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The effective mass approximation is used to consider plasma and magnetoplasma waves in electron system on the surface of
the cylindrical semiconductor nanotube. The electron-electron interaction is taken into account within the framework of the random
phase approximation. In the case of degenerate electron gas the spectral windows on the wavevector-frequency plane and the spectra
of the waves are obtained. Their frequencies undergo quantum oscillations of the de Haas-van Alfven type which are attributed to
the Fermi level traversing the sub-zone boundaries in the electron energy spectrum. The spectrum and the damping of waves in the
non-degenerate electron gas were found. In a magnetic field parallel to the cylinder axis the frequencies of the magnetoplasma waves
undergoes the Aharonov-Bohm type oscillations appearing with changing magnetic field strength.
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VYV HabmmkeHHI e(EeKTHBHOI MacH pO3IISAAIOTHECS IIa3MOBI 1 MAarHiTOINIa3MOBI XBHWJIL Y CHCTEMi €JEKTPOHIB Ha ITOBEpXHIi
OWITIHAPHYHOT HaIiBIPOBITHUKOBOI HAHOTPYOKH. EJIEKTPOH-eNEKTPOHHA B3aEMOIII0 BPAaXOBYEThCA Y HAONKEHHI XaOTHYHUX (a3.
VY BUMagKy BUPODKEHOTO EIEKTPOHHOTrO a3y 3HaWICHI MOJIOKEHHs BIKOH MPO30POCTi I XBHIb Ha IUIOI[MHI XBHJIbOBUH BEKTOp-
4aCcTOTA Ta CIIEKTPH IIUX XBHIIb. IX 4aCTOTH BUTPOGOBYIOTh KBAHTOBI OcIuANii Ty ae I'aaza-Ban Anbhena, 06yMOBIEHi IEpeTHHOM
IpaHULb MiA30H y CHEKTPi eHeprii enekTpoHiB piBHeM PepMi. 3HaiiIeHO CIIEKTp i 3racaHHs XBHJIb Y HEBUPOPKCHOMY €JIEKTPOHHOMY
rasi. Y MarHiTHOMy HOJIi, TapaJieIbHOMY OCi HMJIIHPa, YaCTOTH MarHiTOIIIA3MOBUX XBUJIb BUITPOOOBYIOTH OCLIMIIALIT THITY AapOHOBa-
Boma 3i 3MiHOIO HANPY>KEHOCTI MarHITHOTO IOJS.

KirouoBi cjioBa: MarHiTOIUIa3MOBI XBHJIi, HAITiBIIPOBITHUKOBA HAHOTPYOKa, HAONMKEHHS XaOTHYHUX (a3, BIKHA MPO30POCTI,
CIIEKTP 1 3racaHHs XBHJIb, OCHWIIALI] TUIy e ['aaza-Ban Anbdena, ocumnii Tumy AapoHoBa-boma.

B npubmmxernu 3G heKTUBHOM Macchl pacCMaTPUBAIOTCS TUIa3MEHHBIE U MarHUTOIIa3MEHHBIE BOJHBI B CUCTEME JJISKTPOHOB
Ha TIOBEPXHOCTH IMJIMHJIPUYECKON IOITYNPOBOJHUKOBOH HAaHOTPYOKH. DJIEKTPOH-IJIEKTPOHHOE B3aMMOAEHCTBHE YUUTHIBAETCS B
MIPpUONIIKEHUH XaoTHYecKuX (ha3. B cirydae BBIPOXKIEHHOTO 3JIEKTPOHHOTO ra3a HalIeHb! OJIOKCHNUS OKOH IIPO3PAaYyHOCTH JUIS BOJH Ha
TUTOCKOCTH BOJTHOBOI BEKTOP-4aCTOTA F CIIEKTPHI BOJTH. VX 4aCTOTHI HCIIBITHIBAIOT KBAHTOBBIE OCIMILISAINY THIIA Jie [ aa3za-BaH Anb(eHa,
00yCIIOBIICHHBIE TIEPECEUEHNEM TPAHUI] TOA30H B CIIEKTPE YHEPIHU IEKTpoHOB ypoBHeM PDepmu. Haiinens! cmekTp u 3aTyxaHue
BOJIH B HEBBIPOXKICHHOM 2JIEKTPOHHOM ra3e. B MarHuTHOM mnosne, mapauielbHOM OCH IUIMH/PA, YaCTOTHl MATHUTOIIA3MEHHBIX BOJIH
KCHBITHIBAIOT OCLMJUIALMY TUIIA AapoHOBa-boMa ¢ U3MeHEHHEeM HaNpsHKEHHOCTU MarHUTHOTO HOJS.

