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Scattering process without conserving plasmon number in one-
dimensional Wigner crystal
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In this paper we consider a quantum wire, the electrons in which form a one-dimensional Wigner crystal. One-dimensional
electrons in a crystal are equivalent to plasmon modes describing the long-wavelength fluctuations of the charge density. We have
studied the basic process of the plasmon scattering that is not conserved the total number of particles, — the scattering of two plasmons
in three, and vice versa. For this process, the scattering rate is calculated and an equation for the relaxation of the artificial chemical
potential are derived.
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B pabore paccMOTpeH KBaHTOBBIH MPOBOJA, AJIEKTPOHBI B KOTOPOM (OPMHPYIOT OJHOMEPHBI BHTHEPOBCKHH KpHCTAILI.
O)ZLHOMeprIe DJICKTPOHBI B TAKOM KPHUCTAJIJIC SKBUBAJICHTHBI CUCTEME IJIa3MOHHBIX MO/I, OITUCBIBAOIINX JJIMHHOBOJIHOBLIC KOHCGaHI/Iﬂ
3aps/10BOii IIoTHOCTH. B paboTe nccnenoBan 0CHOBHOM IPOLIECC PACCEsiHUSA IUIa3MOHOB, IPH KOTOPOM HE COXPAHAETCS MOJIHOE YHCIIO
YaCTHI], — IPOLIECC PACCESHUS IBYX IIIA3MOHOB B TPH, M HA000POT. /151 3TOTO Ipoliecca BRIUUCIeHa AMILIUTY/Aa PACCESHHS U TTOTyIeHO
YpaBHEHHE ISl PETAKCAIH HCKYCCTBCHHO CO3JaHHOTO XUMUUECKOTO MOTEHIINAIA.

KuroueBble c¢Jji0Ba: OIHOMEPHBI BMIHEPOBCKUI KpPUCTA/UI, IUIA3MEHHBIE BOJIHBI, MHTErpaj CTOJIKHOBEHUH, XMMHYECKUH
MOTEHIHAL.

VYV poboTi po3MIsIHYTO KBAHTOBHUI APIT, €IEKTPOHH B SIKOMY (OPMYIOTh OJHOBUMIpPHUII BIrHEpOBChKMI Kpuctan. OnHOBHMIpHI
@JIEKTPOHH Y TAaKOMY KPHCTaJIl eKBIBAJIEHTHI CHCTEMI IUITA3MOHHHX MOJI, III0 OIHCYIOTh JOBIOXBIJILOBI KOJIMBAHHS 3apsJOBOI I'yCTHHU.
VY po6oTi OCIIiHKEHO OCHOBHHMII MPOLIEC PO3CIOBAHHS ILIA3MOHIB, IIPH SKOMY HE 30€piracThCsi HOBHE YHCIO YACTHHOK, — MPOLIEC
PO3CitOBaHHS JIBOX IUIa3MOHIB B TPH, 1 HaBMaku. [y Iboro mporecy o04rcIeHa aMILTITyIa PO3CIFOBaHHS Ta OTPUMAHO PIBHAHHS IS

penakcarii TYy4YHO CTBOPEHOTO XiMIYHOTO MOTEHIaTY.

KarwouoBi ciioBa: 0HOBUMIpHHUI BIrHEPOBCHKHI KPHUCTAI, I7Ia3MOBI XBHJIi, IHTErpaJl 3iTKHEHb, XIMIYHHN TTOTEHITA.

Introduction

One of the key areas of modern research is the kinetics
of the nearly integrable quantum many-body systems. From
this perspective the one-dimensional (1D) systems are
particularly relevant as some exact solutions are known [1-
2] that can be used to solve more general models in which
integrability is broken weakly. Integrability ensures that
the scattering of particles in 1D many-particle system
is exactly equivalent to the sequence of the pair-particle
collisions, and hence the set of initial momenta for each
scattering event coincides with the set of finite momenta.
Such scattering does not change the distribution function
and are unable to lead the system to thermal equilibrium.
A striking example of such long-lived non-equilibrium
quantum states is a quantum Newton pendulum created
using 1D-Bose gas in a trap [3].

