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Introduction
The diffusion properties of Brownian particles 

continues to be of enormous interest even though a century 
has passed since the appearance of the famous work of 
Einstein on the subject [1].

A central point of Einstein’s work is the insight that 
within the complicated many-body system, a time-scale 
separation exists between the particles slow center of mass 
and a huge number of remaining fast molecular degrees 
of freedom. In statistical physics the stochastic Langevin 
equation is often used to describe this ‘slow’ motion. 
The fast (microscopic) variables are responsible for the 
stochastic nature of the Langevin equation. This approach 
 nds many applications in different branches of physics. For 

example, the Langevin equations are used in the statistical 

mechanical treatment of time-dependent phenomena in 
 uids [2], to describe nuclei  ssion and fusion [3], and in 

other areas of science [4].
The common model of random forces used in the 

Langevin approach, the so-called Langevin forces, is 
white noise. As a matter of fact, this phenomenological 
approximation imposes restrictions on the formulation of 
problems which could be solved by means of this model. 
On the other hand, the microscopic theory of statistical 
properties of Langevin forces highlights some new 
information about the stochastic nature of the Langevin 
model.

In this paper we look into the doping particle diffusion 
in a 1D chain of atoms. We consider two different models. 
In the  rst one, (Sec.2), the lattice particles are supposed to 
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move independently. The stochasticity of the motion in this 
case is achieved due to nonlinear oscillations of the lattice 
particles.

In the second case, (Sec.3), the linear oscillations of 
the lattice particles are considered and the stochasticity of 
doping particle motion stems from the  niteness of phonon 
spectra. In both cases we derive the stochastic properties of 
the Langevin force. It is interesting to note that the found 
expressions for the correlation function of the Langevin 
force could be reduced to the white noise only at some 
limiting parameter values. 

Model of non-linear oscillations
a. Formulation of problem

Let us consider a particle of mass m  moving in a  eld 
of 1D diatomic lattice of particles of masses M , a distance 
between the lattice sites is l , equilibrium positions of 
lattice atoms in ( , )q Q plane are ( , )kl Q , 1,0,1,k  
(see Fig. 1). Let us introduce kQ  which stands for deviation 
of the k -th particle from its equilibrium position. To 
simplify the problem we consider only anti-phase 
oscillations of the nearest atoms as shown in Fig. 1. q  is 
the coordinate of the foreign diffusion particle.

Hamiltonian of such system in the absence of 
interaction between the lattice particles is given as

 2 2
( )

2 2

, .

k
k

k

int k
k

p PH U Q
m M

U q kl Q Q
                   (1)

Expansion of the non-linear potential of anti-phase 
oscillations ( )kU Q  in the Taylor series up to the fourth 
order near the equilibrium position of the particles reads

 2 2 3 4
0( ) .
2 3 4
Q Q QU Q M              (2)

b. Equations of motion for impurity particle
Expanding the potential of interaction between the 

doping particle and the lattice particles into series we obtain

0 0 .| |
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int
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k

UU U Q
Q

                 (3)

The equation of motion for the particle takes the form
 2

0 0 .| |
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Q Q k

kk k

U Umq Q
q q Q

          (4)

This equation can be solved by using the solution of 
the equations of motion for the lattice particles:
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           (5)

So we arrive at the point where we have to solve 
the equations of motion for the lattice particles to  nd a 
solution of the equation of motion for the doping particle.

An approximate solution of Eq. (5) can be easily 
found, for example, with the use of the two time scale 
method, see e.g. [5]. We omit this procedure and present 
the following solution,
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t
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where k  is the initial phase of the k -th particle, 0kQ  is its 

initial displacement.
Considering the last term in Eq. (4), we substitute kQ  

by the corresponding expression from Eq.(6):

0 0( ) ( ) cos ( ) ,k k k k k
k

q Q I t t t         (8)

where 
2

0( ) .|
k

int
k Q

k

Uq
q Q

This expression contains two totally different terms. 
The  rst one is the so-called Langevin force, stochastic  
force applied to the q -th particle; the second one is the 
friction force.

c. Langevin force
Consider the Langevin force:

0 0( , ) ( ) cos ( ) .L k k k k
k

F q t q Q t t        (9)

Parameters 0kQ  and k  are independent random 

variables. The  rst one determines the energy of the k -th 
particle at the moment 0t  and the second one de  nes the 

Fig. 1. The model of 1D diatomic lattice with transversal 
displacements.
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phase of oscillations at the same moment. Also, we suppose 
that the system under study is in thermal equilibrium at 
temperature T .