KonroueBble c10Ba: MarHUTOIUIA3MEHHBIE BOJIHBI, ITOJIYIPOBOIHHUKOBAas HAHOTPYyOKa, IPHOIIKEHHE XaOTHYECKHUX (a3, OKHa
MIPO3PavYHOCTH, CHEKTP U 3aTyXaHHe BOJH, OCHWLIAIMH TUMa Je ['aaza-BaH Anb(eHa, ocmnsyy Tuna AapoHoBa-boma.

Introduction

A keen interest of researchers in electron nanosystems
on curving surfaces [1,2] is attributed to a number of
reasons. These systems are functional elements of many
devices and engineering gadgets. The perfection of
experimental setup allows for production of these systems
in a laboratory framework. For theorists these systems
are convenient objects for field-testing of novel methods
of computations of physical values. The curvature of the
structure and external magnetic field enrich the picture
of phenomena occurring in nanostructures. The control
methods of their properties become more diverse.

Various effects have been found on curving surfaces
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in such electron systems, which cannot be reproduced in
those of the plane geometry. Among them are the effects
of hybridization of the spatial and magnetic quantization
of electron motion, the modification of the hamiltonian
of the electron system [2,3], the unusual performance
of conductance [4] and magnetic response of the system
[5], the peculiarities of the screening of electron-electron
interaction [6], the specific resonances in electron scattering
produced in carbon nanotubes [7] and quantum wires [8]
by impurity atoms, etc.

The typical examples of the curving
nanosystems are carbon and semiconductor nanotubes [1-
7]. The electron energy spectrum in these systems is zoned.

surface
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It allows due to a small number of electrons near the zone bottom for use of the effective mass approximation. This
approximation enables to describe qualitatively, and often quantitatively, the properties of this kind of systems.

Plasma oscillations of the electron gas density on the curving surface were investigated in Ref. [9]. However, the
dispersion relationships of the spectrum and damping of plasmons are not given therein [9]. The present paper considers
plasma and magnetoplasma waves on the surface of a cylindrical nanotube. We employ the effective mass approximation
with the electron-electron interaction being considered in the random phase approximation. We consider the spectrum of
density oscillations of degenerate electron gas in Section I and of the non-degenerate gas in Section II. The magnetoplasma
waves on cylindrical surface in the longitudinal magnetic field are considered in Section III.

Degenerate electron gas
In the effective mass approximation the wave function of stationary electron state on the surface of cylindrical
nanotube has the following form:

eim(p 1 ik 1)

1
Yo (0:2)= ™ e

where m = 0,%1,... is the azimuthal quantum number, k& is the projection of electron wave vector to the cylinder axis

Z, @ is the polar angle, L is the length of the tube. The electron energy in the state (1) is:
) K
8mk =6‘0m +—. (2)
2m,

-1
Here m,, is the effective electron mass, €0 Am a2 is the rotational quantum, & is the tube radius. Herein the
3k

quantum constant is assumed to be equal to unity.
The spectrum (2) consists of many one-dimensional subzones. The electron state density

2m,L 1
V(o)=Y ®

T w e —egm?

has the square root singularities at the subzone boundaries &,, = £y~ . In this formula the summation is done over those

values of m for which the expression under the root is positive. By calculating the sum according to the Poisson formula,
we obtain:

v(e)=2m.aL 1+2ZJ0 2721\/E ,
I=1 o

where J o 1is the Bessel function. In the limit & >> &, we have

1
2( ¢ A"Ol & 7
=2mual|1+=| 2L —cos| 271 | & - L
v(e)=2m,a +7z(gj ;\ﬁcos[ﬁ "

-1
The density of states oscillates with varying \/g with the period ( Zm*a) . The monotonous term 2m,.al. is

equal to the density of states of the two-dimensional electron gas on the area .S = 27al .
In the random phase approximation, the dispersion equation for the spectrum of plasma waves on the surface of the
nanotube has the form [6]:

