. Основной идеей при рассмотрении таких линз является, то, что свет, проходя через Вселенную, может испытывать многократное отклонение на разных расстояниях друг от друга. Предполагая, что гравитационные линзы расположены достаточно далеко, их взаимным влиянием можно пренебречь, и мы получаем мультиплоскостную гравитационную линзу.

Ход лучей изображен на рис.4, тогда (для малых углов отклонения) уравнение гравитационной линзы имеет вид [6]

Рис.2. Критические кривые и каустики для трёхточечной одноплоскостной гравитационной линзы. Сплошные линии - критические кривые, штриховые - каустики. Черные точки соответствуют точечным массам. R – расстояние от центра до точечной массы.

Рис.3. Критические кривые и каустики для четырёхточечной одноплоскостной гравитационной линзы. Сплошные линии - критические кривые, штриховые - каустики. Черные точки соответствуют точечным массам. R – расстояние от центра до точечной массы.

$$\vec{\eta} = \frac{d_s}{d_1} \vec{\xi}^{(1)} - \sum_{i=1}^{P} \vec{\alpha}^{(i)} d_{is} , \qquad (19)$$

где все обозначения понятны из рисунка.

При этом между векторами существует связь определяемая выражением

$$\vec{\xi}^{(j)} = \frac{d_j}{d_1} \vec{\xi}^{(1)} - \sum_{i=1}^{j-1} d_{ij} \vec{\alpha}^{(i)} .$$
 (20)

Теория мультиплоскостных линз развита в [13,14]. В

работе [15] рассмотрены каустики для приближенного случае, когда расстояния между точками в одной плоскости малы по сравнению с радиусом Эйнштейна – Хвольсона. В данной работе мы обобщаем методику введения безразмерных переменных рассмотренную [16,17] на произвольную Р- плоскостную линзу с любым количеством и распределением точечных масс.

Запишем уравнения линзы в виде системы

Наблюдатель

Рис.4. Схема и ход лучей для мультиплоскостной гравитационной линзы.

$$\begin{cases} \vec{\eta} = \frac{d_s}{d_1} \vec{\xi}^{(1)} - \sum_{n=1}^{P} \vec{\alpha}^{(n)} d_{ns} \\ \vec{\xi}^{(k)} = \frac{d_k}{d_1} \vec{\xi}^{(1)} - \sum_{n=1}^{k-1} d_{nk} \vec{\alpha}^{(n)} \end{cases}, \tag{21}$$

где индекс *n* пробегает по всем плоскостям, а угол отклонения в каждой плоскости определяется выражением

$$\vec{\alpha}^{(n)} = \sum_{i}^{\text{masses}} \frac{4GM_{i}^{(n)}}{c^{2} \left| \vec{\xi}^{(n)} - \vec{\Xi}_{i}^{(n)} \right|^{2}} \left(\vec{\xi}^{(n)} - \vec{\Xi}_{i}^{(n)} \right), \quad (22)$$

где $\vec{\Xi}_i^{(n)}$ - координата і-й массы в п-ой плоскости.

В каждой плоскости перенормируем все массы

$$\mu_i^{(n)} = \frac{d_{ns}}{d_n} \frac{4GM_i^{(n)}}{c^2}$$
(23)

и определим полную перенормированную массу как сумму по всем плоскостям и по всем точкам в каждой плоскости

$$\mu_{FULL} = \sum_{n=1}^{P} \sum_{i=1}^{\text{in plane}} \mu_i^{(n)} .$$
 (24)

Введем безразмерные массы

$$m_i^{(n)} = \frac{\mu_i^{(n)}}{\mu_{FULL}},$$
 (25)

а также параметры

$$\xi_0 = d_1 \sqrt{\frac{\mu_{FULL}}{d_s}}, \ \beta_{nk} = \frac{d_{nk} d_s}{d_{ns} d_k}.$$
 (26)

При переходе к одноплоскостной линзе ξ_0 становится обычным радиусом Эйнштейна-Хвольсона,

a
$$\beta_{nk} \rightarrow 0$$
.

Тогда, определяя безразмерные переменные

$$\vec{y} = \frac{\vec{\eta}}{\xi_0} \frac{d_1}{d_s}, \ \vec{x}^{(n)} = \frac{\xi^{(n)}}{\xi_0} \frac{d_1}{d_n}$$
 (27)

и безразмерные радиус-векторы в каждой плоскости

$$\vec{R}_{j}^{(n)} = \frac{\vec{\Xi}_{j}^{(n)}}{\xi_{0}} \frac{d_{1}}{d_{n}}$$
(28)

получим следующую систему уравнений для мультиплоскостной гравитационной линзы

$$\vec{y} = \vec{x}^{(1)} - \sum_{n=1}^{p} \sum_{i}^{\text{in plane}} \frac{m_i^{(n)}}{\left|\vec{x}^{(n)} - \vec{R}_i^{(n)}\right|^2} \left(\vec{x}^{(n)} - \vec{R}_i^{(n)}\right)$$

$$\vec{x}^{(k)} = \vec{x}^{(1)} - \sum_{n=1}^{k-1} \sum_{i}^{\text{all masses}} \beta_{nk} \frac{m_i^{(n)}}{\left|\vec{x}^{(n)} - \vec{R}_i^{(n)}\right|^2} \left(\vec{x}^{(n)} - \vec{R}_i^{(n)}\right)$$
(29)

Анализ двухплоскостной линзы

Рассмотрим более детально гравитационную линзу, изображенную на рис. 5. В первой плоскости находится бинарная система с равными массами, во второй одноточечная гравитационная линза. Для простоты мы предполагаем, что центр масс первой линзы, наблюдатель и вторая точечная линза находятся на одной прямой. Несмотря на кажущуюся простоту такой линзы, она имеет достаточно богатую каустическую структуру.

Уравнение гравитационной линзы в данном случае имеет вид

$$\begin{cases} \vec{\eta} = \frac{d_s}{d_1} \vec{\xi}^{(1)} - \vec{\alpha}^{(1)} d_{1s} - \vec{\alpha}^{(2)} d_{2s} \\ \vec{\xi}^{(2)} = \frac{d_2}{d_1} \vec{\xi}^{(1)} - d_{12} \vec{\alpha}^{(1)} \end{cases}, \tag{30}$$

где обозначения для всех расстояний соответствуют рис. 4, а углы отклонения определяются следующими выражениями

$$\vec{\alpha}_{1} = \frac{4GM_{1}}{c^{2} \left|\vec{\xi}_{1} - \vec{\Xi}\right|^{2}} \left(\vec{\xi}_{1} - \vec{\Xi}\right) + \frac{4GM_{1}}{c^{2} \left|\vec{\xi}_{1} + \vec{\Xi}\right|^{2}} \left(\vec{\xi}_{1} + \vec{\Xi}\right)$$
$$\vec{\alpha}_{2} = \frac{4GM_{2}}{c^{2} \left|\vec{\xi}_{2}\right|^{2}} \vec{\xi}_{2}$$
(31)

Вісник ХНУ, № 1113, серія «Фізика», вип. 20, 2014

Рис.5. Схема двухплоскостной трёхточечной гравитационной линзы.

В данном случае параметры (23) – (25) определяются как

$$\mu_1 = \frac{d_{1s}}{d_1} \frac{4GM_1}{c^2}, \ \mu_2 = \frac{d_{2s}}{d_2} \frac{4GM_2}{c^2}, \ m_i = \frac{\mu_i}{\mu_{FULL}}, \ (32)$$

где $\mu_{FULL} = 2\mu_1 + \mu_2$, а выражения (26), (27) переходят в

$$\xi_0 = d_1 \sqrt{\frac{\mu_{FULL}}{d_s}}, \ \beta = \frac{d_{12} \ d_s}{d_{1s} d_2}, \tag{33}$$

$$\vec{y} = \frac{\vec{\eta}}{\xi_0} \frac{d_1}{d_s}, \ \vec{x}_1 = \frac{\vec{\xi}_1}{\xi_0}, \ \vec{x}_2 = \frac{\vec{\xi}_2}{\xi_0} \frac{d_1}{d_2}, \ \vec{R} = \frac{\vec{\Xi}}{\xi_0}$$
(34)

Окончательно уравнение такой линзы принимает следующий вид

$$\begin{cases} \vec{y} = \vec{x}_{1} - m_{1} \left(\frac{\vec{x}_{1} - \vec{R}}{\left| \vec{x}_{1} - \vec{R} \right|^{2}} + \frac{\vec{x}_{1} + \vec{R}}{\left| \vec{x}_{1} + \vec{R} \right|^{2}} \right) - m_{2} \frac{\vec{x}_{2}}{\left| \vec{x}_{2} \right|^{2}} \\ \vec{x}_{2} = \vec{x}_{1} - \beta m_{1} \left(\frac{\vec{x}_{1} - \vec{R}}{\left| \vec{x}_{1} - \vec{R} \right|^{2}} + \frac{\vec{x}_{1} + \vec{R}}{\left| \vec{x}_{1} + \vec{R} \right|^{2}} \right) \end{cases}, (35)$$

где $2m_1 + m_2 = 1$, вектор \vec{R} имеет координаты (R; 0) и $\beta \in [0,1]$.

На рис. 6, 7, 8, 9 изображены каустики и критические кривые для некоторого набора параметров, а также представлены ряд изображений, которые дает данная гравитационная линза.

Выводы

Изучена N точечная гравитационная линза в одной плоскости. Предложен алгоритм построения каустик и критических кривых в общем случае отличный от [6,12].

Представлен результат работы этого алгоритма для 3-х и 4-х точечных линз с симметричным

распределением источников гравитации равной массы.

Для гравитационной линзы, состоящей из Р плоскостей, для произвольного количества и распределения точечных масс введен параметр ξ_0 обобщающий понятие радиуса Эйнштейна-Хвольсона. С его помощью произведено полное обезразмеривание уравнения гравитационной линзы.

В качестве конкретного примера рассмотрена гравитационная линза, представляющая собой систему из двух плоскостей. В первой плоскости находится бинарная линза с равными массами M₁, а вторая – содержит одну точку массой M₂. Для симметричного распределения масс приведен набор каустик и критических кривых соответствующий различному расстоянию между массами в бинарной линзе, а также построен ряд изображений от кругового источника.

- Эйнштейн А. Объяснение движения перигелия Меркурия в общей теории относительности // Собрание научных трудов в 4 томах. М., 1965. Т. 1. С. 439 – 447.
- Блиох П.В., Минаков А.А. Гравитационные линзы. Киев. Наукова думка, 1989. С. 240.
- Вейнберг С. Гравитация и космология. М. Мир, 1975. С 696.
- Ландау Л.Д., Лифшиц Е.М. Теория поля. М. Наука, 1988. Т.2 С 512.
- Захаров А.Ф. Гравитационные линзы и микролинзы. М. Янус-К, 1997. С. 328.
- Schneider P., Ehlers J., Falco E.E. Gravitational lenses. Springer-Verlag Berlin Heidelberg 1999 P. 560.
- Chwolson O. Über eine mögliche Form fiktiver Doppelsterne // Astr. Nachrichten. – 1924, 221, P. 329 - 330.
- Einstein A. Lens-like action of a star by the deviation of light in the gravitational field // Science. – 1936, 84, No. 2188, P. 506 – 507.
- Schneider P., Weiss A. The two point mass lens: detailed investigation of a special asymmetric lens // Astr. Ap. – 1986, 164, P. 237–259.
- Asada H. Images for a binary gravitational lens from a single real algebraic equation // Astron. Astrophys. – 2002, 390, P. L11–L14.
- Cassan A. An alternative parameterisation for binary-lens caustic-crossing events // Astron. Astrophys. – 2008, 491, P.587–595.
- Witt H. J. Investigation of high amplification events in light curves of gravitationally lensed quasars // Astron. Astrophys. - 1990, 236, P. 311–322.
- Blandford R.D., Narayan R. Fermat's principle, caustics, and the classification of gravitational lens images // Astrophys. J. – 1986, 310, P. 568–582.
- Kovner I. The thick gravitational lens: A lens composed of many elements at different distances // Astrophys. J. – 1987, 316, P. 52-69.
- 15. Bozza V. Caustics in special multiple lenses // astro-

Puc.6. Каустики и критические кривые для двухплоскостной трёхточечной гравитационной линзы с параметрами m₁ = 0.25, m₂ = 0.5, β = 0.5 и различными R. Параметры согласованы с уравнением линзы (35).

Рис.7. Каустики и критические кривые для двухплоскостной трёхточечной гравитационной линзы с параметрами $m_1 = 0.25$, $m_2 = 0.5$, $\beta = 0.5$ и различными R. Параметры согласованы с уравнением линзы (35).

Рис.8. Каустики и критические кривые для двухплоскостной трёхточечной гравитационной линзы с параметрами $m_1 = 0.25$, $m_2 = 0.5$, $\beta = 0.5$, R = 0.3. Параметры согласованы с уравнением линзы (35). а – каустика в диапазоне [-0.5, 0.5]; b – каустика в диапазоне [-3, 3]; с – критическая кривая.