To describe the 1D electron crystals (Wigner crystals)
that are formed in the quantum wires, the nanotubes and
the edge states, we can use exactly solvable Tomonaga-
Luttinger model [4-6]. This model predicts the special
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properties of 1D electron systems: the power-law anomalies
in the tunneling density of states [7] and the effect of charge
and spin separation [8]. However, this model has some
serious deficiencies. Particularly in the framework of the
model excitations have an infinite lifetime, which implies a
lack of equilibration.

Renewed interest in 1D electron crystals stems
from the new experimental results that do not fit into the
paradigm of the Tomonaga-Luttinger model. Tunneling
spectroscopy of quantum wires [9,10] and thermometry of
quantum edge states [11,12] are a direct proof of thermal
equilibrium in 1D electron systems. The deviations from
perfect conductance quantization [13-17] and a violation
of the Wiedemann-Franz law [18,19] in the wires with a
low electron density are found. These observations have
attracted considerable attention and require construction of
a new theoretical model.

In the present paper we study the microscopic
mechanisms of relaxation in the generalized Tomonaga-
Luttinger description of one-dimensional electron liquids,



S. S. Apostolov

which amounts to keeping anharmonic interactions between
plasmons. We follow and extend the way used in [20]. The
1D Wigner crystal [21-22] represents an extreme case of
the Tomonaga-Luttinger liquid with small interaction
parameter x =zhv®/ms<1. Here v is particle density,
m is electron mass, s is sound velocity of plasmons.

We model the system of strongly interacting spinless
electrons of mass m by the Hamiltonian (hereafter 7=1)
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H_ZI:Zm+ZZU(xI %) (1)
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where p, and x, are the momentum and coordinate of the

th particle, and V (x) is the interaction potential.
In order to involve the standard second-quantized
representation we expand (1) with respect to small u, —u,.,
which measures deviations of electrons from their

respective equilibrium positions x, =1/v+u,, and
introduce collective coordinates
1 ‘
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where N is anumber of electrons in a crystal, and plasmon

creation and annihilation operators obey canonical
commutation relations

[bq'bq'] =0, [bT'b;'] =0, [bq ’ b;] = §qq"

The resulting Hamiltonian consists of the usual
Wigner crystal part
H0=2a)q(bgbq+1/2), (3)
q

and anharmonic terms discussed in the next section in
details. Here the plasmon dispersion is given by

o = %ZV "(x=1/n)[1—cos(kl / n)]. (4)

At the sufficiently small temperatures T the
characteristic value of plasmon momentum q is small also,

and we can simplify the dispersion relation to
@, =s|q|(l-aq®), q~T/s<Ll.

Here s = «sz Im, a=V,,[24V,,, and
Vo =2 V™I, V™ =V (x=1/n).
1=1
The nonlinearity of the dispersion strictly prohibits
the decay of a single boson into two or more because of

the momentum and energy conservation. The simplest
scattering process involves two bosons both in the initial
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and in the final states and the typical relaxation rate scales
as the fifth power of temperature [20]. Essential feature of
the two-into-two process is the conserving of the number
of plasmons. So, this process leads the system to not-exact
equilibrium state. Indeed, the resulting “equilibrium”
distribution function is expected to have a chemical
potential. Below we discuss the two-into-three process
which changes the number of plasmons and thereby relaxes
the chemical potential.

Two-into-three scattering process
As discussed in the introduction we expand the
Hamiltonian H with respect to deviations u, —u, keeping

terms up to the fifth order, H ~ H, + H, + H, + H,,

1 n n
Hn:3,4,5 :m;VI( )(u|+|' _ur)
i N Z ¢n (ql""’qn—l) (5)
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where @, =@, +...+q,, and

0

¢n (ql”"’ qn—l) = _Zn_lzvl(n) Sin(q_nl /2)

1=1

xsin(qgyl/2)...sin(q, ,1/2).

The leading order inelastic scattering process that not
conserving the plasmon numbers, involves two plasmons
in the initial state and three plasmons in the final, or vise
versa. The corresponding rate is generated to the first order
in the interaction Hamiltonian H, to the second order in
the crossed terms between H, and H,, and finally from
H, iterated to the third order. For the purpose of finding

this rate we introduce 7 -matrix
7 =H;+H,G,H, +H,G,H, + H,G,H.,G,H,, (6)

where G, =(Q, —H,)™, with energy Q, of the initial

plasmons. Then the transition rate for plasmon scattering is
defined by 7 -matrix and given by the Fermi golden rule
expression

Wy =27 [(Q |T|Q)F 8(Q; -Q), @)

where Q,;; and Q,,, abbreviate total initial/final momenta

and energies of the plasmons respectively.