U (9) _
1 3 P,(g.0)=0, ©)
where
v, (q) = 47r521m (a |q|)Km (a|q|) 5)

is the cylindrical harmonic of the electron Coulomb interaction energy, € is the electron charge divided by the background

dielectric constant, I,, and K, are the modified Bessel functions [10], B, is the delayed polarization operator which
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depends on the projection g of the wave vector to the axis z and frequency @ . With the aim to consider further the

magnetoplasma waves, we shall derive the value of £, for the electron gas in the magnetic field B, which is parallel to

the cylinder axis:

P, (q,a)) = Z f(g(m'+m)(k+q)0')_f(é‘mrkah) |

m'ko E(m'+m)(k+q)o ~ Em'ke ~ @~ i0

where

2
oY) K
Emhs =Eo| M+— | +——+oupB
D, m,

(6)

(M

is the electron energy in magnetic field [5], @ = 7za2 B is the magnetic flux through the tube cross-section, ® = 277%

is the flux quantum ( e is the electron charge, ¢ is the speed of light), £ is the electron spin magnetic moment, o = *+1

is the spin quantum number, f is the Fermi function.

The function (6) depends on |q | and satisfies the following symmetry properties:

ReP,(¢,—w,-®)=ReP, (g,0,D),

ImP, (¢,—0,-®)=-ImPF, (¢,0,D), (8)
P, (q.0,~®)=PF,(q,0,0).
Using B, Z mm' » WE obtain at zero temperature:
o m,L |—qu,z/+m—a) +Qmmr—a)| | qua + @, + Q. — @ |
Rerm'(qaa)):_z In = e +In > q ,
q | QU + 0y +Q — @ | |qum/+m —0,+Q,,, @
0<q<ky —kpims
Vg + @, +Q,pr — @
Re P m'(q’ ) 1 q q mm |’
27q qu, m+m — 0y, +Q — @ ©)
ki —kprom <q <k +kgims
Vi + @y +Q,ppy — @
27q | ~quyy + @, +Q,,,
q> ko + ks
o _ m, L
Iummr(q,a))——m{ [ ( QU + 0, +Q,, )}@[ m+m—wq+Qmmr—a)J+
+®[ (q Upiom — @y +€2,, )J@[qu +o,+Q, —a)]}
0<g<ky — k,‘;+m,
m,L
ImPy (q,0)= —me[a) —(QUZ/+m — @, + Qmmr)}GD[qu;/ +o,+Q,,, (10)
kg'_kr?l-'+m <q<k0 +k;;+m,
m,L
ImP],(q,0)=— 2l @[a) —(—qv,‘;r +ao, +Qmm,)}®[qug' +o,+Q,,
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Here
, ko [2
Uy = m_ = m_\/ Ho ~ Eno (11)

is the electron limiting velocity in the subzone with the number (ma o ) ,

2
@
Eme = €0 (m + —] +ougB
D,

2
is the subzone boundary, @, = QA% , Mo is the chemical potential at zero temperature,
%k

Q &

m'oc (12)

mm' = ‘9(m'+m)0' -

are the frequencies of electron vertical transitions, ® is the Heaviside function.

From the Egs. (9) and (10) one can see that the polarization operator real part as function of the frequency @ has
logarithmic singularities at the region boundaries on the plane (q,w) , in which the collisionless damping of plasma
waves is absent. The boundaries of these regions are derivable from the formula (10). The polarization operator imaginary
part is zero in the spectral windows for such plasma waves that are limited by parabolas on the plane (q, a)) .