Puc.9. Изображения кругового источника для двухплоскостной трёхточечной гравитационной линзы с параметрами m₁ = 0.25, m₂ = 0.5, β = 0.5, R = 0.3. Параметры согласованы с уравнением линзы (35). Источник изображён пунктирной окружностью радиусом 0.1, штриховые линии – каустики. А – координаты источника (3.5; 0). В - координаты источника (3.0; 0). С - координаты источника (0.5; 0). D - координаты источника (0; 0).
ph/9910535v2 13 Jan 2000.

- Erdl H., Schneider P. Classification of the multiple detection two point-mass gravitational lens models and applications of Catastrophe Theory in Lensing // Astron. Astrophys. – 1993, 268, P. 453–471.
- 17. Werner M. C., An J., Evans N. W. On multiple Einstein rings // Mon. Not. R. Astron. Soc. – 2008, 391, P. 668–674.

РАСS: 75.20.-g; 75.30.Gw; 75.50.Gg; 75.50.Tt УДК :537.622.6, 537.624, 537.638.2

Диагностика магнитного состояния реальной высокодисперсной ферритовой системы с широким распределением частиц по размерам

К.А. Мозуль, Л.П. Ольховик, З.И. Сизова, Е.В. Шуринова

Харьковский национальный университет имени В.Н. Каразина 61022, г.Харьков, пл. Свободы, 4 mozul@karazin.ua

Исследовано магнитное состояние системы частиц гексаферрита Ca_{0.5}Ba_{0.5}Fe₁₂O₁₉ с достаточно широким распределением по размерам в пределах однодоменности. Для получения феррита примененялся метод с использованием элементов криохимической технологии, благодаря чему достигнута полная ферритизация при температуре 900 °C. Наличие суперпарамагнитного состояния определялось методом измерения температурних зависимостей намагниченности. Выяснены температурно-полевые условия перехода высокоанизотропных частиц из магнитостабильного в суперпарамагнитное состояние, на основании чего сформатирована соответствующая (H-T) диаграмма.

Ключевые слова: нанокристалл, гексаферрит, магнитное состояние.

Досліджено магнітний стан системи частинок гексафериту Ca_{0.5}Ba_{0.5}Fe₁₂O₁₉ з досить широким розподілом за розмірами в межах однодоменності. Для отримання фериту використовувався метод з використанням елементів кріохімічної технології, завдяки чому досягнута повна феритизація при температурі 900 °C. Наявність суперпарамагнітного стану визначалась методом вимірювання температурних залежностей намагніченості. З'ясовано температурно-польові умови переходу високоанізотропних частинок з магнітостабільного в суперпарамагнітний стан, на підставі чого сформатована відповідна (H-T) діаграма.

Ключові слова: нанокристал, гексаферіт, магнітний стан.

The magnetic state of a particles system of $Ca_{0,5}Ba_{0,5}Fe_{12}O_{19}$ hexaferrite with sufficiently broad size distribution within a single domain range was investigated. To obtain the ferrite was used method, that employing elements of cryochemical technology, thereby achieved full ferritization at 900 °C. The presence of superparamagnetic state was determined by measuring the temperature dependence of the magnetization. The temperature-field transition conditions of highly anisotropic particles from magnetostable to the superparamagnetic state were determined, whereby the corresponding (H-T) diagram formatted.

Keywords: nanocrystal, hexaferrite, the magnetic state.

Введение

Проблематика малых частиц и их ансамблей сложна в силу многих взаимосвязанных факторов: распределения частиц по размерам и, соответственно, по магнитным параметрам; образования различных самоорганизованных структур, обусловленных межчастичным магнитным взаимодействием; размерного эффекта, связанного с переходом из магнитостабильного в суперпарамагнитное состояние; поверхностными эффектами, обусловленными влиянием структурно-дефектной приповерхностной области частицы с возмущенной магнитной структурой.

В предыдущих работах по высокодисперсным ферритовым материалам [1,2] нами использовались системы нанокристаллов (d = 5 - 100 нм) и микрокристаллов (d = 0,1 - 1,4 мкм), по магнитным характеристикам близкие к модельным и по поведению

в магнитном поле достаточно хорошо прогнозируемые в соответствии с известными теоретическими моделями [3-5]. В данной работе исследовалась реальная высокодисперсная система однодоменных частиц, характеризующаяся достаточно широким их распределением по размерам, охватывающим полностью нанометровый диапазон и частично – микродиапазон однодоменности. Ставилась задача показать, насколько успешно можно анализировать магнитное состояние системы частиц в целом и индивидуальный вклад частиц разной масштабности в эффективные магнитные параметры порошкового образца.

Объект исследования и технология его получения

Объектом исследования служил высокоанизотропный ферримагнетик –

кальцийсодержащий гексаферрит бария $(Ca_{0.5}Ba_{0.5}Fe_{1.2}O_{1.9}).$ Получение высокодисперсного порошка данного химического состава является технологически проблемным из-за критически малого радиуса иона кальция (r=1,06 Å). В связи наиболее результативная с этим использовалась обеспечивающая криохимическая технология, высокую химическую однородность исходной многокомпонентной солевой смеси [6].

Учитывая тот факт, что в случае макроскопического аналога $Ca_{0,5}Ba_{0,5}Fe_{12}O_{19}$ полную ферритизацию обеспечивает температура 1270°С [7], то есть гораздо большая, чем для гексаферрита $BaFe_{12}O_{19}$ (1150°С), в случае высокодисперсной исследуемой системы частиц ферритизация, по аналогии, была проведена в атмосферной среде при более высокой температуре, а именно 900-1000°С вместо 800°С для феррита бария [8].

Результаты аттестации синтезированного порошка

Поскольку высокодисперсный порошок феррита Ca_{0,5}Ba_{0,5}Fe₁₂O₁₉ получен впервые, необходимо было провести комплексное исследование его качества. Для этого использовались следующие методики: рентгеновский фазовый анализ, электронная микроскопия, анализ основной кривой намагничивания.

Как видно из табл. 1, наряду с основной фазой гексагонального феррита, в порошке присутствует примесная фаза α -Fe₂O₃, содержание которой составляет порядка 7%. Расчет параметров кристаллической решетки показал, что параметр *а* кальцийсодержащего гексаферрита остается практически неизменным по сравнению с базовым составом BaFe₁₂O₁₉ [9], а наблюдаемое уменьшение параметра *с* косвенно подтверждает вхождение ионов Ca²⁺ в кристаллическую структуру феррита.

Для оценки качества полученного порошка как магнитного материала, а также проверки степени его соответствия модельной стонер-вольфартовской (SW) системе идентичных однодоменных магнитноодноосных хаотически ориентированных частиц [3] необходимо было установить вид основной кривой намагничивания. Измерения проводились на термически размагниченном уплотненном (фактор упаковки $p \sim 0,4$) порошковом образце с беспорядочно ориентированными частицами в полях до 20 кЭ. Основная кривая намагничивания $\sigma(H)$ исследуемого образца представлена на рис. 1. Там же, на вставке, для сравнения приведены теоретическая SW кривая и кривые намагничивания нано- и микродисперсного порошковых образцов феррита базового состава ВаFe₁₂O₁₉. Как видно, кривая для синтезированного порошка близка по характеру как к теоретической, так и к экспериментальной кривой для нанодисперсного

Вісник ХНУ, № 1113, серія «Фізика», вип. 20, 2014

образца. Небольшое отклонение от линейности на начальном участке кривой (в виде выпуклости, характерной для системы микрокристаллов) указывает на наличие в порошке Ca_{0,5}Ba_{0,5}Fe₁₂O₁₉ незначительного количества микрокристаллических частиц. Сделанный вывод согласуется с результатами проведенных электронно-микроскопических исследований (рис. 2, вставка), а данная методика может служить независимым способом аттестации высокодисперсных ферритовых материалов.

Обсуждение экспериментальных результатов

Преобладание в исследуемой высокодисперсной системе наноразмерных частиц позволяет прогнозировать в рассматриваемом интервале температур (300 – 700 К) изменение их магнитного состояния – переход из магнитостабильного (МС) в суперпарамагнитное (СПМ) состояние.

Согласно теоретическим модельным представлениям, развитым в работе [10], на СПМ переход в системе однодоменных частиц с объемами, равными критическому V_{s} , указывает наличие максимума на температурной зависимости намагниченности в полях, существенно меньших поля эффективной магнитной анизотропии, смещение максимума в сторону более низких температур и его размытие с увеличением внешнего магнитного поля.

На рис. 3. представлены экспериментальные зависимости удельной намагниченности от температуры при фиксированных значениях

Рис. 1. Основная кривая намагничивания исследуемого порошкового образца $Ba_{0,5}Ca_{0,5}Fe_{12}O_{19}$ (300К).

На вставке: теоретическая SW кривая (3), кривые намагничивания нано- (2) и микродисперсного (1) порошка BaFe₁₂O₁₉.

магнитного поля в диапазоне $(1 - 8 \ \kappa \Im)$ вплоть до исчезновения наблюдаемого эффекта. Характер зависимостей $\sigma(T)$ для H=1,0; 1,5; 2,0; 3,0; 4,0; 5,0 $\kappa \Im$ полностью соответствует теоретической трактовке для диапазона малых полей. В диапазоне полей $H\geq 6,0-7,0$ $\kappa \Im$ максимум явно не выражен, а, начиная с $H=7,5 \ \kappa \Im$ (значения, близкого к H_a^{min} из распределения частиц по полям магнитной анизотропии, рис. 3., вставка) зависимость $\sigma(T)$ имеет вид, характерный для системы магнитостабильных частиц. Поля же $H\geq H_a^{min}$ постепенно подавляют пространственные флуктуации магнитного момента частиц, «привязывая» его к своему направлению.

Для исследуемой системы частиц с реальным

Рис. 2. Электронно-микроскопический снимок частиц Ba_{0.5}Ca_{0.5}Fe₁₂O₁₉.

распределением по объемам и полям магнитной анизотропии переход из МС в СПМ состояние реализуется в конечном интервале температур, ограниченном критическими температурами блокировки магнитного момента частицы, $T_{BH}^{(2)}$ и $T_{BH}^{(2)}$. Началу перехода соответствует температура $T_{BH}^{(1)}$ (определяется по положению минимума на кривой $\sigma(T)$), окончанию перехода – $T_{BH}^{(2)}$ (определяется по положению максимума на данной зависимости).

На основании полученных зависимостей $T_{BH}^{(1,2)} = f(H)$ была построена (H–T) диаграмма магнитного состояния для исследуемой системы частиц. На представленном рис.4. выделены четыре области магнитного состояния (I – СПМ, II и II' – МС, III – ПМ). Линиями $T_{BH}^{(1)} = f(H)$ и $T_{BH}^{(2)} = f(H)$ ограничена заштрихованная область (I) специфического для системы малых частиц СПМ состояния, достаточно протяженная по температуре и полю. Поскольку исследуемый материал является высокоанизотропным, переход в СПМ состояние только за счет термических

Рис. 3. Температурная зависимость намагниченности системы частиц $Ba_{0,5}Ca_{0,5}Fe_{12}O_{19}$ при фиксированном значении внешнего магнитного поля H, кЭ:

1 - 1,0; 2 - 1,5; 3 - 2,0; 4 - 3,0; 5 - 4,0; 6 - 5,0; 7 - 6,0; 8 - 6,5; 9 - 7,0; 10 - 7,5; 11 - 8,0.

флуктуаций, как и следовало ожидать, происходит в области достаточно высоких температур, а именно, за 50 - 70 К до температуры Кюри (T_c =730 К). В табл.2. приведены размеры частиц, определяющих магнитное состояние в «узловых» точках СПМ области. Расчет проводился по следующим формулам:

$$V_{SO} = \frac{(50KT)}{\langle H_a \rangle I_S} ,$$
 (1)

$$V_{SH} = \frac{V_{SO}}{(1 - H/H_a)^2} \quad [10]. \tag{2}$$

Здесь $< H_a > -$ среднее значение из распределения частиц по полям магнитной анизотропии $N = f(H_a)$; I_s – намагниченность порошкового образца в целом в максимальном по величине поле.

Как видно из табл.2, в отсутствие поля, за счет термических флуктуаций, переход МС → СПМ в интервале 650 - 710 К наиболее вероятен частиц нанометрового практически для всех диапазона. Внешнее магнитное поле Н ~ 7,5 кЭ способно простимулировать данный процесс уже при 500 К для частиц с диаметром менее 40 нм. Следует отметить, что «узловая» точка с координатами (Т = 500 К, Н = 7,5 кЭ) на диаграмме магнитного состояния (рис.4.) принадлежит замыкающей СПМ область линии $H_{a}^{ef}(T)$. Это закономерно, если учесть, что поле, достигающее значения эффективного поля анизотропии, из стимулирующего СПМ переход становится блокирующим магнитные моменты частиц.

Рис. 4. Диаграмма магнитного состояния системы однодоменных частиц кальцийсодержащего гексаферрита бария: $T_{BH}^{(1)} - (\circ); T_{BH}^{(2)} - (\bullet)$.

