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We look into the particle diffusion in a 1D atomic chain. We consider two different models. In the first one the lattice particles
are supposed to move independently. The stochasticity of the motion in this case is achieved due to nonlinear oscillations of the
lattice particles. In the second case the linear oscillations of the lattice particles are considered and the stochasticity of doping particle
motion stems from the finiteness of phonon spectra. In both cases we derive the stochastic properties of the Langevin force. The found
expressions for the correlation function of the Langevin force could be reduced to the white noise only at some limiting values of the
lattice and thermostat parameters.
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VY crarti gocmimkyerbes audysis yactuHkd B 1D nmaHmrokni aromiB. PosmismaroTees ABi pi3HI Moxemi. Y mepuriii momemi
nepe0ayaeThes, 0 YACTHHKY PELIITKH PyXalOThCs HE3aJIeKHO O71HA BiJ 01HOT. CTOXaCTHYHICTb PYXY B IbOMY BHIIAJIKy JIOCSTA€ThCS
3a paxyHOK HeJIiHIHHHUX KOJHMBaHb YaCTHHOK PEIIITKH. Y JPyroMy BHNAJKy PO3IISIAIOTHCS JTiHIHHI KOJIUBAHHS YaCTHHOK PELIiTKH i
CTOXACTUYHICTh PYXy YACTUHKH JIOMIIIKH ITOB'sI3aHa 3 00MEKEHHICTIO (DOHOHHUX CIEKTPiB. B 000X BHUMaaKax JOCIIIKECHI CTOXaCTHYHI
BJIACTUBOCTI cuin JlamkeBena. 3HalieHi BUpa3u 1 Kopernsuiiaoi ¢pyHkuii crmm JlamkeBeHa MOXKYTh OyTH 3BeJIeHI 10 O1710T0 mIymy
JIMIIE TIPH ICSIKUX IPAHMYHHUX 3HAYCHHSX MapaMeTpiB PELITKH Ta TepMOCTATA.

Kurouosi ciioBa: mudysis, cuna JlamkeBeHa, KopemsniiiHa QYHKITS, MIKPOCKOTIIYHA TEOPisl.

B crarse uccnenyercs anddysus dactuisl B 1D nemouke atomoB. PaccmarpuBaroTcs ABe pasiMyHbIe Mojehau. B mepBoii
MOJIEIH TIPEJIIOJIAraeTcs, YTO YaCTULbl PEIIETKU JIBHXKYTCS HE3aBUCUMO JpyT OT Apyra. CTOXaCTHYHOCTb ABUXKEHUS B 9TOM CIydae
JOCTHTACTCS 3a CUeT HeJMHEHHBIX KOoJIeOaHMi 4acTUIl pemeTkr. Bo BropoM ciydae paccMaTpuBaroOTCs JIMHEHHbIE KOJIeOaHUs YaCTHI]
PEIIEeTKH U CTOXaCTHYHOCTH JABMKCHUSI IPUMECHOH YaCTHIIBI CBA3aHa C KOHEYHOCTHIO (POHOHHBIX CIIEKTPOB. B 000HX ciydasx n3ydeHs
CTOXacTHYECKUe CBOWCTBA cribl JlamkeBeHa. HaliieHHbIE BBIpKEHHS AUl KOPPEIIMOHHON (DyHKINH CHIIBl JIaHKeBeHa MOTYT OBITh
CBEJIEHBI K O€I0MY IIIyMy TOJIBKO ITPU HEKOTOPBIX MPEAeTIbHBIX 3HAUEHUSX NapaMeTPOB PENIETKH U TEpMOCTara.

KuroueBnie citoBa: nuddysus, cuia JlamkeBeHa, KOppeIsHoHHast QYHKIHS, MUKPOCKOMHYECKas TEOPHSI.

Introduction
The diffusion properties of Brownian particles
continues to be of enormous interest even though a century
has passed since the appearance of the famous work of
Einstein on the subject [1].

mechanical treatment of time-dependent phenomena in
fluids [2], to describe nuclei fission and fusion [3], and in
other areas of science [4].