It follows from the equation (10) that each of the subzones in the electron energy spectrum is connected with a branch
of plasma waves that propagate along the tube axis. In particular, for the branch with the number m = 0 the frequencies
of the transitions (12) are zero and the dispersion equation (4) is reduced. Let us present the solution of this equation in
the absence of magnetic field in the ultra-quantum limits, where only the lowermost subzone m' = 0 is filled up. In this

case, there is a parabolic spectral window which is limited by the parabola @ = qu; — @, and by the axis g on the plane

(q, a)) , the region is above the parabola @ = qu, + , and to the right of the parabola @ = —quy, + @, , in which the
collisionless damping of the waves is absent. The analysis of the equation (4) indicates that in this case there are no

solutions for the equation (4) in the parabolic spectral window. They do exist above the parabola @ = qu; + @, and in

the region of the collisionless damping. Above the parabola @ = qu, + @, , We have the following solution:

2

wy(q) = quy +a)qcth&. (13)
my;(q)
In the long-wavelength approximation ga << 1, we shall use the expansions [10]:
2
Iy (x) Ko (x) ~In—,

xe”

Il(x)Kl(x)zl l+x—21n£ , (14)
2 2 2

2

x

1 @
12220 | (m=23,.),

m m—1

where x << 1, ¥ =0,577... is the Euler number. In this approximation using the formula (13) we obtain the plasmon
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spectrum:

_2
e 2
a’o(Q):7qln e

(15)

The dispersion of this wave is normal. In the region ga >>1 the dispersion curve (13) comes close to the parabola

® = quy + @, from above.
The plasma wave collisionless damping region is situated on the plane (q,a)) between the parabolas

0=qUy+a,, ®=qV)— 0, and @ =—qu, + @, . In this region the solution of the dispersion equation (4) in the

case under consideration has the form:

27r2q
@y (q) = quy + w,th——~. (16)
m.;(q)
In the long-wavelength limit we obtain hence:
3
q
@0 (q)=quo + o,
4dmie” In
age”

In the limit ga >>1 the dispersion curve (16) approaches the parabola @ = quy + @, from below. It corresponds

to the damping plasma wave.
In the absence of magnetic field in the case of long wavelengths qU K @ (U — the Fermi electron velocity) we
obtain the following equation from the formula (9):

Re Ry (g @ ZG) (17)

where &, = é‘om'2 is the subzone boundary with the number 71" . In case of a large number of filled subzones, we

employ the Poisson formula for calculation of the sum:

i @(m)= i dego(x)ez”ilx. (18)

m=—co [=—0 _o

Then for the mode m =0 at ga < 1 we obtain:

=2 )
o0 (q)= g2 [Ho| 14 L S5 Lgom [Ho ] (19)
T qae}/ 80 T IUO ZZIZ 80

The wave frequency undergoes quantum oscillations of the de Haas-van Alfven type with the Fermi energy variations
being 4, , as accounted for by crossing of the subzone boundaries by the Fermi level. The Fermi energy is associated with

the linear density n = ]% of electrons via the relationship:

1

2
= —‘/2m*50 Z(——m ] )
The period of oscillations with varying 4/, is equal to / [2m,a -1t is determined by the electron effective
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/ o
mass and by the tube radius. The relative oscillation amplitude ~ ,U_ is small at 1y > & .
0

Let us consider the dispersion of modes with the numbers 7 > 0. In the long-wavelength limit, we obtain from the

formula (9) that

ReP, = 2m. L 3 O e 20)
T ' G)—Qmm

m

where the summation is performed over those values of 72’ , at which the sub-root expressions in (11) are positive.

The sum in Eq. (20) is calculated according to the Poisson formula (18). In the dispersion equation (34) we still consider
that ga < 1. In addition, we shall restrict ourselves to the case of high frequencies that satisfy the inequality:

2
&] My

®>> &, [m +
) )

/,Uo
Here { 8_} is the number of filled subzones. Then from the formula (20) we obtain:
0

2\/%’” MLl 2 \/gz J1(2 l\/;’j @
(a) - ) Hoia! %0

where J; is the Bessel function. In this case, the solutions of the equation (4) have the form:

o} (q)=512+252 2m*80,u0[1+l(aq)zlnﬂ} 1+Z &0 Z J,| 27l /,uo
2 2 Ho 5! &o

2
= 2
w,%,(q)z£,%,+2e2 2mEgmpy l—% 1+= [;0 ZlJl(Zﬂl //;OJ 22)
07/=1 0

(m :2,3,...).

The cut-off wave frequencies with the spectrum (22) are equal to:

2 2, A=2 2 /6‘0 - 1 mn

w; (0)=¢, +2e“\2meompy| 1+— |— > =J,| 27l [

m() m oMty n ﬂo;l 1 & 23)
(m:1,2,...).