Поле эффективной анизотропии H_a^{ef} определялось из данных для коэрцитивной силы, причем использовалась формула $H_c=0,48H_a$ [3], не учитывающая влияние термических флуктуаций магнитных моментов частиц с объемами, равными критическому V_{SH} в интервале (500 – 700) К.

Области II и II' относятся к магнитостабильному состоянию исследуемой системы. При этом область ІІ соответствует состоянию частиц, заблокированному эффективной магнитной анизотропией, а область ІІ' - область приближения высокодисперсной системы к насыщению, где внешнее магнитное поле постепенно блокирует магнитные моменты всех частиц. Область III (при $T \ge T_c$) традиционно считается областью неупорядоченного парамагнитного состояния. Однако, в присутствии внешнего магнитного поля, значение которого превышает критическое, согласно работе [11], в системе наночастиц возможно возникновение специфического индуцированного суперпарамагнетизма.

Заключение

Таким образом, впервые показана возможность достаточно информативного анализа магнитного состояния реальной системы частиц с распределением по размерам, полностью перекрывающим нанометровый и частично микрометровый диапазон в пределах однодоменности.

Авторы благодарны коллективу лаборатории наноразмерных порошковых материалов Белгородского государственного университета (Россия) за предоставленный образец ферритовой шихты.

- L.P. Ol'khovik, Z.I. Sizova, Z.V. Golubenko, T.G. Kuz'micheva, J. Magn. Magn. Mater., 183, 181 (1998).
- Л.П. Ольховик, М.М. Хворов, Н.М. Борисова, З.В. Голубенко, З.И. Сизова, Е.В. Шуринова, ФТТ, 45, 4, 643 (2003).
- E.S. Stoner, E.P. Wohlfarth, IEEE Trans. Magn., 27, 3469 (1991).
- H. Pfeiffer, W. Schüppel, J. Magn. Magn. Mater., 130, 92 (1994).
- P.E. Kelly, K. O'Graddy, P.L. Mayo, R.W. Chantrell, IEEE Trans. Magn. MAG-25, 5, 3881 (1989).
- Ю.Д. Третьяков, Н.Н. Олейников, А.П. Можаев, Основы криохимической технологии: Учебное пособие для вузов, Москва: Высшая школа, 142 (1987).
- Hirosi Yamamoto, et.al. J. Phys. Soc., Japan, 18, 11, 1700 (1963).
- Т.Г. Кузьмичева, Л.П. Ольховик, В.П. Шабатин, пат. 1724584, Зарегистр. 29.06.93. Бюл.№13.
- Я. Смит, Х. Вейн, Ферриты. М.: Издательство иностранной литературы, 504 (1962).
- 10. H. Pfeiffer, Phys. Stat. Sol. (a), 120, 233 (1990).
- В.И.Николаев, И.А.Род, Основные особенности магнитной фазовой диаграммы системы наночастиц. Сборник научных трудов 12-ой Международной Плесской конференции по магнитным жидкостям. 2006. 30 августа–2 сентября. Плёс, Россия. С. 147–152.

Таблица 2

T _B , K	Ι _s , Γc	Н _а ^{тіп} , кЭ <Н _а >, кЭ	V _{so} , 10 ¹⁸ см ³	Н, кЭ	V _{SH} , 10 ¹⁸ см ³	d, нм (d/h ~ 3)
650	65	*)1,2	133	0		60
710	20	1,6	153	0		84
500	145	11,3	2,1	7,5	19	42

Оценка размера частиц, претерпевающих СПМ переход при трех критических температурах

РАСЅ 05.45.Xt, 74.50.+r, 85.25.Cp УДК: 538.945, 537.312.62

Асиметрія вольт-амперних характеристик гібридних джозефсонівських контактів з пніктидами

Олександр Гриб

Фізичний факультет, Харківський національний університет ім. В. Н. Каразіна, пл. Свободи 4, 61022, Харків, Україна

Модель інтерферометру з різними значеннями критичних струмів контактів застосована для опису вольт-амперних характеристик джозефсонівських контактів з неднорідним по товщині бар'єром. У рамках моделі двохконтактного інтерферометру розраховані та порівняні з результатами експерименту асиметричні вольт-амперні характеристики містку надпровідника $BaFe_{2-x}Co_xAs_2$ та контакту $BaFe_{2-x}Co_xAs_2/TiO_x/PbIn$, виготовленому на монокристалі $BaFe_{2-x}Co_xAs_2$. Показано, що асиметрія вольт-амперних характеристик пов'язана з магнітним полем, в якому знаходяться контакти. Обговорено умови, при яких у контактах виникає магнітне поле.

Ключові слова: залізопніктидні надпровідники, джозефсонівські контакти, надпровідний квантовий інтерферометр.

The model of the interferometer with different values of critical currents of junctions is applied to the description of IVcharacteristics of Josephson junctions which have the inhomogeneous width of the barrier. In ranges of the model of the two-junction interferometer, the asymmetrical IV-characteristics of the bridge of the superconducting pnictide thin film $BaFe_{2,x}Co_xAs_2$ and the junction $BaFe_{2,x}Co_xAs_2/TiO_x/PbIn$ prepared on the single crystal of $BaFe_{2,x}Co_xAs_2$ are calculated and compared with the measured curves. It is shown that magnetic field inside junctions is the origin of the asymmetry of IV-characteristics. Conditions at which magnetic field appears inside the junctions are discussed.

Keywords: iron-based superconductors, Josephson junctions, superconducting quantum interferometer.

Модель интерферометра с различными значениями критических токов переходов применена для описания вольтамперных характеристик переходов с неоднородным по толщине барьером. В рамках модели двухконтактного интерферометра рассчитаны и сравниваются с экспериментом асимметричные вольт-амперные характеристики мостика сверхпроводника $BaFe_{2-x}Co_xAs_2$ и перехода $BaFe_{2-x}Co_xAs_2$ /TiO_x/PbIn, приготовленного на монокристалле $BaFe_{2-x}Co_xAs_2$. Показано, что асимметрия вольт-амперных характеристик связана з магнитным полем, в котором находятся переходы. Обсуждены условия, при которых в переходах возникает магнитное поле.

Ключевые слова: железопниктидные сверхпроводники, джозефсоновские переходы, сверхпроводящий квантовый интерферометр.

Вступ

Дослідження електричних характеристик джозефсонівськіх контактів, один з електродів у яких виготовлено з тонкої плівки або з монокристалу велике значення, оскільки в пніктиду, мають таких дослідженнях може бути виявлена симетрія спарювання у надпровідниках на основі пніктидів. У роботах [1-6] досліджувалися вольт-амперні характеристики гібридних контактів різних типів. Один електрод виготовлявся з пніктиду BaFe, Co As, $(x \approx 0.2)$, а другий електрод – з свинцю та покриття з індію (PbIn). Пніктид міг бути у вигляді тонкої плівки або монокристалу [5]. Для планарних контактів бар'єри виготовлялися з нормального металу (золоту) або з діелектрику (оксиду титану): BaFe, Co As, /Au/ PbIn [1,3,4] та BaFe_{2,x}Co_xAs₂/TiO_x/PbIn [5.6]. Крім того, досліджувалися контакти, виготовлені на границі зерна

© Гриб Олександр, 2014

основи [4] та контакти крайового типу [2]. Вольтамперні характеристики контактів різко асиметричні, тобто критичні струми, виміряні при позитивному та негативному напрямах постійного струму зміщення через контакт, сильно відрізняються один від одного. Для деяких зразків негативна частина вольт-амперної характеристики навіть може сильно відрізнятися від позитивної [5]. В роботі [2] висловлено припущення, що неоднорідність бар'єру може приводити до формування інтерференції надпровідних струмів. У даній роботі показано, що модель двохконтактного інтерферометру з різними критичними струмами може бути використана для опису неоднорідного бар'єру, пояснюється асиметрія вольт-амперних характеристик гібридних джозефсонівських контактів та деякі інші особливості вольт-амперних характеристик, виміряних у позитивному та негативному напрямках постійного

струму.

Модель

Струм через неоднорідний по товщині бар'єр контакту можна змоделювати як струм У багатоконтактному інтерферометрі [2]. Зараз МИ обмежимося розглядом випадку, коли у бар'єрі є тільки два «вузьких» місця для протікання струму. Ці «вузькі» місця утворюють два джозефсонівські контакти з критичними струмами I_{c1} та I_{c2}, які розділені шаром бар'єру, через який струм не проходить. Описана система контактів є, по суті, двохконтактним інтерферометром з індуктивністю L та критичними струмами контактів $I_{c1} = (1-\delta)I_{ca}$ та $I_{c2} = (1+\delta)I_{ca}$, де I_{ca} =(I_{c1}+ I_{c2})/2 – середній критичний струм та б безрозмірний параметр, який характеризує розбіг критичних струмів. Будемо вважати ці два контакти однорідними по товщині, так що їх критичні напруги $V_{ck} = I_{ck}R_k$ однакові [7] (тут R_k – електричний опір k-го контакту, k = 1,2). Це означає, що електричні опори контактів різні: $R_1 = R_a/(1-\delta)$, $R_2 = R_a/(1+\delta)$, де $R_a = V_c/I_{ca}$. Для визначеності, будемо вважати, що електричні ємності контактів також відрізняються одна від одної: $C_1 = C_0(1-\delta), C_2 = C_0(1+\delta),$ де $C_0 = (C_1+C_2)/2$. Тоді параметри Мак-Камберу [7] контактів $\beta_{Ck} = (2\pi I_{ck}R^2_{\ k}C_k)/2$

Вісник ХНУ, № 1113, серія «Фізика», вип. 20, 2014

 Φ_0 однакові: $\beta_{C1} = \beta_{C2} = \beta_C$ (тут $\beta_C = (2\pi I_{ca}R_a^2 C_a)/\Phi_0$, $\Phi_0 - \kappa$ вант магнітного потоку). Введемо також безрозмірний параметр індуктивності: $\beta_L = (2\pi I_{ca}L)/\Phi_0$. Будемо вважати, що інтерферометр знаходиться у постійному магнітному полі \vec{B} , яке перпендинулярне площині інтерферометру. Якщо поле направлено з площини контуру на читача, система рівнянь, яка описує динаміку різниці фази параметру порядку, виглядає так (див. [8]):

$$\frac{\Phi_0 C_k}{2\pi} \frac{d^2 \varphi_k}{dt^2} + \frac{\Phi_0}{2\pi} \frac{1}{R_k} \frac{d\varphi_k}{dt} + \frac{1}{R_k} + \frac{1}{R_k} \frac{1}{R_k} \frac{d\varphi_k}{dt} + \frac{1}{R_k} + \frac{1}{R_k}$$

$$I_{R} = -\frac{I_{ca}}{\beta_{L}} \left[2\pi\phi_{e} + \left(\varphi_{1} - \varphi_{2}\right) \right], \qquad (16)$$

де верхній знак перед струмом I_R у рівнянні (1а) відноситься до контакту з номером k = 1, $\phi_e = \Phi_e / \Phi_0$ -

нормалізований магнітний потік зовнішнього магнітного поля, $\Phi_e = BS$, S - площа контуру інтерферометру. Рішення даної системи рівнянь

Мал. 1. Моделювання електричних властивостей неоднорідного по товщині контакту за допомогою двохконтактного інтерферометру: (а) - вольтамперна характеристика інтерферометру при $\delta = 0$ (штрихова лінія) та при $\delta = 0.4$ (жирна лінія) у магнітному полі з $\phi_e = 0.3$; (б) – залежності модулів нормалізованих значень критичних струмів I_{c+} та I_{c-} інтерферометру від ϕ_e при негативних (I_{c-} , кружки) та позитивних (I_{c+} , трикутники) значеннях постійного струму через контакт; (в) – модулі позитивної (верхня крива) та негативної (нижня крива) гілок вольт-амперної характеристики, приведеної на Мал. 1а для $\delta = 0.4$. Параметри розрахунку для (а)-(в): $\beta_L = 0.4$, $\beta_C = 0.2$, $I_{ca} = 1$ мА, $R_a = 1$ Ом.

Мал. 2. (а) - вольт-амперна характеристика інтерферометру при $\delta = 0$ (штрихова лінія) та при $\delta = 0.3$ (жирна лінія) у магнітному полі $\phi_e = 0.3$ для параметрів $\beta_L = 4$, $\beta_C = 0.5$, $I_{ca} = 1$ мА, $R_a = 1$ Ом; (б) - модулі позитивної (верхня крива) та негативної (нижня крива) гілок вольт-амперної характеристики, приведеної на Мал. 2а для $\delta = 0.3$.

відносно різниць фаз φ_k на контактах та їх похідних методом Рунге-Кутта дозволяє отримати напругу на

інтерферометрі
$$\langle V \rangle = \frac{1}{2} \frac{\Phi_0}{2\pi} \left\langle \sum_{k=1}^2 \frac{d\varphi_k}{dt} \right\rangle$$
, де знак $\langle \dots \rangle$

означає усереднення по часу, а також вольт-амперні характеристики контактів при заданому значенні магнітного поля. У подальших розрахунках ми будемо використовувати нормалізовану величину $\langle v \rangle = \langle V \rangle / V_c$, де $V_c = I_{ca}R_a$.