Scattering rate
The detailed calculation of the transition rate is
cumbersome and technically. Here we shortly describe the
steps taken to calculate the rate. After applying Eq. (5) into
Eqg. (6) and then into Eq. (7) we express the matrix element
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(Q;171Q,) as a sum of the averaged products of the

creation and annihilation operators. Each of these averaged
products can be reduced by commutation relations to the
composition of Kronecker’s delta symbols. As a result we
get the transition rate in the following form

Qs Ql
WQi =2z | | Q. Q,5(Qi_Qf)’ (8)
where amplitude of the scattering rate can be written in the
following form,
4.0, ,3
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Here the summation over {p}={q} means the
summation over variables p,,,,, taking different value
from set of initial momenta g, , and final momenta with the
opposite sign —q;, ;. In other words the sets of {p} and

{qg} coincide,

{p1l P2 Pss Py p5}={q1'q2'_q£'_q£’_qé}‘
Then the sign “+” in superscript of ®*(p,, p,)

should be chosen as “+ ” if p, and p, is the both initial or

otherwise,

#:(Py, Py)

)—a)

final momenta and “—"
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(wpl

Equation (8), (9), and (10) describe the scattering of
plasmons with arbitrary possible momenta. However

P1+P2

expression for /Iqql{’(;‘jqé is crucially simplified in the low
temperature limit. In this limit the plasmon momentum
g ~T /s <1, and within the leading logarithmic accuracy
Adhd:% js independent of momenta.
For example,
A% = ) =552/48~1.62,

in the case of the screened Coulomb interaction potential,

V(X) =

[ x| /x?+4d? .

where d>v™ is a distance to screen and e is an

elementary charge.

Relaxation of the artificial chemical potential

Now we assume that the crystal is brought out from
equilibrium. The main scattering process that relaxes the
crystal is the two-in-two process studied in [20]. This
process conserves the number of plasmons and therefore

drives the distribution function n, of the plasmons to
Fermi-like distribution

_ral@g-w)IT —1

n, =[e o010, (12)

where g is artificial chemical potential that should relax to

zero due to the two-to-three scattering process.
The evolution of the distribution function can be
described by Boltzmann equation
an,

—L=1[n,],

o (12)

where Z[n,] is the collision integral that corresponds to
the two-to-three scattering process,
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In order to simplify Eq. (12) we summarize it over q,
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and substitute Eq. (11) in it. Finally we get

Wq{,qév%’
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Here we assume that the crystal is near equilibrium, so
chemical potential is small enough, | x|« T, and it is

negative to prevent the distribution function from
singularity.

In order to calculate the characteristic time z, that
determine the relaxation of the artificial chemical potential,
we should examine the kinematics of the two-in-three
scattering process.

Kinematic constraints
Here we study the kinematics of the two-to-three
scattering process and determine the combination of
momenta that contributes substantially into the collision
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integral and z,. Now we assume that ¢, >0 (case of
g, <0 can be studied analogously). The momenta and

energy conservation laws give

Oy +0; +0; =0, +0,,
Loy | (1—ag?)+] 0, | A-ag?)+] 0, | A-ag;?)  (14)
=0 |@-aql)+]q, | 1-aal).

=90, In the

The first equation sets o, 00400 -

Qi .Qs
case when all momenta is positive q,,,q;,, >0 the

nonlinearity plays the key role because the linear terms in
Eqg. (14) cancel each other and, excluding gz, we get the

quadratic equation for q;,

(9, +0, —a,)a;” — (0, +9, — )’ dy

, . (15)

+ (ql - ql)(qZ - ql)(ql + qz) =0.

Then the energy ¢ -function transforms into
5(Qi_Qf)zé(qz_q+)+5(q2_qf), (16)

3sa(q? —q°)

where ¢, are the roots of the quadratic equation (15).

