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The internal stress relaxation modeling in the polygonization in
alkali halide single crystals
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The evolution of the dislocation system during annealing in the absence of external loading after the three-point bending of a
single crystal with a NaCl-type lattice, pricked out along the cleavage planes is modeled with the discrete dislocation dynamics method.
The change of the average shear stresses value produced by the dislocation structure in the surrounding crystal and stresses acting on
the dislocation ensemble themselves are obtained.
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MeTonoM JIHMCKPETHOI AMCIOKANiHHOI JMHAMIKM TPOMOEIBFOBAHO EBOJIOLII0 ANCIOKALiHHOT CHCTEMH MpU BiTbHOMY Biamaii
ITiciIs TPUTOYKOBOTO 3TMHY MOHOKpHcTaina 3 rparkoro tumy NaCl, mo GyB BHKOJOTHH IO IUIOMIMHAX CIaifHOCTi. BU3HAYeHO 3MiHY
BEJIMYMHHU CEPE/IHIX 3CYBHUX HAIIPYKEHb, SIKi yTBOPIOE IMUCIOKALIIHHUI aHCAaMOJIb B OTOUYHOUOMY KPHCTaJIi, T JIOKAJIbHUX HAIPYKCHb,

110 JIifOTh Ha caMi QMCIIOKAIlii aHcaMOIro.

KirouoBi cjioBa: quHaMiKa AUCITOKANii, BHYTPILIHI HANPYKEHHS, TOJITOHI3aIlis.

MeTtonoM TUCKPETHOM MUCIOKAIIMOHHON TUHAMHUKH MPOMOJICIMPOBAHA 3BOJIIOLHMS AUCIOKAIMOHHOW CUCTEMbI IPU CBOOOAHOM
OTIKUTE NOCIIE TPEXTOYESHHOT0 U3ruda MoHOKpucTaia ¢ pemerkoil Tumna NaCl, BEIKOIOTOrO 10 INIOCKOCTAM cnaiiHocTu. OnpeneneHo
H3MEHEeHHUE BeIIMYUHBI CPEAHUX CIABUTOBBIX HAIIPSHKEHUI, CO3/1aBaeMbIX JUCIOKAI[MOHHBIM aHCAMOJIeM B OKpY’KaroleM KpHCcTalule, U
JIOKaJIBHBIX HAIPSDKCHUH, NeHCTBYIOMNX HA CAMH AUCIOKAIlMH aHCaMOIIs.

KnroueBble ciioBa: IMHAMHKA JUCIOKAINI, BHYTPEHHHE HANIPSHKEHUS, HOIUTOHHU3AIIHS.

Introduction
It is well known that the plastic deformation of
single crystals is largely determined by the movement of
dislocations. The plastic deformation velocity provided by
the motion of dislocations is defined by Orovan:

€= pbv,

where p—density of the moving dislocations, b—the Burgers
vector value, v — the average velocity of dislocations.

In turn, the velocity of dislocations motion depends on
the applying stress and the dislocation mobility. Effective
stress applied to the dislocation is the sum of the external
applying stress to the sample, and the stress from all
sources within the crystal (internal stresses). In a fairly pure
crystals main source of stress is the dislocation ensemble.

Thus, the factors that determine the rate of the crystal
deformation are: external stresses (O, ); dislocation
density; dislocation mobility which depends on the
temperature and relative position of dislocations
(dislocation configuration); the value of the internal stress
(0,, ), which depends on their relative position at a
constant dislocation density. If the external stresses we can
change (we could put a define level of the external stresses),
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the internal stresses are determined mainly by the prehistory
of the sample (so we could not influence on a level of
internal stresses).

The internal stresses for creep or active loading tend
to hinder the
G =0 G, .. Whereas in the absence of the external

movement of dislocations and

ext  int
influence G, =G, .

The field of elastic stresses generated by dislocations
is inhomogeneous. We can use superposition principle to
the stress. Then the level of stress will substantially depends
on the point within the crystal. Therefore, we considered it
in terms of the average value of the internal stresses G, .
If the value of the external stresses is insufficient for the
new dislocations multiplication, it makes sense to talk
about internal stresses only as a consequence of the
dislocations interaction themselves.

In considering the dislocation subsystem evolution of
the crystal in the absence of external stress (for example,
with the annealing in the absence of external loading)
the relaxation of the internal stresses will be, mainly by
reducing the number of dislocations (annihilation or
following dislocation to the surface). The dislocations
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ensemble will change it’s configuration at a sufficient
temperature and time. The question arises, how the rebuilt
dislocations change the internal stress?

In the literature there are conflicting data regarding
this. From the fact that the internal stresses do not change
till they reduce several times [1 - 3].

The internal shear stresses in the equilibrium position
can be extremely small for dislocations forming a stable
dislocation structure. Therefore such a dislocation can
move even by applying slight external stress. However, in
order to finally leave the stable structure (and contribute
to plastic deformation) dislocation should overcome the
potential barrier, much greater stress must be applied (for
example, when the dislocation leaves the infinite symmetric
tilt boundaries [4, 5]).