Розглянемо динаміку інтерферометру при різних величинах параметру δ . Якщо $\delta = 0$, то отримуємо звичайний симетричний інтерферометр [7]. Однак, якщо $\delta \neq 0$, то його вольт-амперна характеристика перестає бути симетричною. На Мал. 1а показані вольтамперні характеристики інтерферометру з $\delta = 0$ (штрихова лінія) та при $\delta = 0.4$ (жирна лінія) в магнітному полі $\phi_e = 0.3$. Видно, що при $\delta = 0$ вольтамперна характеристика симетрична, тоді як при $\delta = 0.4$ величина критичного струму при позитивному постійному струмі значно більша, ніж при негативному. Причиною такої поведінки вольт-амперної характеристики є так званий «струм асиметрії» [8], який виникає в інтерферометрі завдяки асиметрії параметрів. Цей струм породжує власне магнітне «поле асиметрії». Існування «поля асиметрії» приводить до зміщення критичного залежностей струму інтерферометру від магнітного поля (Мал. 1б). При незмінному напрямі зовнішнього магнітного поля «струм асиметрії» і, відповідно, «поле асиметрії» змінюють напрям на протилежний при зміні знаку постійного струму через інтерферометр. Таким чином, при незмінному напрямі зовнішнього магнітного поля, залежно від напряму постійного струму, величина критичного струму інтерферометру буде різною (Мал.

1б). Модулі негативної та позитивної гілок вольтамперної характеристики при $\delta = 0.4$ показані на Мал. 1в. Видно, що вони відрізняються одна від одної. Ще сильніше ця різниця спостерігається, якщо поблизу критичної частоти контакту $v_c = (I_a R_a) / \Phi_0$ знаходиться частота резонансу струмів у контурі, який утворений конденсаторами обох контактів та індуктивністю інтерферометру. На Мал. 2а показана вольт-амперна характеристика інтерферометру при цій умові при δ = 0.3 (жирна лінія), а на Мал. 2б показані модулі негативної та позитивної гілок. Видно, що гілки співпадають при великих напругах, але при малих напругах негативна гілка має максимум, який відсутній на позитивній гілці. Цей максимум зумовлений резонансом струмів. Зауважимо, що при $\delta = 0$ максимуми є на обох гілках (Мал. 2а, штрихова лінія). Такі максимуми можуть бути на вольт-амперній характеристиці контакту з неоднорідним бар'єром без присутності магнітного поля.

Апроксимація експерименту та обговорення результатів

На Мал. 3 кружками показана апроксимація отриманої в експерименті [4] вольт-амперної характеристики (лінія) містку надпровідника BaFe_{2х}Co_xAs₂, виготовленого на бікристалічній границі основи SrTiO₃ зі зміщенням 30° [4]. Роль неоднорідного бар'єру тут виконує неоднорідна ширина містку (7 мікрометрів). Знову, приймемо, що струм може текти тільки у двох місцях містка, причому ширина цих двох місць різна. Тоді модель двоконтактного інтерферометру можна вжити для опису системи.

Обговоримо тепер питання про індуктивність контуру. Ефект асиметрії критичних струмів, який було обговорено в попередньому розділі, залежить

Мал. 3. Вольт-амперна характеристика містку ВаFе_{2-x}Co_xAs₂, зробленого на бікристалічній границі основи SrTiO₃ зі зміщенням 30° [4] (жирна лінія). Товщина буферного шару заліза 20 нм. Кружки – апроксимація згідно моделі, розвинутій у даній роботі. Параметри розрахунку: $\beta_L = 1$, $\beta_C = 0.2$, $I_{ca} = 0.55$ мА, $R_a = 33$ мОм, $\delta = 0.7$, $\phi_e = 0.3$.

від величини «струму асиметрії». Цей струм є достатньо сильним при величині параметру $\beta_L \ge 1$. Цьому значенню β_L при критичному струмі порядку 0.5мА відповідає індуктивність порядку 7·10⁻¹³Гн. Оцінка геометричної індуктивності контуру дає значно менший порядок величини. Однак, треба прийняти до уваги також і кінетичну індуктивність надпровідників. Завдяки великій лондонівській глибині проникнення магнітного поля в пніктиди [9], оцінка кінетичної індуктивності дає величину від 7·10⁻¹³Гн до 3·10⁻¹²Гн в залежності від напряму струму відносно площини аb. Таким чином, ефект асиметрії критичних струмів стає можливим завдяки великій кінетичній індуктивності пніктиду.

Для кращої апроксимації експерименту (тобто для «закруглення сходинок» біля критичних струмів) у рівняння (1а) додавався білий шум з нульовим середнім значенням та середньоквадратичною амплітудою 0.21. З Мал. З видно, що модель добре описує асиметрію критичних струмів. «Гілки» вольт-амперної характеристики також задовільно апроксимовані в рамках вибраної моделі, хоча їх опис є скоріше якісним. Таким чином, можна зробити висновок, що ефект асиметрії пояснюється екрануванням наявного магнітного поля при протіканні струму через неоднорідний по товщині контакт з двома каналами для струму. Ці канали можуть бути мікромістками або бар'єрами, товщина яких менша, ніж середня товщина контакту. У зв'язку з цим виникає питання про джерело наявного магнітного поля. З отриманих у моделі даних можна оцінити величину магнітного поля, у якому знаходиться місток, розглянутий на Мал. 3. Отримуємо порядок величини 1.10-3 Тл. Ця величина є порядку величини зовнішнього магнітного поля, необхідного для модуляції критичного струму в експериментах з точковими контактами пніктидів [10]. Це означає, що наш розрахунок дає правильний порядок величини магнітного поля, що дозволяє застосувати модель двохконтактного інтерферометру для розгляду реальних контактів. Для розгляду питання про походження цього поля важливо, що при виготовленні тонкої плівки пніктиду BaFe, Co As, шар заліза товщиною 10-20 нанометрів наносився на основу. Таким чином, гібридний контакт міг бути у магнітному полі, наведеному розташованими поблизу магнітними доменами заліза. Однак, хоча це джерело наявного магнітного поля є очевидним, воно не є єдиним. На поведінку розглянутого «внутрішнього інтерферометру» може впливати також магнітне поле, яке сформовано атомами заліза, які знаходяться у самій структурі пніктиду. В експериментах [1,2,4], у яких був наявний буферний шар заліза, присутні обидва джерела магнітного поля. В зв'язку з цим велике значення набувають експерименти на монокристалах пніктидів, де буферного шару заліза немає. У роботі [5] були отримані гібридні контакти BaFe, Co As,/TiO/ Рb, зроблені на основі монокристалу BaFe, Co As,. Вольт-амперна характеристика цього контакту сильно асиметрична, хоча буферного шару заліза у складі системи немає. Цей результат свідчить про те, що магнітне поле створювалося атомами заліза, які були у складі монокристалу. Апроксимація цього контакту у рамках розробленої в цій роботі моделі показана на Мал. 4. Подальший розгляд питання про походження магнітного поля у контактах пніктидів потребує систематичних досліджень у контактах, зроблених

Мал. 4. Вольт-амперна характеристика контакту ВаFe_{2-x}Co_xAs₂/TiO_x/PbIn, зробленого на основі монокристалу ВаFe_{2-x}Co_xAs₂ [5] (жирна лінія) та її апроксимація згідно моделі (лінія з кружками). Параметри розрахунку: $\beta_L = 0.4$, $\beta_C = 2.1$, $I_{ca} = 0.775$ мA, $R_a = 1.42$ OM, $\delta = 0.45$, $\phi_e = -0.2$.

7.

на основі монокристалів. Зауважимо, що, хоча в даній роботі проведено апроксимацію вольт-амперної характеристики тільки для містку BaFe_{2-x}Co_xAs₂ та контакту BaFe_{2-x}Co_xAs₂/TiO_x/Pb, модель дозволяє чисельну апроксимацію вольт-амперних характеристик джозефсонівських контактів різних типів.

Не виключено, що у зразках є захоплений магнітний потік, вплив якого також описує розроблена модель.

Висновки

У роботі досліджено ефект асиметрії критичних струмів, (тобто різних критичних струмів при позитивному та негативному напрямах постійного струму зміщення через контакт), який спостерігається при дослідженні гібридних джозефсонівських контактів на основі пніктиду ВаFe, Co As, Ефект асиметрії пояснюється екрануванням наявного магнітного поля при протіканні струму через неоднорідний по товщині контакт з двома каналами для струму. Ці канали можуть бути мікромістками або бар'єрами, товщина яких менша, ніж середня товщина контакту. Критичні струми цих каналів різні. Систему можна змоделювати як двохконтактний інтерферометр з різними критичними струмами. У роботі показано, що ця модель дозволяє апроксимувати експериментальну вольт-амперну характеристику містку BaFe, Co As, зробленого на бікристалічній границі основи SrTiO₂ зі зміщенням 30° і оцінити магнітне поле, в якому знаходиться контакт (порядку 10-3 Тл), а також вольт-амперну характеристику гібридного контакту BaFe, Co, As, /TiO, /PbIn, зробленого на основі монокристалу BaFe, Co As, [5]. Модель дозволяє чисельну апроксимацію вольт-амперних характеристик джозефсонівських контактів різних типів.

- S. Schmidt, S. Döring, F. Schmidl, V. Grosse, P. Seidel, K. Iida, F. Kurth, S. Haindl, I. Mönch, and B. Holzapfel. Appl. Phys. Lett., 97, 172504 (2010).
- S. Döring, S. Schmidt, F. Schmidl, V. Tympel, S. Haindl, F. Kurth, K. Iida, I. Mönch, B. Holzapfel, and P. Seidel. Supercond. Sci. Technol., 25, 084020 (2012).
- S. Döring, S. Schmidt, F. Schmidl, V. Tympel, S. Haindi, F. Kurth, K. Iida, I. Mönch, B. Holzapfel, and P. Seidel. Physica C, 478, 15 (2012).
- S. Schmidt, S. Doring, F. Schmidl, V. Tympel, S. Haindl, K. Iida, F. Kurth, B. Holzapfel and P. Seidel . IEEE Trans. Appl. Supercond., 23, 7300104 (2013).
- D. Reifert, N. Hasan, S. Döring, S. Schmidt, M. Monecke, M. Feltz, F. Schmidl, V. Tympel, W. Wisniewski, I. Mönch, T. Wolf and P. Seidel. Supercond. Sci. Technol., 27, 085003 (2014).
- S. Döring, M. Monecke, S. Schmidt, F. Schmidl, V. Tympel, J. Engelmann, F. Kurth, K. Iida, S. Haindi, I. Mönch, B.

Holzapfel, and P. Seidel. J. Appl. Phys., 115, 083901 (2014).K. K. Likharev. Dynamics of Josephson junctions and

- circuits, Gordon and Breach, Philadelphia (1991), 750 Р.
 8. Олександр Гриб, Вісник ХНУ № 1075, серія "Фізика",
- Олександр грио, вісник Ап'я № 1075, серія Фізика, вип. 18, с. 8-13 (2013).
- R Prozorov and V. G. Kogan. Rep. Prog. Phys., 74, 124505 (2011).
- Xiaohang Zhang, Yoon Seok Oh, Yong Liu, Liqin Yan, Kee Hoon Kim, Richard L. Greene, and Ichiro Takeuchi. Phys. Rev. Lett., 102, 147002 (2009).

PACS: 74. 72.-h

Excess conductivity of $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ single crystals

Z. F. Nazyrov, S.V. Lebedev, R. V. Vovk

Kharkov National University, 4 Svoboda Sq., 61077 Kharkov, Ukraine,

У роботі досліджено вплив допування празеодимом на провідність у базисній площині ВТНП-монокристалів $Y_{1,z}Pr_zBa_2Cu_3O_{7,\delta}$. Встановлено, що надлишкова провідність $D_s(T)$ монокристалів $Y_{1,z}Pr_zBa_2Cu_3O_{7,\delta}$ поблизу T_c задовільно описується в рамках теоретичної моделі Асламазова-Ларкіна. При цьому абсолютні значення величини поперечної довжини когерентності $x_c(0)$ зростають в міру збільшення вмісту празеодиму. У той же час для зразків з z≥0.48 спостерігається досить різке зниження величини $x_c(0)$, що може бути пов'язано із загальним пригніченням надпровідних характеристик при наближенні концентрації празеодиму до z ≈ 0.5.

Ключові слова: надлишкова провідність, допування, монокристали YBaCuO, високотемпературна надпровідність, довжина когерентності.

В работе исследовано влияние допирования празеодимом на проводимость в базисной плоскости ВТСП-монокристаллов Y_{1-z}Pr_zBa₂Cu₃O₇₋₈. Установлено, что избыточная проводимость D_s(T) монокристаллов Y_{1-z}Pr_zBa₂Cu₃O₇₋₈ вблизи T_c удовлетворительно описывается в рамках теоретической модели Асламазова-Ларкина. При этом абсолютные значения величины поперечной длины когерентности x_c(0) возрастают по мере увеличения содержания празеодима. В то же время для образцов с z≥0.48 наблюдается достаточно резкое снижение величины x_c(0), что может быть связано с общим подавлением сверхпроводящих характеристик в случае приближения концентрации празеодима к z≈0.5.