The common model of random forces used in the
Langevin approach, the so-called Langevin forces, is

A central point of Einstein’s work is the insight that
within the complicated many-body system, a time-scale
separation exists between the particles slow center of mass
and a huge number of remaining fast molecular degrees
of freedom. In statistical physics the stochastic Langevin
equation is often used to describe this ‘slow’ motion.
The fast (microscopic) variables are responsible for the
stochastic nature of the Langevin equation. This approach
finds many applications in different branches of physics. For
example, the Langevin equations are used in the statistical

white noise. As a matter of fact, this phenomenological
approximation imposes restrictions on the formulation of
problems which could be solved by means of this model.
On the other hand, the microscopic theory of statistical
properties of Langevin forces highlights some new
information about the stochastic nature of the Langevin
model.

In this paper we look into the doping particle diffusion
in a 1D chain of atoms. We consider two different models.
In the first one, (Sec.2), the lattice particles are supposed to
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move independently. The stochasticity of the motion in this
case is achieved due to nonlinear oscillations of the lattice
particles.

In the second case, (Sec.3), the linear oscillations of
the lattice particles are considered and the stochasticity of
doping particle motion stems from the finiteness of phonon
spectra. In both cases we derive the stochastic properties of
the Langevin force. It is interesting to note that the found
expressions for the correlation function of the Langevin
force could be reduced to the white noise only at some
limiting parameter values.

Model of non-linear oscillations
a. Formulation of problem

Let us consider a particle of mass m moving in a field
of 1D diatomic lattice of particles of masses M , a distance
between the lattice sites is |, equilibrium positions of
lattice atoms in (g,Q) plane are (kl,+Q), k=...-1,0,1,...
(see Fig. 1). Letus introduce Q, which stands for deviation
of the k-th particle from its equilibrium position. To
simplify the problem we consider only anti-phase
oscillations of the nearest atoms as shown in Fig. 1. q is

the coordinate of the foreign diffusion particle.
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Fig. 1. The model of 1D diatomic lattice with transversal
displacements.

Hamiltonian of such system in the absence of
interaction between the lattice particles is given as

2 p2
H =;—m+2{ﬁ+U(Qk)}+

k

+ > Ui (a-K,Q+Qy).
k

1)

Expansion of the non-linear potential of anti-phase
oscillations U(Q,) in the Taylor series up to the fourth
order near the equilibrium position of the particles reads

@Q* , aQ’® +/3Q4J_
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b. Equations of motion for impurity particle
Expanding the potential of interaction between the
doping particle and the lattice particles into series we obtain

oJ int
0Qy

The equation of motion for the particle takes the form

au; U,
mq- - _ int - int _ Q ) (4)
Zk: aq |Qk 0 Zk:aank |Qk 0 <k
This equation can be solved by using the solution of
the equations of motion for the lattice particles:

Q = @2Q —aQ? - A + fi (a(t)),

| 5)
fk(q(t»=—%m o
k

So we arrive at the point where we have to solve
the equations of motion for the lattice particles to find a
solution of the equation of motion for the doping particle.

An approximate solution of Eq. (5) can be easily
found, for example, with the use of the two time scale
method, see e.g. [5]. We omit this procedure and present
the following solution,

Qu(t) = (Quo + 1 (1)) cos (L (t—to) + ¢ ),

Uint zUim

=0

Qe 3)

Ik(t)=i j; dtf ((t)) sin (2, (¥ —t5) + ¢y ), ©
3 5a°
Q, :a’o““[%—ﬁ}(?ko 2, )

where ¢, is the initial phase of the k -th particle, Q,, is its

initial displacement.
Considering the last term in Eq. (4), we substitute Q,

by the corresponding expression from Eq.(6):

D> 0, (0)(Quo + (1)) cos(Q(t—to) + ), (8)
k

62U int | )
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where @, (q) =

This expression contains two totally different terms.
The first one is the so-called Langevin force, stochastic
force applied to the q-th particle; the second one is the
friction force.

c. Langevin force
Consider the Langevin force:

FL(qlt)=ZQk(Q)QkoCOS(Qk(t—to)+¢’k)- C))
k

Parameters Q,, and ¢, are independent random

variables. The first one determines the energy of the k -th
particle at the moment t, and the second one defines the
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phase of oscillations at the same moment. Also, we suppose
that the system under study is in thermal equilibrium at
temperatureT .