Evidently, the average  value of the Langevin force 
LF  equals zero. Indeed, 0kQ  and k  are independent 

variables, so their averaging should be performed 
separat ely. The value of k  is distributed uniformly in the 

interval 0 2k . Now, the initial statement is obvious.

Pair correlation functions give a lot of information for 
describing a variety of physical processes. Some 
applications of physical system analysis based on the 
correlation functions can be found in [4, 6, 7]. In the present 
paper we consider the pair correlation function fo r the 
Langevin force, ( , ) ( , )L LF q t F q t ,  where the sign  
means the ensemble averaging over initial states of 
environment, i.e. the 1D lattice. From Eq. (9) it follows:

 0 0
,

0 0

( ) ( )

cos( ( ) )cos( ( ) ) .

L L k k k k
k k

k k k k

F t F t Q Q

t t t t
      (10)

Herein and in what follows we omit the symbol q  in 
the correlation function ( ) ( )L LF t F t . We consider 
oscillations of each pair of lattice particles independently, 
so that all terms with k k  in the double sum in Eq. (10)  
go to zero. It is clear that one of the terms in Eq. (10), 

proportional to 0cos ( 2 ) 2k kt t t , vanishes after 

averaging over k . Then, we ge t the following result,
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where  is de  ned from Eq. (7),
2

2 4
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3 5 ,
8 12           

                      (12)

and 0kQ  independence of k  is taken into account. Thus, 

k  may be taken out of the sign for average. We suppose 
that the initial energy of the oscillators obeys the Gibbs 
distribution. After averaging we have

 2 2
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0 0 0 00
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where A  is the normalization factor, 2
0

2 Bk TA
M

.

Calculation of the integral in Eq. (13) gives
 

3/2

3/42 2

( ) ( ) (0)

3(0) cos arctan ,
2

L LC F t F
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where 0t  is the dimensionless time, 
2
0

B

M
k T

 is the 

parameter describing the nonlinearity, 

2
3/2(0)

(4 ) k
k

AC  is the variance of the Langevin 

force.
A shape of correlation function ( )C  is determined by 

the parameter
0

. It is the characteristic time of correlation 

due to the non-linearity of interaction between the lattice 
particles. It is clearly seen from Fig . 2 that for the strong 
non-linearity (i.e. if 1 ) the correlation function 
becomes close to the delta-function, whereas in the case of 
linear oscillations the correlator is a periodic function. It 
can also be shown analytically that Eq. (14) is a pre-limit 
form of the delta function. If , correlations decrease 
to zero with growth of . On the other hand, assuming that 

 comes close to zero, one can see that right hand side of 

Eq. (14) turns into 3/2(0) ~C . The smaller  is, the 
closer correlations become to delta-functional. Sharpness 
of the delta function peak is also determined by the value of 

 and grows as 3/2.

Fig. 2. The ( )C t  dependence of the normalized 
correlation function of the Langevin force at different 
values of the parameter 2

0/Bk T M  ( 0.1 , 

dashed line; 1 , dotted line; 10 , dash-dotted 
line; the case of linear oscillations corresponds to 

0 , solid line).
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We would like to mention that the correlator ( )C t  also 
de pends on q . It is clear that this dependence is periodic 
with the period l . One can see that the sharpness of  the 
potential determines the amplitude of correlations. The 
more the gradient of potential along the direction of motion 
is, the more this motion is correlated.

In Eq. (9) all the summands are independent and 
normally distributed. It follows from the central limit 
theorem that the Langevin force distribution law is 
Gaussian too. The variance of its distribution is equal to the 
correlation function at the point t t :

2
2 2

2 2
0

2 ( ) .
8( )

B
L k

k

k TF
M

                     (15)

So we can see that the root mean square value of the 
Langevin force grows with the temperature as T . At high 
temperatures the variance of the Langevin force increases 
and correlation function  comes closer to the delta function.