Ключевые слова: избыточная проводимость, допирование, монокристаллы YBaCuO, высокотемпературная сверхпроводимость, длина когерентности.

In present work effect of praseodymium doping on conductivity in a basic plane of HTSC $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ single crystals are investigated. It is established, that excess conductivity $D_s(T)$ of $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ single crystals nearby T_c satisfactory described by Aslamazov-Larkin theoretical model. Absolute values of cross-section coherent length $x_c(0)$ grow in process of an increase of a praseodymium content. At the same time for samples with $z \ge 0.48$ sharp enough decrease in size $x_c(0)$ that is maybe connected with the general suppression of superconducting characteristics at an come close of praseodymium concentration to $z \approx 0.5$.

Keywords: exess conductivity, doping, YBaCuO single crystals, high-temperature superconductivity, coherent length.

Despite the fact that since the discovery of high temperature superconductivity (HTSC) [1] has been more than twenty-five years, the microscopic theory of this phenomenon is not unclear until now. The dimensionality of critical fluctuations near the superconducting instability is important for understanding the mechanism responsible for the superconductivity [2]. The variation of the oxygen stoichiometry [3] and impurities [2,4,5] has a significant role in the behaviour of HTSC as this influence significantly the processes of forming fluctuation carriars. This in turn affects the realization of different regimes for the existence of fluctuation conductivity (FC) at temperatures above T_c [2]. The conductivity characteristics of the HTSC compounds can be tailored through total [6-8] or partial [2,4,5] substitution of their components. In this aspect, the YBa₂Cu₃O_{7.8} compound has been studied more thoroughly and most rare-earth elements when substituted for yttrium yielded superconductors. This is a consequence of the relatively easy way in substituting

yttrium with its iso-electron rare-earth analogues [8]. Of particular interest in this aspect is the partial substitution of Y by Pr[2,4,9,10], which, leads to the suppression of the superconductivity (unlike other rare-earth elements) and allows the lattice parameters [9,10] and oxygen stoichiometry of the compound to remain practically unaltered [2,5]. The investigation of the impact of Pr impurities on the conditions and regimes of existence of the fluctuation conductivity state of such compounds [2,11] plays an important role to elucidate the nature of HTSC but also for determining empirical ways of raising their critical parameters. In our previos works [2,11] we studied effect of small praseodimium doping $(0.05 \le z)$ on FC-regime in $Y_{1-z}Pr_{z}Ba_{2}Cu_{3}O_{7-\delta}$ single crystals. In this paper we investigate the influence of admixtures of Pr in a wide interval of concentration $(0.0 \le z \le 0.5)$ on the fluctuation conductivity in Y_1 , $Pr_2Ba_2Cu_3O_7-\delta$ single crystals in the flow of transport current in the basal ab-plane.

 $Y_{1-z}Pr_{z}Ba_{2}Cu_{3}O_{7-\delta}$ single crystals were grown from

the flux in a gold crucible using a methodology which is analogous to that used to synthesize YBa₂Cu₃O₇₋₈ single crystals [2,5,11,12]. To obtain crystals with a partial substitution of Y by Pr, $Y_{1-z}Pr_zBa_2Cu_3O_{7-8}$, an amount of Pr_5O_{11} was added to the melting stock in an appropriate atomic ratio. The regimes of growth and oxygen saturation of the $Y_{1-z}Pr_zBa_2Cu_3O_{7-8}$ crystals were the same as for undoped single crystals [3,11.12]. As the initial components for growth of the crystals we used the compounds Y_2O_3 , BaCO₃, CuO, and Pr_5O_{11} . For the resistive measurements we selected single crystals of rectangular form, of length 2.5 mm, width 1.5 mm, and thickness 0.4 mm. Electrical contacts were created in the standard 4-contact scheme. Temperature was measured by the platinum thermoresistor.

Figure 1 represents the temperature dependences $\rho_c(T)$ of eight samples with different Pr content. It is shown that the increase of the praseodymium content leads to an increase of the specific electrical resistance and a decrease of the critical temperature, in agreement with previous studies [4]. It follows from Fig. 1 that when the temperature is lowered below a certain characteristic value T* a deviation of $\rho_{ab}(T)$ from linear will occur, attesting to the appearance of some excess conductivity. The temperature dependence of the excess conductivity is usually defined as:

Fig. 1. Temperature dependences of excess conductivity ρ_{ab} for $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ single crystals for different praseodymium concentrations *z*: 1 - 0.0, 2 - 0.05, 3 - 0.19, 4 - 0.23, 5 - 0.34, 6 - 0.43, 7 - 0.48, 8 - 0.5. Arrows show pseudogap-state transition temperatures T*. Dash lines – extrapolation of linear section to zero value of temperature

$$\Delta \sigma = \sigma - \sigma_0, \qquad (1)$$

where $\sigma_0 = \rho_0^{-1} = (A+BT)^{-1}$ is the conductivity determined by extrapolation of the linear part to zero temperature, and $\sigma = \rho^{-1}$ is the experimentally determined value of the conductivity in the normal state.

It is established from the theory [13] that near T_c the

excess conductivity is due to fluctuation carrier-pairing processes, the contribution to the conductivity from which at $T > T_c$ for the two-dimensional (2D) and three-dimensional (3D) cases is determined by power laws of the form:

$$\Delta \sigma_{2D} = \frac{e^2}{16\hbar d} \varepsilon^{-1}, \qquad (2)$$

$$\Delta\sigma_{3D} = \frac{e^2}{32\hbar\xi_c(0)}\varepsilon^{-1/2},\qquad(3)$$

where $\varepsilon = (T - T_c)/T_c$, *e* is the charge of the electron, $\xi_c(0)$ is the coherence length along the c axis for $T \rightarrow 0$, and *d* is the characteristic size of the two-dimensional layer. In our case T_c was determined as the point of the maximum on the $d\rho_{ab}(T)/dT$ curves in the superconducting transition region (Fig.2) in the interval corresponding to the high T_c phase, as in [2,9,11,14]. However, as seen in figure (2), the increase of praseodymium content leads to an increase in the width of the superconducting transition, and when the

Fig. 2. The $d\rho_{ab}/dT-T$ curves in the region of the superconductive transition regarding the K1–K8 samples. Enumeration of curves in the figure is the same as in Fig. 1.

concentration $z \ge 0.34$ there appears a small additional peak on the $d\rho_{ab}(T)/dT$ curves. The latter is a reliable indication of phase bundle within the volume of the experimental sample [15,16]

In Fig. 3 shows the temperature dependence of $\Delta\sigma(T)$ in the coordinates $\ln \Delta\sigma$ - $\ln\epsilon$. It is seen that in the temperature range between T_c and 1.05-1.1 T_c (at different concentrations of praseodymium) these curves are approximated satisfactorily by straight lines with slope $\tan\alpha_1 \sim -0.5$, corresponding to the exponent of -1/2 in the power law [Eq. (3)], which attests to a 3D characteristic of the fluctuation conductivity in this temperature interval. Upon further is in temperature the rate of decrease of

 $\Delta\sigma$ increases substantially (tan $\alpha_2 \sim -1$) which can be interpreted as an indication of a change of dimensionality of the fluctuation conductivity (FC). It follows from Eqs. (2) and (3) that at the point of the 2D-3D crossover:

$$\xi_c(0)\varepsilon_0^{-1/2} = d/2.$$
 (4)

In this case, having determined the value of ε_0 and using published data on the dependence of the interplane distance on δ [10] ($d \sim 11.7$ A), one can calculate the values of $\xi_0(0)$.

As can be seen from insert (b) to Figure 3, the value of $\xi_c(0)$, calculated according to (4), increased more than fourfold with increasing content of praseodymium in the sample from z = 0 and $z \le 0.43$, and respectively, lower T_c of 91.74 to 45.2 K, which agrees qualitatively with the values from the value of $\xi_c(0)$ obtained for the undoped YBaCuO samples with decreasing oxygen content [3]. At the same time for the samples with $z \ge 0.48$, a fairly sharp decline in the value of $\xi_c(0)$, which may be due to a general suppression of the superconducting characteristics. These features (inset (a) in the Fig. 3), appearing in the form of a deep minimum, can be attributed to a general shift of the

Fig. 3. Temperature dependences of excess conductivity in *ab*-plane for single crystals K1–K8 (the insert (a) – curves 7, 8) on the ln $\Delta\sigma$ –lnc coordinates. Dash lines – approximation of experimental curves by equation (2) and (3). Enumeration of curves in the figure and insert is the same as in Fig. 1. The inset (b) shows the concentration dependence of the pseudogap and the transverse coherence length of $\xi_{-}(0, z)$.

conducting subsystem in the region of the phase diagram in which the normal state properties are determined by antiferromagnetic correlations and the demonstration of the so-called pseudo-gap anomaly (PG) [2,5,6,17].

The experimental technique we use is related with the measurement of the electrical resistivity and does not allow determining directly, the degree of the influence of the antiferromagnetic correlations in the fluctuation

conductivity and the pseudo-gap. On the other hand, we can estimate the relative length of the existence of the PGregime as $t^* = (T^* - T_f^{3D})/T_f^{3D}$, by defining the transition temperature in the three-dimensional fluctuation regime T_f^{3D} at the deviation point of the value $\Delta \sigma$ upwards [2] and the temperature T* at the point that the ρ_{ab} diverges from linearity downwards, as the temperature is decreasing [2,5,17]. The calculations show that with increasing the concentration of praseodymium, there occurs a more than six-fold expansion of the temperature interval that the PG is realized: $t^* = 0.5302-3.4895$. This, qualitative agrees with the results obtained for the undoped samples YBaCuO

[3,17] with decreasing the oxygen content. Nevertheless, in the lowest praseodymium concentration z = 0.05, enhances a significant narrowing regarding the width of t^* , in comparison with the undoped YBaCuO with optimal oxygen content, to a value of $t^* = 0.254$. As noted above, at the same praseodymium concentration, we observed an anomalous (more than 30 K) expansion of the linear section of the $\rho_{ab}(T)$ dependence. Such behavior of the $\rho_{ab}(T)$ curves was also observed on ceramic [4] and film [18] YBaCuO samples, with low praseodymium content. This effect may be due to the peculiarities of the processes induced by the addition of praseodymium in the clustering processes in the $Y_{1-r}Pr_{r}Ba_{2}Cu_{3}O_{7-\delta}$ compounds, as well as possible to strengthen the role of some specific mechanisms of the quasiparticle interaction [19]. In distinction to the undoped YBa₂Cu₃O₇₋₈ samples, the clusters formation in the optimally oxygen doped $Y_{1-r}Pr_{r}Ba_{2}Cu_{3}O_{7-\delta}$ compounds occure at a certain threshold concentration of praseodymium [10]. For a relatively small ($z \le 0.1$) praseodymium content, the formation of such clusters is significantly reduced. In this case, the praseodymium content leads to an overall increase in the concentration of the point defects, which are efficient scattering centers of normal and fluctuating carriers. According to [2,5], the praseodymium in the $Y_{1-x}Pr_{x}Ba_{2}Cu_{3}O_{7-\delta}$ compound can have a powerful depairing influence that may hinder the formation of uncorrelated fluctuation bosons responsible for the appearance of excess conductivity at temperatures below T^* . This, in turn, should lead to a decrease in the absolute value of T^* , as observed in our work.

Summarizing the results we can conclude the following: Increasing the concentration of praseodymium in the superconductor $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ can lead to phase bundle within the volume of the experimental sample. The excess conductivity $\Delta\sigma(T)$ for the $Y_{1-z}Pr_zBa_2Cu_3O_{7-\delta}$ single crystals when approaching T_c , is well described by the Aslamazov–Larkin theoretical model. It is established that in the praseodymium concentration range $0.0 \le z \le 0.5$, there occurs a fourfold increase in the

absolute values of the transverse coherence length $\xi_c(0)$ and a significant shift of the temperature intervals that the PG anomaly is realized. The doping of YBaCuO single crystals with a small amount of additives of praseodymium $z \approx 0.05$, leads to an unusual effect of narrowing the temperature interval of the implementation of the PG regime, thus extending the $\rho(T)$ linear dependence area in the *ab*-plane, which is probably due to the characteristics occurred by the induction of the clustering processes.

This work was supported in part by European Commission CORDIS Seven Framework Program, Project No. 247556.