Evidently, the average value of the Langevin force
(F_) equals zero. Indeed, Q.o and ¢, are independent
variables, so their averaging should be performed
separately. The value of ¢, is distributed uniformly in the

interval 0< ¢, <27 . Now, the initial statement is obvious.

Pair correlation functions give a lot of information for
describing a variety of physical processes. Some
applications of physical system analysis based on the
correlation functions can be found in [4, 6, 7]. In the present
paper we consider the pair correlation function for the
Langevin force, (F (q,t)F_(q,t")), where the sign (...)
means the ensemble averaging over initial states of
environment, i.e. the 1D lattice. From Eq. (9) it follows:

(FLOFL(t)) = > (DD QyoQup *
kk' (10)
xC0S(Q (t—tg) + 9, ) COS(Q (' ~t) + ).

Herein and in what follows we omit the symbol q in
the correlation function(F_(t)F (t)). We consider
oscillations of each pair of lattice particles independently,
so that all terms with k =k’ in the double sum in Eq. (10)
go to zero. It is clear that one of the terms in Eq. (10),

proportional to cos(Q (t+t'—2t,)+2¢, ), vanishes after

averaging over ¢, . Then, we get the following result,

C(t) = (FLF (1)) =§Z®E<Qfox
k

(11)
xcos( @y (1+ 7Ql) (- 1))
where y is defined from Eq. (7),
3 502
r- (12)
@ 120

and Q,, independence of @, is taken into account. Thus,

@, may be taken out of the sign for average. \We suppose
that the initial energy of the oscillators obeys the Gibbs
distribution. After averaging we have

(Qbo cos(an(L+7Q)(t—t) ) =
= Af: dQeo Qo COS[a;O(1+ yQEO)(t—t’)]x

22
><exp{——'\/I E)OS"OJ,
B

(13)
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>

where A is the normalization factor, A=
M ay

Calculation of the integral in Eq. (13) gives
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C(r)=(FL.(OF.(0) =
§3/2

where 7 =@yt is the dimensionless time, & =

(14)

=C(0) Ccos (r + Earctan 1] ,
2 4

2
M is the
kgTy
nonlinearity,

parameter

C(O)=L7;ZZ<D§ is the variance of the Langevin
(47¢) k

describing the

force.
A shape of correlation function C(z) is determined by

5

the parameter —=. It is the characteristic time of correlation
@
due to the non-linearity of interaction between the lattice

particles. It is clearly seen from Fig. 2 that for the strong
non-linearity (i.e. if &<«1) the correlation function
becomes close to the delta-function, whereas in the case of
linear oscillations the correlator is a periodic function. It
can also be shown analytically that Eq. (14) is a pre-limit
form of the delta function. If ¢ — o, correlations decrease
to zero with growth of z . On the other hand, assuming that
7 comes close to zero, one can see that right hand side of

Eg. (14) turns into C(0) ~ &2, The smaller & is, the
closer correlations become to delta-functional. Sharpness
of the delta function peak is also determined by the value of
& and grows as &2,

1

Cft)
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Fig. 2. The C(t) dependence of the normalized
correlation function of the Langevin force at different
values of the parameter a:kaT/ng (a=0.1,

dashed line; a =1, dotted line; a =10, dash-dotted
line; the case of linear oscillations corresponds to

a =0, solid line).
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We would like to mention that the correlator C(t) also
depends on q. It is clear that this dependence is periodic
with the period |. One can see that the sharpness of the
potential determines the amplitude of correlations. The
more the gradient of potential along the direction of motion
is, the more this motion is correlated.

In Eq. (9) all the summands are independent and
normally distributed. It follows from the central limit
theorem that the Langevin force distribution law is
Gaussian too. The variance of its distribution is equal to the
correlation function at the pointt =t':

2
8(Mag)”
So we can see that the root mean square value of the
Langevin force grows with the temperature as T . At high

temperatures the variance of the Langevin force increases
and correlation function comes closer to the delta function.