In all other cases when one or several momenta are
negative linear terms in Eq. (14) do not cancel each other
and do not produce such denominator as in Eq. (16). For
example, assume that g, <0 and q,,,q;, >0. Then the

energy conservation gives
5(Q,-Qy)

1 ! ! ’
= §5[QZ +3a(q, +0,)(d —d,)(0; —9,) / 2].

Comparing the last equation with Eq. (16) one can
conclude that the contribution in z,, Eq. (13), is much

smaller to factor a(q®?-q*)~(T/s)><1 in the

denominator in Eq. (16) when momenta are of different
signs. Then in the further calculation we assume all
momenta to be of the same sign.

Calculation of characteristic time

Now we can calculate the characteristic time z,. For
that purpose we apply the scattering rate in the form of
Egs. (8) and (9) into Eg. (13) and integrate only over
momenta of the same sign,

;= AT’ s(T 1 27s)°.

where Z is a dimensionless integral originated from the
sum over momenta in Eq. (13),

8 dx,dx,dx, (x> —x*) ™
7=2
9 x[[j;[o C(x)g (%) (%)g(x,)g(x)

X, >0

~1.814, (17)
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with £(x) =x"*sinhx, and x, are roots of Eqg. (15) with g

changedto ,

X

_ X1+X2_X3[ + 4(X13+X§—X§’) _1]
* 2 A3 % —%)° 3
It should be noted that integration in Eqg. (17)
performed over domain where x,, >0,x, >0.

Conclusions
In the present paper we study the scattering of the
plasmons in the one-dimensional Wigner crystal. The
leading process involves two plasmons in the both initial
and final states and, therefore, conserves the number of
the plasmons. This process drives the crystal to the non-
exact equilibrium that can possess the artificial chemical
potential. This chemical potential should be relaxed by the
process that not conserving the plasmon number. The main
process of such a kind involves two plasmons in the initial
state and three in the final, or vice versa. We determine the
scattering rate of this process, derive equation of relaxation
of the artificial chemical potential, and calculate the

characteristic time of the relaxation.

1. D.C. Mattis. The Many-Body Problem: An Encyclopedia of
Exactly Solved Models in One Dimension, World Scientific
Publishing (1993), 984 p.

2. B. Sutherland. Beautiful models: 70 years of exactly solved

quantum many-body problems, World Scientific Publishing

(2004), 400 p.

T. Kinoshita, T. Wenger, D. Weiss. Nature, 440, 900 (2006).

S. Tomonaga. Prog. Theor. Phys., 5, 544 (1950).

J.M. Luttinger. J. Math. Phys., 4, 1154 (1963).

V.V. Deshpande et al. Nature, 464, 209 (2010).

L. Venkataraman, Y.S. Hong, P. Kim, Phys. Rev. Lett., 96,

076601 (2006).

O.M. Auslaender et al. Science, 308, 88 (2005).

9. Y.-F. Chen et al. Phys. Rev. Lett., 102, 036804 (2009).

10. G. Barak et al. Nat. Phys., 6, 489 (2010).

11. G. Granger, J.P. Eisenstein, J.L. Reno. Phys. Rev. Lett., 102,
086803 (2009).

12. C.Altimiras et al. Nat. Phys., 6, 34 (2010).

13. K.J. Thomas et al. Phys. Rev. Lett., 77, 135 (1996); Phys.
Rev., B58, 4846 (1998).

14. A. Kristensen et al. Phys. Rev., B62, 10950 (2000).

15. S.M. Cronenwett et al. Phys. Rev. Lett., 88, 226805 (2002).

16. D.J. Reilly et al. Phys. Rev., B63, 121311(R) (2001).

17. R. Crook et al. Science, 312, 1359 (2006).

18. O. Chiatti et al. Phys. Rev. Lett., 97, 056601 (2006).

19. N. Wakeham et al. Nat. Commun., 2, 396 (2011).

20. J. Lin, K.A. Matveev, and M. Pustilnik. Phys. Rev. Lett.,
110, 016401 (2013).

21. H.J. Schulz. Phys. Rev. Lett., 71, 1864 (1993).

22. K.A. Matveev. Phys. Rev., B70, 245319 (2004).

No gk w

®