- 1. J.G. Bednorz and K.A. Müller, Z. Phys. B 64 (1988) 355.
- R. V. Vovk, M. A. Obolenskii, A. A. Zavgorodniy, A. V. Bondarenko, I. L. Goulatis, and A. Chroneos, J. Mater Sci.: Mater. Electron. 18, 811 (2007).
- R.V.Vovk, M.A.Obolenskii, A.V.Bondarenko, I.L.Goulatis, A.V.Samoilov, A.I.Chroneos, V.M. Pinto Simoes. // J. Alloys and Compaunds 464, P. 58-66 (2008).
- H.B. Radousky // J.Mater. Res. -1992. -V.7, №7. -P.1917-1955.
- R.V. Vovk, M.A. Obolenskiy, A.A. Zavgorodniy, D.A. Lotnyk, K.A. Kotvitskaya // Physica B 404 (2009) p. 3516-3518.
- R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, I.L. Goulatis, V.I. Beletskii, A. Chroneos // Physica C. – 2009. –V.469. – P. 203-206.
- R. V. Vovk, M. A. Obolenskii, A. A. Zavgorodniy, I. L. Goulatis, A. Chroneos, E.V. Biletskiy // J. Alloys Compd. 485 (2009) p. 121-123.
- 8. D.M. Ginsberg (ed), *Physical properties high temperature superconductors I*, Word Scientific, Singapore (1989).
- A. I. Chroneos, I. L. Goulatis and R. V. Vovk, Acta Chim. Slov. 54, 179 (2007).
- G. D. Chryssikos, E. I. Kamitsos, J. A. Kapoutsis, A. P. Patsis, V. Psycharis, A. Kafoudakis, C. Mitros, G. Kallias, E. Gamari-Seale and D. Niarchos, Physica C 254, 44 (1995).
- R.V.Vovk, M.A.Obolenskii, A.V.Bondarenko, I.L.Goulatis, A.I.Chroneos // Acta Physica Polonica A, v.111, №1, p.129-133 (2007).
- R. V. Vovk, M. A. Obolenskii, Z. F. Nazyrov, I. L. Goulatis, A. Chroneos, and V. M. Pinto Simoes, J. Mater Sci.: Mater. Electron. 23, 1255 (2012).
- L. G. Aslamazov and A. I. Larkin, Fiz. Tverd. Tela (Leningrad) 10, 1104 (1968) [Sov. Phys. Solid State 10, 875 (1968)].
- L. Mendonça Ferreira, P. Pureur, H.A. Borges, P. Lejay, Phys. Rev. B 69 (2004) 212505.
- R.V. Vovk et. al // Philosophical Magazine Vol. 91, №17, 11 June 2011, 2291-2302.
- R. V. Vovk, A. A. Zavgorodniy, M. A. Obolenskii, I. L. Goulatis, A. Chroneos, and V. M. Pinto Simoes, J. Mater

Sci.: Mater. Electron. 22, 20 (2011).

- R. V. Vovk, A. A. Zavgorodniy, M. A. Obolenskii, I. L. Goulatis, A. Chroneos and V. M. Pinto Simoes // Modern Physics Letters B (MPLB) Condensed Matter Physics; Statistical Physics and Applied Physics Volume: 24, Issue: 22 (30 August 2010) DOI No: 10.1142/ S0217984910024675 P. 2295-2301.
- Соловьев А.Л., Дмитриев В.М., Флуктуационная проводимость и псевдощель в пленках Y_{1-x}Pr_xBa₂Cu₃O_{7-y} // ФНТ. -2006. -Т.32, №6. -С.753-760.
- Apalkov V.M., Portnoi M.E., Phys. Rev. B. -2002. V.66, №12. -P.121303 (R). -P.4.

PACS: 78. 66 Li

Strategies to suppress A-center formation in silicon and germanium from a mass action analysis viewpoint

A. Chroneos,^{1,2} C. A. Londos,³ E.N. Sgourou³

¹Engineering and Innovation, The Open University, Milton Keynes MK7 6AA, United Kingdom ²Department of Materials, Imperial College London, London SW7 2AZ, UK ³University of Athens, Solid State Physics Section, Panepistimiopolis Zografos, Athens 157 84, Greece

Experimental and theoretical techniques are used to investigate the impact of tin doping on the formation and the thermal stability of the A-center in electron-irradiated Czochralski silicon and its conversion to the VO_2 defects. Previous experimental studies are consistent with the viewpoint that tin (and other oversized isovalent atoms) doping suppresses the formation of the A- center. The results are discussed in view of recent density functional theory calculations, whereas we employ mass action analysis to calculate the impact of isovalent dopants on the suppression of the A-center. We propose point defect engineering strategies to contain the concentration of the deleterious A-centers in silicon and in related materials such as germanium.

Keywords: A-centers, point defects, electron-irradiations, doping.

Представлены результаты экспериментальных и теоретических исследований влияния допирования оловом на формирование и термостабильность А-центров в облученных электронами кристаллах кремния, полученных методом Чохральского, а также процессов их преобразования в дефекты вида VO₂. Экспериментальные исследования подтверждают, что допирование оловом (равно как и другие неизовалентные замещения) подавляет образование А-центров. Полученные результаты обсуждаются с учетом последних теоретических расчетов функциональной плотности. Высказано предположение о том, что точечные дефекты способствуют понижению концентрации А-центров в кремнии и сопутствующих материалах, таких как германий.

Ключевые слова: А-центры, точечные дефекты, облучение электронами, допирование.

Представлені результати експериментальних і теоретичних досліджень впливу допування оловом на формування та термостабільність А-центрів в опромінених електронами кристалах кремнію, отриманих методом Чохральського, а також процесів їх перетворення в дефекти виду VO₂. Експериментальні дослідження підтверджують, що допування оловом (так само як і інші неізовалентні заміщення) пригнічує утворення А-центрів. Отримані результати обговорюються з урахуванням останніх теоретичних розрахунків функціональної густини. Висловлено припущення про те, що точкові дефекти сприяють зниженню концентрації А-центрів у кремнії і супутніх матеріалах, таких як германій.

Ключові слова: А-центри, точкові дефекти, опромінення електронами, допування.

Silicon (Si) is the dominant material for a range of applications (including microelectronic devices, detectors, photovoltaics and nuclear medicine), whereas germanium (Ge) is gaining ground in the past few years for applications in nanoelectronics due to its advantageous material properties.[1-10] Irrespective of decades of research the detailed understanding of numerous defectdopant interactions, which can affect its properties are not well established.[11-13] for both materials defect-dopant interactions are becoming increasingly important as the characteristic dimension of devices are a few nanometers and hence atomic effects play a more significant role.

Oxygen (O) in Si and Ge is introduced during crystal growth by the Czochralski method. In both materials, oxygen intersitials (O_i) can trap lattice vacancies to form vacancy-oxygen pairs (known as *V*O or A-centers). When

the temperature is increased A-centers form larger oxygenvacancy defects (VO_2).[14, 15] In Si, A-centers are both electrically [16, 17] and optically active,[18] whereas VO_2 clusters are only optically active. [18] It is therefore important to suppress the formation of A-centers via point defect engineering strategies. In that respect the early experimental studies of Watkins [19] and Kimerling *et al.* [20] determined that isovalent impurities [carbon (C), germanium (Ge) and tin (Sn)] can modify the formation processes of A-centers in Si.

Sn is introduced in Si or Ge at ever increasing concentrations leading to the variation of the lattice parameter and electronic properties (i.e. band gap) in Sndoped Si or Ge.[21-23] At high Sn-concentrations the resulting alloys (i.e. GeSn, SiSn, and SiGeSn) exhibit interesting properties which can deviate to what is expected by SiGe alloys.[21,23-26] Interestingly, in early electron irradiation experiments Sn was introduced in Si to suppress the formation of the A-center.²⁷ In recent studies, employing infrared spectroscopy in conjunction with density functional theory calculations the impact of Sn doping in Si was investigated at an atomic scale level.^{10,28,29}

In the present study we discuss recent results on the impact of Sn doping on the formation of the VO defect and its conversion to VO_2 defect in electron-irradiated Si. We extend these findings by employing mass action analysis to discuss possible point defect engineering strategies to suppress the concentration of A-centers and other defect clusters in Si and Ge.

Figures 1(a) and 1(b) demonstrate the evolution with temperature of the VO and VO2 bands for the Sn-poor $([Sn] = 3 \times 10^{17} \text{ cm}^{-3})$ and Sn-rich $([Sn] = 9 \times 10^{18} \text{ cm}^{-3})$ electron-irradiated Si samples, respectively (details of the experimental methodology, the samples and the results are given in Ref. 30). From Fig 1(b) it can be abserved that the production of the A-center is suppressed in the Sn-rich sample. This is consistent with previous experimental evidence [refer to Fig. 1(b)].[31-33] Importantly, the vacancies that mainly formed during the irradiation and which did not recombine with self-interstitials, can associate with Sn atoms to form SnV pairs. Notably previous work calculated that the full-V (Sn substitutional next to a V) and the split-V configuration (Sn surrounded by two semi-vacancies) are comparable in energy with the later being more stable by only 0.02 eV (Ref. 23 and references therein). When Sn is introduced in Si it will compete with oxygen to capture vacancies. This in turn will result in the suppression of the VO concentration. In Si, the $\operatorname{Sn} V$ pair will dissociate via the reaction $\operatorname{Sn} V \to \operatorname{Sn} + V$ at a low temperature (near 170 °C). The SnV pair is infrared inactive, however, its presence and its annihilation in Si can be established by the changes of the concentration of other defects such as the VO pair. [31-33] The dissociation of

Fig. 1. The thermal evolution of the VO_2 and the SnVO defects for the (a) Sn-poor and (b) Sn-rich samples.

SnV pairs at 170 °C is accompanied by the steep increase in the concentration of the absorption coefficient of VO [refer to Fig. 1(b)]. This increase in the VO content at 170 °C is not observed in the Sn-poor case indicating that the formation of SnV pairs and subsequently the impact of Sn doping on the A-center is negligible if the Sn content of the sample is low (the impact of Sn content is discussed further through mass-action analysis below). Importantly, the final VO concentration of the VO defect in the Sn-rich sample is smaller than that in the Sn-poor sample. Another important result is that the conversion of the VO to the VO_2 defect is suppressed in the Sn-rich sample (Fig. 1). This is attributed to the trapping of migrating VO pairs by Sn to form SnVO clusters, in agreement with previous investigations.³⁴ Further experimental investigations are necessary to gain a detailed understanding of the impact of Sn doping on the formation and thermal evolution of the A-center as well as its conversion to the VO₂ defect.

The experimental results provide information on the thermal stability and formation of the defect clusters. In this sense they can be linked to the DFT results, which provide evidence of the binding energies, E_{s} , defined by:

$$E_b = E_{defect \ cluster} - \Sigma E_{isolated \ defects}.$$

According to this definition, negative binding energies imply that a cluster is energetically favorable with respect to its constituent isolated components.

Considering the DFT-derived binding energies of the SnV (-1.30 eV) [35] and the VO pairs (-1.32 eV) [36] they are different by only 0.02 eV. Given their similar stability what will be important in order to assess which pair will have the highest concentration is the relative concentration of tin, [Sn], and oxygen, [O]. These can be linked to the concentrations of the SnV pair, [SnV], and VO pairs, [VO] *via* mass action analysis³⁷

Ī

$$\frac{[SnV]}{[Sn][V]} = \exp\left[\frac{-E_b(SnV)}{k_BT}\right]$$
(1)

$$\frac{[VO]}{[O][V]} = \exp\left[\frac{-E_b(VO)}{k_BT}\right]$$
(2)

Where [V] is the concentration of the V, k_B is Boltzmann's constant and T is the temperature. As the binding energies of SnV and VO are approximately equal:

$$\frac{[SnV]}{[VO]} = \frac{[Sn]}{[O]}$$
(3)

This simple relation indicates that the capture efficiency of V by Sn and O is directly related to the initial concentrations of [Sn] and [O]. Therefore, in Sn-poor sample it is expected that the [VO] concentration will be more than 3 times higher than [SnV], whereas for the Sn-rich sample the relative concentration of [SnV] will be an

order of magnitude higher than [*VO*]. Considering Fig. 1 we estimate an Sn concentration of 2.4×10^{16} cm⁻³ for the Sn-poor sample and 1×10^{17} cm⁻³ for the Sn-rich sample.

Considering the mass action analysis arguments discussed above there are two strategies that can be implemented: (A) dope with Sn at concentrations that exceed the concentration of oxygen in the lattice and (B) dope with other isovalent dopants, which attract vacancies with binding energies higher than that of the A-center. Can these point defect engineering strategies be applied to other related materials and issues?

Moving our focus to alternative substrates such as Ge similar arguments can be used. In Ge, the SnV pair is bound by -0.64 eV,[38] whereas the VO by -0.45 eV.[39] Therefore, in Ge the SnV is more stable compared to VO by about -0.2 eV in contrast to Si where the two pairs were almost equally bound. Considering again mass action analysis arguments in the case of Ge:

$$\frac{[SnV]}{[VO]} = \frac{[Sn]}{[O]} \exp\left[\frac{-E_b(SnV) + E_b(VO)}{k_BT}\right] =$$
$$= \frac{[Sn]}{[O]} \exp\left(\frac{0.19eV}{k_BT}\right)$$
(4).