The dispersion of these waves is anomalous. Their frequencies undergo the above-considered oscillations associated
with the traversal of the subzone boundaries by the Fermi level.

Non-degenerate electron gas
In this Section we employ the Boltzmann distribution function to compute the polarization operator (9), (10) in the
absence of magnetic field. The real and imaginary parts of the polarization operator of the Boltzmann electron gas are as

follows:
ReP,(g,0) =%@<F(x,;m,)—F(x;m,)>, (24)

+2 2
Im P, ( | | m*ﬂ ( B ’"’”J ( B ’”’”] (25)
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where
Ze ﬂgom
2
1 7 e
F =—P.| d ,
(x) N __[O yx—y
x:fim' =$ m;ﬂ (ab_r iQ,inm/), Qim/ =2m50(’;1 j k&m = 221* x:flmr, 0y =0tao,,

[ is the inverse temperature. The number of electrons N, as included in (24) and (25), is associated with the

chemical potential £ via the relation:

’ © 2 2 2
ﬂ-ﬂ m=—o &o ﬂ [=—0 ﬂ €0

Here we use the formula [11]:

o0 2
> exp[ (m+b J z exp[ 7l Jcosanb. (26)

m=—o0 l——oo

To calculate the spectrum and the damping of the mode with the number m = 0 we use the following expressions:

e SRS

2 2
ImFy (g, 0 1/27zm*,6’sh'8—exp( ﬂz—*w—gi
q m,

“

@7

In the long-wavelength limit g7, << 1 (7}, is the Debye screening radius), we obtain the following from the formula
(27):

N2
Re Ry (g,0)= ~ z}z ,

(28)
2
ImFRy(q,0)= N ﬂm*ﬂﬂa} exp __ﬁ’m*g) )
gV 2 2q
Then from the dispersion equation in the case of ga < 1, we obtain the plasma wave spectrum
2e°n 2
o (q)= ¢ In——. (29)
m. aqe
The decrement of the damping of this wave
ImP(q,0 (q)
- < )< ) "
ReP(q,w(q
ow (q)
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70(61)\/?(115,8]/% (q)exp —%(%T(q)jz : G1)

The dispersion of the wave with the spectrum (29) is normal, the damping decrement (31) diminishes exponentially
at ¢ > 0.

is equal to

The real part of the polarization operator (24) at |m| > () within the long-wavelength limit is:

2 2
Rep, = {m'— @ }—m— . (32)
280

__N B ®_ ml|_ o _m
AL K RS

In the case of the high frequencies that satisfy the inequality

m 1
@ >>2me, E+— ,

Pey

one can use the asymptote of the function F(x ) ~ x_l at x >> 1. Then the expression (33) is approximated by

2Ngym

Re P, =5~ (34)

" —&,

By substituting this expression in the dispersion equation (4) at ga < 1, we obtain:
2 2 h52 (aq )2 aq

on (q) =gy +2egyn| 1 +—"—In—|, (35)

a2q2
a)},%l (q):g,i +2?2£‘0n|m| 1l-—— (m:iz,i:;’) (36)

4(jml 1)

The wave dispersion with the spectrum (35), (36) is anomalous. The cut-off frequencies in the spectrum of these
waves are

2
Wy,

(0)=¢,, +22°¢ n|m|. (37)
To compute the decrement of the damping of the modes with the numbers |m| > 0 , we shall make use of the formula

(30), (34) and of the imaginary part of the polarization operator (25) that is equal in the long-wavelength limit to:

ImP, = - N |f o, Bo. (38)

|m| 20 2
Then the decrement of the damping of the waves with the spectrum (35), (36) is as follows:

’ 2
n(a)= Zf(f)@ ol Ll ) >
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\o Cap” 5B Bon(a)],__a’q"

“lon@Ve 2 | a(m0)

Ym (4 (m=12,43,..). (40)

.7 o : . . -3
The ratio ~ "y . decreases with increasing mode number in proportion to |m|
m

Magnetoplasma waves
In the magnetic field, which is parallel to the cylinder axis, the energy of electron is given by Eq. (7), while the
polarization operator of degenerate electron gas is derived in Eq.(9), (10).
Let us obtain the solution of the dispersion equation (4) in the ultra-quantum limit, when only two subzones are filled