The problem of calculation of the field of elastic
stresses generated by the dislocation ensemble has been
theoretically solved in a few simple cases. For example,
it was solved for an infinite symmetrical low-angle
boundaries and slip bands with equidistant dislocations
[4]. Tt is difficult to solve for intermediate dislocation
configurations occurring during the self-organization

A=

process (in particular, in the polygonization) because of
cumbersome calculations. Our goal was to determine by
computer simulation the average shear stress value in the
polygonization process. Furthermore, since the dislocation
mobility is determined by elastic stress acting on them
values of shear stress acting on a dislocation during
polygonization are calculated.

Model description

Using discrete dislocation dynamics method we
can make a forecast of dislocation ensemble evolution
and estimate the share stresses values which affect on
dislocation mobility.

In this paper, by the discrete dislocation dynamics
modeling (detailed simulation procedure is described
in [6]) the internal average shear stress relaxation in the
polygonization process in alkali halide single crystals
with the NaCl type lattice is considered. The crystal was
pricked out along the cleavage planes and deformed under
three-point bending scheme. Such a deformation scheme is
convenient because in the central part of crystal basically
only edge dislocations with mutually perpendicular Burgers
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Fig. 1. Dislocation configuration. a, b — initial distribution; ¢, d — # =200 min , T = 550°C. NaCl.
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vectors are formed. The dislocation lines are parallel to
the bending axis. Then the problem of the distribution of
dislocations and their movement actually becomes two-
dimensional.

In this model, internal stresses are caused by the
dislocations. Each dislocation produces around itself an
elastic stress field. This field acts on the rest of the ensemble
of dislocations. We assume that the velocity of movement
of the dislocation line elements at each point is determined
only by the total force acting on the element [6]. This
model can be used when the radius of the dislocation line
curvature greatly exceeds the average distance between
dislocations.

The values of elastic moduli and the Burgers vector
and parameters combining the dislocation velocity with the
value of the applied stress were taken for NaCl crystals.
There is easy slip system {110} <110> in crystals with the
NaCl type lattice. We choose the coordinate axes so that
the x and y axes are oriented along the {110}, the z axis is
directed along the banding axis [001].

A system consisting of a straight edge dislocations
mutually  perpendicular  Burgers

with vectors

(«A» — EA =(5,0,0) u B» — EBz(o,b,o,)) is

considered. The dislocation lines directed along the z axis.
Such type of dislocations are formed in pricked out along
the cleavage planes <100> crystals during three-point
bending with respect to an axis parallel to the {100}.
Periodic boundary conditions were used to avoid
dealing with features associated with the crystal surface.
There is the rectangular area of the size L X L, of the
sides parallel to the Burgers vectors direction (it was
determined that an arbitrary orientation of the rectangle
sides in the Xy plane does not change the results, if the size
of the area is much larger than the average distance in the
range dislocations). There are qualitatively the same results
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Fig. 2. The average shear stress value created by the
dislocation ensemble in the surrounding crystal vs. time.

T =550°C. NaCL
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when selecting L, and L in range 100 — 500 pm.

The initial dislocations distribution in the crystal
deformed by three-point bending is shown (fig.1 a, b). The
dislocations are located in two mutually perpendicular
sliding bands. The initial dislocations positions within the

area (X;, ), ) have been set. The contents of this area was
repeated 8 times in the surrounding (on the sides and
corners) rectangular areas:

x;=x,+mL, m=0,%1;

y, =y +nL, n=0,%1;

m and n are not simultaneously zero. The dislocation
interaction with each other and with all the «clones» in
neighboring areas is considered. If the dislocation leaves
the selected area, such as a dislocation enters the area from
the opposite side.

The first we settle the define initial dislocation
arrangement by three point bending plastic deformation.
After bending plastic deformation there is no external
stresses, and the temperature is sufficient for the active
dislocation creep. The number of dislocations is constant.

Results

In the process of modeling the average shear stress
value created by the dislocation ensemble in the crystal is
calculated. In order to reduce the effect of point observation
location the stresses is calculated in 200 points uniformly
distributed around the circumference whose radius is
greater than tenfold L . The results are averaged.

In addition the total shear stress (normalized to the
dislocation number) acting on the dislocation ensemble
themselves is calculated.

The dependence of the average shear stress from time

is shown in fig. 2. O'fy is shear stress at the initial time. It

would seem that this average shear stress should be reduced
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Fig. 3. The local average shear stress value created by
the dislocation ensemble vs. time. T = 550°C. NaCl.
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during dislocation self-organization process (from the
placement of the dislocations in the slip bands to build
dislocation boundaries) but average shear stress has
changed near 5%. This suggests that if we considered the
dislocation density reducing by annihilation process or
dislocations leaving by crystal surface, then the effect we
have obtained would not put evident contribution to the
average shear stress reducing.

The simulation result agrees qualitatively with the
conclusion reached by in [7]. Where it is stated that the
dislocation self-organization in a condition of forbidden
climb, the average shear stress is not changed. In our case,
there are the two types of dislocation motion (sliding and
climb) thus the average shear stress is reduced, although
not so essential.

The internal local shear stress acting on the dislocation
ensemble decreases during polygonization 5-10 times
(depending on the dislocation density and the initial
configuration) (fig. 3). The internal stresses relaxation
must be experimentally tangible and will lead to the fact
that dislocations are easier to respond to small external
influences.

The simulations presented above indicate that the
dislocation ensemble configuration affects significantly
the level of local shear stresses acting on the individual
dislocations, and has virtually no effect on the average
shear stresses value produced according to the ensemble in
the surrounding crystal.
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