(FE) =

Lattice model with linear longitudinal displacement
of atoms

In the model considered below, we suppose the
particles of the lattice interact with the nearest neighbours
only and move along the axis of 1D crystal. In this case the
Hamiltonian of the system differ from the one in Eq. (1) in
potential energy of the lattice atoms of the k -th site. The
latter now depends not only on the displacement Q, , but
also on displacements of all the other lattice sites (which
now directed along the doping particle motion).

Similarly to what has been stated in previous sections,
let us first determine the motion of the lattice particles
taking account of the motion of a foreign particle. To
simplify the problem, assume that particles interact solely
with two nearest neighbours, and the potential energy of
interaction is quadratic in displacement. The lattice can
then be viewed as if each lattice atom is coupled with two
neighbours via springs with equal force K, as shown in
Fig. 3. This reduces the formulated problem to the well
known one pertinent to the dynamics of the linear chain of
coupled oscillators.

i k Q; i k i
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Fig. 3. Model of 1D lattice with longitudinal

displacements.
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Equation of motion for the k -th oscillator now reads
as

MGy = K (Qe-1 +Qus1 —2Q)- (16)
Looking for the solution of Eq. (16) in the form of the
travelling wave Q, = Aexp(i(wt—sk)), we obtain the

following dispersion equation:

2

Mao? = K [2sin§j . (17)

We choose the cyclic boundary conditions,

i.e.Qy =Qy , whichisequivalentto exp(i>N)=1. It means
that »¢ takes on the discrete set of values:

_2_7z'|_ 2rla

: (18)

N L

where a is the distance between neighbouring atoms (the
lattice period), L stands for a characteristic length of the
crystal.

So, oscillations of each lattice particle appear to be
the superposition of the obtained standing waves. Since the
initial time moment and the initial coordinate are arbitrary,
Eqg. (16) can be rewritten as follows:

N-1
Q= D Asin(@t +¢;) cos(>k). (19)
1=1

The summation starts with 1 =1 because we do not

make allowance for the motion of the lattice as a whole.
Parameters and ¢, are independent stochastic values. A
is distributed according to the Gibbs law, and ¢, is
uniformly distributed within the interval (0,27) .

The doping particle affects the motion of lattice
particles which leads to the addition of summand in Eq.
(19):

N-1

Qc = > Asin(ayt +¢;)cos(>qk) + G(1).

1=1

(20)

We do not consider an exact expression for G(t),
because we are interested only in the stochastic component
of Q, . The equation of motion for the doping particle is the
same as Eq. (4), so the expression for the Langevin force is

FL(a.t) =D @ (q)Asin(at+ ) cos(xqk).  (21)
kI

One can see that the summation over  coincides
with the Fourier transform. Introducing the new notation

®,, = > ®, cos(>k) , we obtain
k

FL) =Y d, Asin(@t+g). (22)
|

Using the expression for the Langevin force, Eq.(22),
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we can derive the expression for its correlation function:

(FLOFRE) =0, 0, AA X
LI

(23)
xsin(ayt+¢,)sin(opt’+ ¢p)).
It is evident that(A)=0, (AA)=0, (A= kBT2 :
Ma)

Thus,

FLOF M) =Y 62 Xl cos(at-1).  (@4)
I May

Using Eqg. (17) we can calculate the sum in Eq. (24).

So, we have obtained the expression for the correlation
function of the Langevin force in the case of interacting
lattice particles. To calculate correlation function (24), we
can replace the sum in Eq. (24) by the integral (as in [3]).
The plot of this function is presented in Fig. 4. One can then
note that the correlation function becomes a delta function

if the spectral density of oscillations is quadratic.
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Fig. 4. The normalized correlation function of the
Langevin force in approximation of linear longitudinal
oscillations.

The right-hand side of Eq. (22), as in Sec.2c, is a
sum of independent Gaussian distributed random values.
Consequently, the Langevin force (22) is normally
distributed too.

In conclusion, we should emphasize that the pair
correlation function of the Langevin force plays a great
role in determining the doping particle motion. So, the
equations obtained are very important for the solution of
the diffusion problem.
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