Lattice model with linear longitudinal displacement 
of atoms

In the model considered below, we suppose the 
particles of the lattice interact with the nearest neighbours 
only and move along the axis of 1D crystal. In this case the 
Hamiltonian of the system differ from the one in Eq. (1) in 
potential energy of the lattice atoms of the k -th site. The 
latter now depends not only on the displacement kQ , but 
also on displacements of all the other lattice sites (which 
now directed along the doping particle motion).

Similarly to what has been stated in previous sections, 
let us  rst determine the motion of the lattice particles 
taking account of the motion of a foreign particle. To 
simplify the problem, assume that particles interact solely 
with two nearest neighbours, and the potential energy of 
interaction is quadratic in displacement. The lattice can 
then be viewed as if each lattice atom is coupled with two 
neighbours via springs with equal force K , as shown in 
Fig. 3. This reduces the formulated problem to the well 
known one pertinent to the dynamics of the linear chain of 
coupled oscillators.

Equation of motion for the k -th oscillator now reads 
as

1 1( 2 ).k k k kMQ K Q Q Q                    (16)

Looking for the solution of Eq. (16) in the form of the 
travelling wave exp ( )kQ A i t k , we obtain the 

following dispersion equation:
2

2 2sin .
2

M K
                          

(17)

We choose the cyclic boundary conditions, 
i.e. 0 NQ Q , which is equivalent to exp( ) 1i N . It means 
that  takes on the discrete set of values:

2 2 ,l
l la

N L
                            (18)

where a  is the distance between neighbouring atoms (the 
lattice period), L  stands for a characteristic length of the 
crystal. 

So, oscillations of each lattice particle appear to be 
the superposition of the obtained standing waves. Since the 
initial time moment and the initial coordinate are arbitrary, 
Eq. (16) can be rewritten as follows:

1

1
sin( )cos( ).

N

k l l l l
l

Q A t k
              

 (19)

The summation starts with 1l  because we do not 

make allowance for the motion of the lattice as a whole. 
Parameters  and l  are independent stochastic values. lA  
is distributed according to the Gibbs law, and l  is 
uniformly distributed within the interval (0,2 ) .

The doping particle affects the motion of lattice 
particles which leads to the addition of summand in Eq. 
(19):

 1

1
sin( )cos( ) ( ).

N

k l l l l
l

Q A t k G t          (20)

We do not consider an exact expression for ( )G t , 
because we are interested only in the stochastic component 
of kQ . The equation of motion for the doping particle is the 
same as Eq. (4), so the expression for the Langevin force is

,
( , ) ( ) sin( )cos( ).L k l l l l

k l
F q t q A t k     (21)

One can see that the summation over  coincides 
with the Fourier transform. Introduc ing the new notation 
ˆ cos( )k

k
k , we obtain

ˆ( ) sin( ).
lL l l l

l
F t A t                (22)

Using the expression for the Langevin force, Eq.(22), 
Fig. 3. Model of 1D lattice with longitudinal 
displacements.
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we can derive the expression for  its correlation function:
 

,

ˆ ˆ( ) ( )

sin( )sin( ) .

l lL L l l
l l

l l l l

F t F t A A

t t
              (23)

It is evident that 0lA , 0l lA A , 2
2

B
l

l

k TA
m

. 

Thus,
 

2
2

ˆ( ) ( ) cos ( ) .
l

B
L L l

ll

k TF t F t t t
m

        (24)

U sing Eq. (17) we can calculate the sum in Eq. (24).
So, we have obtained the expression for the correlation 

function of the Langevin force in the case of interacting 
lattice particles. To calculate correlation function (24), we 
can replace the sum in Eq. (24) by the integral (as in [3]). 
The plot of this function is presented in Fig. 4. One can then 
note that the correlation function becomes a delta function 
if the spectral density of oscillations is quadratic.

The right-hand side of Eq. (22), as in Sec.2c, is a 
sum of independent Gaussian distributed random values. 
Consequently, the Langevin force (22) is normally 
distributed too.

In conclusion, we should emphasize that the pair 
correlation function of the Langevin force plays a great 
role in determining the doping particle motion. So, the 
equations obtained are very important for the solution of 
the diffusion problem.
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Fig. 4. The normalized correlation function of the 
Langevin force in approximation of linear longitudinal 
oscillations.
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