Therefore there is an enhancement of the trapping of Sn by the temperature dependent factor $\exp(0.19 \text{eV}/k_B\text{T})$. This is an important difference in the behavior of Sn-doped Si and Ge. For example, if we consider that $[\text{Sn}] = [\text{O}] = 10^{18} \text{ cm}^{-3}$ at 443 K (i.e. the point where SnV in Si dissociates) the ratio [SnV]/[VO] will be 1 for Si but 145 for Ge. Therefore, the trapping of V by Sn in Ge is at least two orders of magnitude higher than in Si.

This treatment assumes that there are no other competing V-related clusters at the temperature range where the VO and SnV pairs exist and that the [V] is constant between the two samples. Also mass action analysis corresponds to the equilibrium behaviour of defects towards which the system tries to evolve. Finally,

Table I.

Calculated binding energies (eV) for the capture of V by O_i or oversized isovalent dopants in Si and Ge.

Defect reaction	Si	Ge	
$V + O_i \rightarrow VO$	-1.32ª	-0.45 ^d	
$V + \text{Ge} \rightarrow \text{Ge}V$	-0.27 ^b	-	
$V + \mathrm{Sn} \rightarrow \mathrm{Sn}V$	-1.30 ^b	-0.64 ^e	
$V + Zr \rightarrow ZrV$	-	-1.89 ^f	
$V + \mathrm{Hf} \rightarrow \mathrm{Hf}V$	-	-1.85 ^f	

^a-[36]; ^b-[35]; ^c-[..]; ^d-[39]; ^e-[38]; ^f-[44]

the kinetics can play a role hindering the system to reach the equilibrium state.

Interestingly the recent study of Markevich *et al.*[40] correlated the association of Sn-V in phosphorous (P) doped Ge with the suppression of the transient enhanced diffusion of P. The suppression of the vacancy-mediated diffusion of *n*-type dopants such as P in Ge is a matter of active research and a range of codoping strategies have been proposed.[41-43] The introduction of an isovalent dopant in Ge with a high binding energy with respect to V would readily form pairs with vacancies that will have increased thermal stability. In a recent DFT work [44] (using the same methodology as in [36, 38, 43]) it is calculated that the binding energies of the zirconium-V (ZrV) and hafnium-V (HfV) pairs in Ge are -1.89 eV and -1.85 eV respectively. Therefore, we propose that doping with Hf or Zr can prove an efficient strategy to trap vacancies in clusters thus constraining their participation in defect processes such as the formation of A-centers or the enhanced diffusion of *n*-type dopants.

In essence A-centers and oxygen-related clusters in Ge can be effectively completely annihilated by the addition of Sn of equal content to oxygen. Considering oxygen interstitials in Ge have a significantly lower concentration than in Si and that Sn can be dissolved in the Ge lattice for concentrations up to at least 10% (i.e. far higher than the O existing in Ge) this point defects engineering strategy will be effective. The present approach does not consider the kinetics of the processes and how the inclusion of Sn might impact other dopants existing in the device. For example, in *n*-type doped regions phosphorous will also be present at high concentrations. In recent density functional theory studies by Tahini et al. [45,46] it was calculated that Sn traps vacancies and that codoping P with large isovalent dopants such as Sn or Hf will lead to the retardation of P. This in turn is important as P is a fast diffusing dopant in Ge hindering the formation of well defined regions that are crucial for devices. The inclusion of Sn or Hf will result in the suppression of the VO concentration and the phosphorous diffusion.

The experimental results determine that the production of *V*O defect is largely suppressed in Sn-doped Si due to the capture of vacancies by the Sn atoms. This in turn leads to the reduction of the conversion of *V*O to VO_2 due to the formation of Sn*V*O clusters. Using mass action analysis it is calculated that the key is to capture the lattice vacancies. There are two point defect strategies that can be implemented to control the concentration of A-center: (A) dope with Sn at concentrations that exceed the concentration of oxygen in the lattice and (B) dope with other isovalent dopants, which attract vacancies with binding energies higher than that of the A-center. In Ge it is calculated that the Sn trapping of vacancies will be enhanced by a temperature dependent factor. Finally, we propose that doping Ge with Zr or Hf is an efficient way to

trap vacancies and suppress the *V*O formation. The present work illustrates how DFT calculations can initiate actions for the point defect engineering of materials.

- S. G. Cloutier, P. A. Kossyrev, and J. Xu, Nat. Mater. 4, 877 (2005).
- E. Rotem, J. M. Shainline, and J. M. Xu, Appl. Phys. Lett. 91, 051127 (2007).
- C. Claeys, E. Simoen, Germanium-based technologies: from materials to devices, Elsevier, 2007.
- Y. Smimizu, M. Uematsu, K. M. Itoh, Phys. Rev. Lett. 98, 095901 (2007).
- 5. G. D. Watkins, J. Appl. Phys. 103, 106106 (2008).
- A. Chroneos, R. W. Grimes, and H. Bracht, J. Appl. Phys. 105, 016102 (2009).
- R. Kube, H. Bracht, A. Chroneos, M. Posselt, and B. Schmidt, J. Appl. Phys. 106, 063534 (2009).
- D. D. Berhanuddin, M. A. Lourenço, R. M. Gwilliam, and K. P. Homewood, Adv. Funct. Mater. 22, 2709 (2012).
- 9. K. Murata, Y. Yasutake, K. Nittoh, S. Fukatsu, and K. Miki, AIP Adv. 1, 032125 (2011).
- A. Chroneos, C. A. Londos, E. N. Sgourou, and P. Pochet, Appl. Phys. Lett. 99, 241901 (2011).
- N. A. Stolwijk and L. Lerner, J. Appl. Phys. 110, 033526 (2011).
- C. Gao, X. Ma, J. Zhao, and D. Yang, J. Appl. Phys. 113, 093511 (2013).
- H. Wang, A. Chroneos, C. A. Londos, E. N. Sgourou, and U. Schwingenschlögl, Appl. Phys. Lett. 103, 052101 (2013).
- R. C. Newman and R. Jones, in *Oxygen in Silicon*, Semiconductors and Semimetals, edited by F. Shimura (Academic, Orlando, 1994), Vol. 42, p. 289.
- C. A. Londos, N. V. Sarlis, and L. G. Fytros, in Early *Stages* of Oxygen Precipitation in Silicon, edited by R. Jones (Kluwer Academic, Dordrecht, 1996), p. 477.
- L. C. Kimerling, in *Radiation Effects in Semiconductors*, edited by N. B. Urli and J. W. Corbett (IOP, London, 1977), p. 221.
- 17. C. A. Londos, Phys. Stat. Sol. A 92, 609 (1985).
- J. W. Corbett, G. D. Watkins, and R. S. McDonald, Phys. Rev. 135, A1381 (1964).
- 19. G. D. Watkins, IEEE Trans. Nucl. Sci. 16, 13 (1969).
- L. C. Kimerling, M. T. Asom, J. L. Benton, P. J. Drevinsky, and C. E. Caefer, Mater. Sci. Forum 38-41, 141 (1989).
- M. R. Bauer, C. S. Cook, P. Aella, J. Tolle, J. Kouvetakis, P. A. Crozier, A. V. G. Chizmeshya, D. J. Smith, and S. Zollner, Appl. Phys. Lett. 83, 3489 (2003).
- 22. S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, Appl. Phys. Lett. **92**, 231916 (2008).
- 23. A. Chroneos, C. Jiang, R. W. Grimes, U. Schwingenschlögl, and H. Bracht, Appl. Phys. Lett. **94**, 252104 (2009).
- A. Chroneos, C. Jiang, R. W. Grimes, U. Schwingenschlögl, and H. Bracht, Appl. Phys. Lett. 95, 112101 (2009).
- 25. R. Roucka, Y. Y. Fang, J. Kouvetakis, A. V. G. Chizmeshya,

and J. Menendez, Phys. Rev. B 81, 245214 (2010).

- J. J. Pulikkotil, A. Chroneos, and U. Schwingenschlögl, J. Appl. Phys. 110, 036105 (2011).
- C. Claeys, E. Simoen, V. B. Neimash, A. Kraitchinskii, M. Kras'ko, O. Puzenko, A. Blondeel, and P. Clauws, J. Electrochem. Soc. 146, G738 (2001).
- A. Chroneos, C. A. Londos, and E. N. Sgourou, J. Appl. Phys. 110, 093507 (2011).
- E. N. Sgourou, D. Timerkaeva, C. A. Londos, D. Aliprantis, A. Chroneos, D. Caliste, and P. Pochet, J. Appl. Phys. 113, 113506 (2013).
- 30. See supplementary material at ... for details regarding the experimental methodology and infrared spectra.
- 31. G. D. Watkins, Phys. Rev. B 12, 4383 (1975).
- B. G. Svensson, J. Svensson, G. Davies, and J. W. Corbett, Appl. Phys. Lett. 51, 2257 (1987).
- 33. A. Brelot, IEEE Trans. Nucl. Sci. 19, 220 (1992).
- L. I. Khirunenko, O. O. Koibzar, Yu. V. Pomozov, M. G. Sosnin, and M. O. Tripachko, Physica B 340-342, 541 (2003).
- 35. A. Chroneos, Phys. Stat. Sol. B 244, 3206 (2007).
- A. Chroneos and C. A. Londos, J. Appl. Phys. 107, 093518 (2010).
- F. A. Kröger and V. J. Vink, in Solid State Physics, edited by
 F. Seitz and D. Turnbull (Academic, New York, 1956), Vol. 3, p. 307.
- A. Chroneos, H. Bracht, R. W. Grimes, and B. P. Uberuaga, Appl. Phys. Lett. 92, 172103 (2008).
- A. Chroneos, C. A. Londos, and H. Bracht, Mater. Sci. Eng. B 176, 453 (2011).
- V. P. Markevich, A. R. Peaker, B. Hamilton, V. V. Litvinov, Yu. M. Pokotilo, S. B. Lastovskii, J. Coutinho, A. Carvalho, M. J. Rayson, and P. R. Briddon, J. Appl. Phys. **109**, 083705 (2011).
- S. Brotzmann, H. Bracht, J. Lundsgaard Hansen, A. Nylandsted Larsen, E. Simoen, E. E. Haller, J. S. Christensen, and P. Werner, Phys. Rev. B 77, 235207 (2008).
- P. Tsouroutas, D. Tsoukalas, H. Bracht, J. Appl. Phys. 108, 024903 (2010).
- G. Impellizzeri, S. Boninelli, F. Priolo, E. Napolitani, C. Spinella, A. Chroneos, and H. Bracht, J. Appl. Phys. 109, 113527 (2011).
- A. Chroneos and A. Dimoulas, J. Appl. Phys. 111, 023714 (2012).
- H. Tahini, A. Chroneos, R. W. Grimes, and U. Schwingenschlögl, Appl. Phys. Lett. 99, 162103 (2011).
- H. A. Tahini, A. Chroneos, R. W. Grimes, U. Schwingenschlögl, and H. Bracht, Phys. Chem. Chem. Phys. 15, 367 (2013).

РАСS: 66.70.+f, 63.20. Ls УДК 536.48, 539.2

Перенос тепла в пластических фазах молекулярных кристаллов

В.П. Ревякин

Физико-технический институт низких температур им. Б.И. Веркина НАН Украины, Revyakin@ilt.kharkov.ua

Рассмотрена изохорная теплопроводность молекулярных кристаллов в пластической фазе при температурах порядка и выше Дебаевской. Показано, что дополнительной причиной роста изохорной теплопроводности может являться увеличение скорости звука вследствие сильного трансляционно-ориентационного взаимодействия.

Ключевые слова: изохорная теплопроводность, молекулярные кристаллы, фононы.

Розглянута ізохорна теплопровідність молекулярних кристалів у пластичній фазі при температурах порядку й вище Дебаєвської. Показано, що можливою додатковою причиною зростання ізохорної теплопровідності, може бути збільшення швидкості звуку, внаслідок сильної трансляційно-оріентаційної взаємодії.

Ключові слова: ізохорна теплопровідність, молекулярні кристали, фонони.

It is considered isochoric thermal conductivity of molecular crystals in a plastic phase at temperatures of the order of Debye ones and above them. It is shown that the possible reason of growth isochoric thermal conductivity, can be an increase of speed of sound because of strong transmission-orientation co-operation.

Keywords: isochoric thermal conductivity, molecular crystals, phonons.

Сведения о теплопроводности, с одной стороны, служат источником важной информации о динамике кристаллической решетки а, с другой стороны, необходимы при решении самых разнообразных задач. Поскольку теплопроводность определяется одновременным действием многих факторов и механизмов. истолкование экспериментальных результатов представляет собой довольно сложную задачу. Поэтому для определения общих закономерностей теплопроводности и создания теории важно исследовать, прежде всего, теплопроводность простейших систем. Удобными объектами в этом плане являются молекулярные криокристаллы. В молекулярных кристаллах в зависимости от вещества и температуры характер вращательного движения молекул может меняться в широких пределах: от либраций на малые углы в ориентационно упорядоченных фазах (ОУ) до быстрых реориентационных прыжков и заторможенного или практически свободного вращения в ориентационно-разупорядоченных (ОР или пластических) фазах.