. + . . . .
with the numbers (m, O') = (O, i) =0~ . In this case, there are lobe and triangular spectral windows in the wave vector-

frequency plane besides the parabolic spectral window which is found between the parabola @ = ql)(;r -, and the axis
¢ , and also besides the collisionless wave damping region above the parabola @ = quy + @y and to the right of the
parabola @ = —quy + @, . The lobe spectral window is confined within the parabolas @ = quar + o, and
@ = qu, — @, , and the triangular spectral window is limited by the parabolas @ = —quo +w,, ®=qu, - @, and
the axis ¢. The coordinates of the lobe window uppermost boundary in the plane (q, a)) are

m -2 +2 _
(m* (UO Yo ) > (UO — Uy )j f g <m, (UO - Ua— ) , solutions for the equation (4) exist in the lobe spectral

window above the parabola @ = qu, + o, and in the regions of collisionless damping. The dispersion law of

magnetoplasma wave in the lobe spectral window is
I
2

2 2 2

vy +0g 277°q g (+ -\ Yy

0] =gq———+w,cth—————| —|vy —vy | +————| . 41

O(q) 1 2 1 m*UO(q) 4 ( 0 0) 2 27z2q @D
m*UO(q)

At small values of ¢ the spectrum of this wave is linear. With increasing ¢ , the dispersion curve (41) comes closer

to the lobe boundary @ = ql)(;L ta,. The appearance of the quantum number of the magnetic flux % in the
0

formula (7) has its effect on the wave spectrum brought for consideration in Section I. In particular, the formula (19), in
the presence of magnetic field and taking into account (26), takes the following form:

42> 2 / / /u
1) =——¢gln—— sin27z1 |22 cos 27rl . 42
o)== qac” Ho ; €0 Do >

This formula does not account for the spin splitting of the levels. Besides the oscillations of the de Haas-van Alfven
type, which were considered in Section I, appearing with changing £4; , the wave frequency undergoes oscillations of the

Aharonov-Bohm type appearing with changing magnetic field. The period of these oscillations is equal to one quantum
of the magnetic flux @, . In the magnetic field, the linear electron density 7 is connected with the chemical potential

M via the relation:
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2 o Y]
n=;w/2m*80% 'f:—::— m+go

The frequencies of modes with the numbers |m| >0

also undergo the Aharonov-Bohm type oscillations. In the

formulae (22), (23), under the sign of the sum z , it
/

)
appears the factor cos 27/ —.
0

Conclusions
The energy spectrum (2) of electron on the nanotube
surface is a set of one-dimensional subzones, the positions
of the boundaries of which are not equidistant. As a result,

the density of states (3) oscillates with changing \/; with

-1
the period <\;2m*a) . This accounts for the oscillations

of plasma wave frequencies in the degenerate electron gas

with changing value of v £ . These oscillations resemble

the de Haas-van Alfven oscillations of electron gas
magnetization that emerge with changing magnetic field
strength. This distinction is attributed to existence of the
non-equidistant boundaries of the subzones in the spectrum
(2). The cause of the oscillations is a jumping density
variation of the density of states, when the Fermi level
traverses the subzone boundaries. The measurement of the

period of the oscillations allows to obtain /m,a . To be

able to observe these oscillations, it is necessary to have the
capability to change the Fermi level of electrons on the tube
like it is done in the two-dimensional electron gas [12].
While measuring the plasmon frequencies on tubes with

different values of m,,a, ti, a spread of the frequency

values should be expected, caused by the oscillations.

In a magnetic field, which is parallel to the cylinder
axis, the Aharonov-Bohm oscillations appearing with
changing magnetic field will be superposed on the
magnetoplasma wave frequency oscillations of the de
Haas-Van Alfven type. The reason for the former

oscillations differs. Their period does not depend on £4,
and is equal to one quantum of the magnetic flux @ . It
related to the area 77 a2 , which is occupied by the projection

of the orbit of electron to the plane z = 0, and it does not

BicHuk XHY, cepia «®isunkay, sun. 25, 2016

depend on the energy of the electron.

The oscillations described here can be observed in
experiments on the measurement of the cross-section of
scattering of the light and electrons by plasma waves on the
nanotube surface.
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