Различные теоретические оценки, выполненные с учётом трёхфононных процессов рассеяния [1, 2, 3] предсказывают, что при температурах порядка и выше Дебаевской

Т \geq $\Theta_{\rm D}$ фононная теплопроводность кристаллической решетки должна быть обратно пропорциональна температуре Л~1/Т. Для выполнения закона Лµ1/Т необходимо, чтобы объем кристалла оставался неизменным поскольку параметр решетки, температура Дебая и параметр Грюнайзена – зависят от объемадажеприпостояннойтемпературе[4]. Этоусловие особенно важно учитывать при относительно высоких температурах, когда коэффициенты термического расширения велики. В случае простейших систем, а именно, отвердевших инертных газов изохорная теплопроводность отклоняется от зависимости Аµ 1/Т только на 20-25% при предплавильных температурах, что связано с ангармоническими перенормировками закона дисперсии фононов при фиксированном объеме [5]. Количественное описание отклонений изохорной теплопроводности от зависимости Aµ1/T не проводилось из-за сложности предложенной выше модели и по настоящее время отсутствует.

В принципе, трансляционные и ориентационные виды движения в молекулярных кристаллах вообще не являются независимыми, а реализуются в виде связанных трансляционно-ориентационных колебаний. Основная трудность описания ориентационной подсистемы состоит в значительной ангармоничности либрационных движений. Ангармонические эффекты вращательной подсистемы существенны для при температурах, много ниже температур даже ориентационного упорядочения этих кристаллов, в то время как трансляционные колебания достаточно хорошо могут быть описаны в гармоническом [6]. При приближении низких температурах, когда фононные и либронные ветви достаточно хорошо разделены, перенос тепла коллективными вращательными возбуждениями молекул (либронами) обычно предполагается малым вследствие узости либронных зон, а фононы, формирующие поток тепла, рассеиваются как на фононах, так и на либронах [7], что увеличивает тепловое сопротивление по сравнению, например, с инертными газами. С ростом температуры фонон-либронное взаимолействие усиливается, тепло начинает переноситься смешанными И трансляционно-ориентационными модами. Это приводит, как к дополнительному рассеянию из-за сильного ангармонизма либрационных колебаний, так и добавочному теплопереносу.

В случае сильного рассеяния фононов, теория предсказывает слабую зависимость теплопроводности λ от температуры [8].

Таким образом, существующие теории предсказывают уменьшение решеточной теплопроводности с ростом температуры в области высоких температур $T \ge \Theta_D$, или же выход ее на постоянную величину.

В исследованиях изохорной теплопроводности было показано, что существует группа диэлектрических кристаллов в которых наблюдается рост изохорной теплопроводности при высоких температурах. Подобное поведение типично для ОР фаз молекулярных кристаллов и обычно связывается с ослаблением рассеяния фононов на вращательных возбуждениях молекул [9,10], однако, это может быть не единственной причиной возрастания теплопроводности. Ориентационно-разупорядоченные или пластические фазы образуют молекулярные кристаллы, состоящие из глобулярных, высоко-симметричных молекул, характерной особенностью которых является высокая ориентационная подвижность молекул в vзлах кристаллической решетки. В некоторых случаях (водород, метан) вращение может приближаться к свободному при предплавильных температурах [11].

В современной теории предполагается, что тепло переносится фононами, которые являются квантами энергии каждой моды колебаний. Выражение для решеточной теплопроводности в приближении времен релаксации имеет вид:

$$\Lambda = \frac{1}{3} v \int l(x) C(x) dx \tag{1}$$

Puc.1 Изобарная теплопроводность и продольная скорость звука азида натрия NaN, данные работы [13]

Где v – скорость звука (считается постоянной величиной), l(x) – длина свободного пробега фононов,

$$C(x)$$
 – теплоемкость, $x = \frac{\hbar\omega}{k_B T}$ безразмерный

параметр. При температурах выше Дебаевской $T \ge \Theta_{D}$ теплоемкость С(х) – имеет постоянную величину, а длинасвободного пробега фононов l(x)-ограничивается непосредственным взаимодействием между фононами и уменьшается с ростом температуры, однако она не может стать меньше половины длины волны фонона λ/2 [4]. Из выражения (1) видно, что рост изохорной теплопроводности в пластических фазах молекулярных кристаллов можно описать в рамках существующей теории если предположить, что с ростом температуры увеличивается скорость распространения фононов. Скорость распространения упругих волн в твердой среде – как продольных, так и поперечных определяется упругостью и плотностью среды. На скорость звука влияют особенности молекулярной структуры, силы межмолекулярного взаимодействия и плотность упаковки молекул. Увеличение скорости звука означает - увеличение упругости среды, которое может быть связано с сильным трансляционно-ориентационным взаимодействием в молекулярных кристаллах в пластической фазе.

Следует подчеркнуть, что измерение скорости звука при постоянном объеме в случае молекулярных кристаллов является трудной экспериментальной задачей, поэтому в литературе обычно приводятся данные о скоростях звука полученные при постоянном давлении.

В пользу предположения о возрастании скорости звука в пластических фазах молекулярных кристаллов говорят следующие экспериментальные факты:

 Аномальная зависимостью скорости звука в β - фазе кислорода O₂ (β - фаза предшествует пластической γ – фазе). Температурная зависимость скорости звука практически постоянна для продольных мод и возрастает для поперечных [6, 12]. К сожалению, литературе отсутствуют какие-либо данные о скорости звука в γ- фазе.

2. В работе [13] методом бриллюэновского рассеяния были определены упругие константы в пластической фазе для CCl₄. Обнаружено аномально высокое соотношение скоростей звука в направлениях <110> и <111> по сравнению с отвердевшими инертными газами.

3. Увеличение скорости звука в пластической фазе экспериментально наблюдалось в кристаллах азида натрия NaN₃ [14].

Кристаллы азида натрия NaN₃ относятся к группе ионно-ковалентных кристаллов. Ориентационная подвижность молекул в узлах кристаллической решетки связана с величиной барьеров препятствующих вращению. В ионно-ковалентных кристаллах (в отличие от молекулярных кристаллов) эти барьеры, как правило, достаточно велики, поэтому фазовый переход в пластическую фазу в этих кристаллах происходит при более высоких температурах. На рисунке 1 приведена температурная зависимость теплопроводности и продольной скорости звука для азида натрия взятые из [14]. Подобная необычная температурная зависимость теплопроводности (второй максимум в ОР фазе) наблюдается и в случае метана [10].

Выводы

Возможной дополнительной причиной роста изохорной теплопроводности в пластических фазах молекулярных кристаллов, может являться увеличение скорости звука вследствие сильного трансляционноориентационным взаимодействием, однако, для более определенных выводов необходимы дополнительные эксперименты и более тщательный теоретический анализ.

- 1. Ахиезер А.И. -ЖЭТФ, 1940, 10, № 12, с. 1354-1362.
- Roufosse M., Klemens P.G. -Phys. Rev. B, 1973, 7, № 12, p. 5379-5386.
- Дж. Займан. Принципы теории твёрдого тела.: М. Мир, 1966, 416 С.
- 4. G.A. Slack, Solid State Phys. 34,1 (1979).
- В.А. Константинов, В.Г. Манжелий, М.А. Стржемечный, С.А. Смирнов, ФНТ, 14, 1, 90 (1988).
- Structure and Termodynamic Properties of Cryocrystals, Handbook, edited by V. G. Manzhelii, A. I. Prokhvatilov, V. G. Gavrilko, and A. P. Isakina (Begell house, inc. New York, Walingford, U.K., 1998).
- В.А. Константинов, В.Г. Манжелий, В.П. Ревякин, С.А. Смирнов, ФНТ, 21, 102 (1995) [Low Temp. Phys., 21, 78 (1995)].
- D.G. Cahill, S.K. Watson and R.O. Pohl, Phys. Rev.B. 46,6131 (1992).
- В.А. Константинов, В.Г. Манжелий, С.А. Смирнов, УФЖ., 37, 757 (1992).
- V. A. Konstantinov, V.G.Manzhelii, S.A.Smirnov, V.P.Revyakin. Physica B., -1999, №3, 262, -P. 421-425.
- Physics of cryocrystals. Eds. V.G. Manzhelii, Yu. Freiman.-Woodbury, New York: AIP PRESS, (1997).
- 12. L.M. Tarasenko, Thermophysical Properties of substances and Materials 18, 72 (1981) (in Russian).
- Zuk J., Kiefte H., Clouter M.J. Elastic constants of the orientationally disordered phase Ib of CCl₄ // J. Chem Phys. 1991. Vol. 95, № 3. P. 1950 1953.
- В.Н. Беломестных, Е.П. Теслева //Известия Томского политехнического университета. 2004. т. 307. № 6 с. 11-17.

ПРАВИЛА ДЛЯ АВТОРІВ

журналу "Вісник ХНУ. Серія "Фізика"

У журналі друкуються статті, короткі по відомлення, в яких наведенні оригінальні результати теоретичних та експериментальних досліджень і обзори з актуальних проблем за тематикою видання (загальний об'єм не більше 15 сторінок).

Мова статей – українська, російська та англійська.

ТЕМАТИКА ЖУРНАЛУ

1. Теоретична фізика

2. Фізика твердого тіла

3. Фізика низьких температур

4. Фізика магнітних явищ

5. Оптика та спектроскопія

6. Загальні питання фізики (математичні методи, методика викладання: фізичного експерименту та інші).

ОФОРМЛЕННЯ РУКОПИСІВ

До рукопису повинно входити: титульний лист з назвою статті; ініціали та прізвища авторів; поштова адреса закладу де виконана робота; класифікаційний індекс за системами PACS та УДК; анотація на окремому аркуші з прізвищем та ініціалами авторів і назвою статті українською, російською та англійською мовами; основний текст статті; список літератури; підписи під малюнками; малюнки, таблиці та ілюстрації.

Текст рукопису треба роздрукувати на принтері з подвійним інтервалом на аркуші формату A4 (210х297) з полями ліворуч, праворуч, зверху і знизу по 2,5 см, шрифтом розміром 14 рt гарнітурою Times New Roman.

Електронний варіант повинен відповідати наступним критеріям: текст у форматі Microsoft Word версії 2003, вирівнювання по лівому краю, розмір шрифту 10 pt, гарнітура Times New Roman, без відступів і виступів, без відступів після абзаців, без прописних букв у назвах, букви звичайні рядкові, накреслення жирного й курсивного шрифту не припустимо, формули повинні бути набрані в MathType (не нижче версії 5.0), у формулах кирилиця не припустима, символи з нижніми й верхніми індексами набирати в Microsoft Word, ширина формули не більше 70 мм, графіки та ілюстрації подаються в графічному форматі, кольорова модель потрібна бути чорно-біла (gray scale), розрізнення не менше 300 dpi, поширення файлів потрібно бути *.jpg, шириною в одну чи дві колонки, для однієї колонки розміри: завширшки 8 мм, для двох колонок – 16 мм.

ОФОРМЛЕННЯ ГРАФИКІВ

Товщина ліній не більш 0,5 мм, але не менш 0,18 мм. Величина літер на підписах не більш 14 pt, але не меньш 10 pt, гарнітура Arial.

ПРИКЛАД ОФОРМЛЕННЯ СПИСКУ ЛІТЕРАТУРИ

1. Л.Д. Ландау, Е.М. Лифшиц. Теория упругости, Наука, М. (1978), 730 с.

- 2. И.И. Іванов. ФТТ, 25, 7, 762 (1998).
- 3. A.D. Ashby. Phys.Rev., A19, 213 (1985).

4. D.V. Vert. In Progress in Metals, ed. by R. Speer, USA, New York (1976), v.4, p.17.

ДО РЕДАКЦІЇ НАДАЄТЬСЯ

1. Два роздрукованих примірника статті, які підписані авторами.

2. Електронну версію рукопису та контакти для спылкування за авторами, треба надіслати електронною поштою, тільки на адресу vestnik phy@mail.ru .

3. Направлення від установи де виконувалася робота і акти експертизи у двох примірниках; адресу, прізвище, повне ім'я та батькові авторів; номери телефонів, E-mail, а також зазначити автора для спілкування.

Матеріали треба направляти за адресою: Редакція журналу «Вісник Харківського національного університету імені В.Н. Каразіна. Серія: фізика», Криловському В.С., фізичний факультет, майдан Свободи, 4, Харківський національний університет імені В.Н. Каразіна. тел. (057)-707-53-83, e-mail: vladimir.s.krylovskiy@univer.kharkov.ua

Наукове видання

Вісник Харківського національного університету імени В.Н.Каразіна

№ 1113

Серія "Фізика" випуск 20

Збірник наукових праць

Українською, російською та англійською мовами.

Комп'ютерне верстання С.В. Лебедєв

Підписано до друку 27.06.2014. Формат 60х84 1/8.

Папір офсетний. Друк ризограф. Ум. друк. арк. 12,1. Обл.-вид. арк 13,7.

Тираж 100 пр. Ціна договірна. Зам. №

Надруковано: ХНУ імені В.Н. Кразіна 61022, Харків, майдан Свободи, 4. Тел.705-24-32

Свідоцтво суб'єкта видавничої справи ДК №3367 від 13.01.09