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The dynamics of oscillation processes in a siphon U-tube is studied for the system of connected vessels filled with homogeneous
liquid. The equations and phase paths describing the motion of non-viscous liquid and fountain effects are given, oscillation frequencies
are considered. Oscillations are nonlinear in general case, but they turn into linear by setting special parameters of the system. Phase
portraits are obtained and their dependences on parameters of the system are analyzed for the linear and non-linear cases. It is shown
that the behavior of the deep and shallow water in such a system could be discussed using analogy with the propagation of elastic
waves in condensed matter. Some interesting analogies between a siphon U-tube and hydrodynamic, mechanical, electromagnetic
phenomena, wave motion are also analyzed.
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B pabore uccrnenoBaHa JUHAMMKa KoieOaTelnbHbIX mporeccoB B cupoHHOH U-00pasHoi TpyOke Ha OCHOBE CHCTEMbI
COOOMIAIOMNXCS COCY/IOB, 3aIIOJTHEHHBIX OJHOPOAHON KUAKOCTHIO. [IpuBeneHsl ypaBHEeHHS U (Da30BBIC TPACKTOPUH, ONUCHIBAIONIHE
JBIDKEHHE KHKOCTH 0e3 ydeTa BSI3KOCTH U (QOHTAaHUPOBAHUS, PACCMOTPEHBI YaCTOTHI KoJIeOaHUH B HccaeayeMoil cucteme. B oOmem
cirydqae KojaeOaHus SBISIOTCS HETMHEIHBIME, HO TIPH OMPEJeNeHHbBIX MapaMeTpax CHUCTEMbI BO3MOXHA UX auHeapu3anus. [lomydyenst
U [IPOAHAJIM3UPOBAHbBI B 3aBUCHMOCTH OT HAPaMETPOB CHCTEMbI (ha30BbIe OPTPETHI B IMHEHHOM U HEJIMHEIHOM citydasx. [lokasaHo,
4TO PAacCMOTPEHHUE IMOBEICHUs ITyOOKOil M Menkod Boxsl B cupoHHON U-00pa3Hoil TpyOke MOXET OBITH MPOBEICHO IO aHAJIOTHU
C pacnpoCTpaHEHHEM YIPYIHX BOJH B KOHJICHCHPOBAHHBIX cpenax. Takke pacCMOTPEHBI aHAIOTHH C THAPOJMHAMUYECKHMH,
MEXaHHIECKUMH, HICKTPUICCKIMHU SIBJIICHUSIMU, BOJTHOBBIM JIBIDKCHHEM.

KuroueBsbie ci10Ba: coOOIIAIOIINECs COCYBI, KONEOAHNS KUIKOCTH, YPAaBHEHHS JIBIDKCHHS, (Da30BBIE TPACKTOPHH.

VY poborti gociikeHa AuHaMiKa KoTMBaIbHUX MpoleciB y cudonniit U-moaibHiil TpyOLi Ha OCHOBI CHCTEMH CIIOIY4EHHUX COCY/IIB,
sIKi 3aIIOBHEHI OTHOPIAHOO pinuHoo0. HaBeneHi piBHSHHS Ta (a30Bi TPAEKTOPIT, SIKi OMHUCYIOTh PyX PiIMHU 0€3 BpaxyBaHHS B SI3KOCTi
Ta (OHTaHyBaHHs, PO3NISTHYTI YaCTOTH KOJIMBAaHb B JOCIIJDKyBaHIl cucTeMi. B 3arampHOMY BUNaAKy KOJIMBAaHHS € HENHIHHUMH, ajie
Y NIeBHUX 3HAUCHHSX MapaMeTpiB CHCTEMHU MOXIIMBA iX siHeapizaris. OnepikaHo Ta IpoaHAIi30BAaHO B 3AJICKHOCTI BiJ ITapaMeTpiB
cucremu (a30Bi MOPTPETH B JTiHIHHOMY Ta HeliHEHHOMY BHUMaakax. [lokazaHO, IO BUIAIKH MUIKOi Ta IIMOOKOT BOAM y cH(OHHIM
U-noni6Hiit TpyOui MOXyTh OyTH PO3IISHYTI MO aHAJOTI] 3 PO3MOBCIOIKEHHSAM NPYKHUX XBHJIb B KOHJCHCOBAHOMY CEPEIOBHIII.
TakoX po3NISIHYTO aHAJIOTIT 3 TIAPOANHAMIYHUMH, MEXaHIYHUMH, SJICKTPUYHUMH SBUILAMH, XBUILOBUM PYXOM.

Korouosi ciioBa: crioyrydeHi nocyiuHY, KOJMBAHHS PiJIMHU, PIBHIHHS PyXy, (pa3oBi TpaexTopii.

Introduction

Studying the properties of motion of a liquid in a
siphon U-tube has a long history and is still of an essential
interest nowadays. System like communicating vessels
has a fundamental and practical importance. Here we can
reference work [1] which examined transmission of liquid
helium through superleak connecting two vessels in process
of heating one of the containers. This process is interesting
because a thermomechanical effect [2] in phonon regime
take place, which is also discussed in terms of an increase
of quantum degerancy in colder compartment. However,

the way of changing the quantum degerancy is not uniform,;
another method to cause it is adiabatic displacement of the
wall dividing two compartments of homogeneous quantum
fluid. On the thermomecanical effect a well-known process
called helium fountain is based: if superfluid helium is
heated, the flow of liquid can achieve velocity high enough
for a short-time liquid excess the level of vertical vessel [3].
Practical importance of connected vessels is, for example,
that using them as a U-tube damper systems can lead to
reduction of the vibration amplitude of high buildings; on
ships these systems are used to reduce the rolling motion
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caused by waves [4]. By the principle of communicating
vessels water locks of the rivers and channels operate, as
well as the level-measuring tubes for water tanks. Siphon
U-tubes are also used to determine the volume of a non-
magnetic body of a random shape [5]. There is also an
interesting example of relations between principles of
system of communicating vessels in which one vessel is
half-immersed into another: this principle can be used in
experimental studies of *He equilibrium in its liquid/solid
state [6]. Other important phenomena in this field are siphon
properties of liquid, i. e. the ability of liquid to overcome a
certain barrier without external mechanical action [7].

Our article is devoted to the research of the behavior
of liquid forced out of an equilibrium state and left to itself.
In other words, we study the free vibrations of liquid in the
system of communicating vessels including oscillations,
which can lead to realization of the siphon mechanism. At
the same time we do not take into account pouring, viscous,
and fountain effects. Actually, we examined such motion
as oscillations so for describing them the differential
equations and phase portraits were used. The equations
are nonlinear in general case, but special parameters of
the system, for example the equality of the cross sections
of vertical vessels, leads to motion described by linear
equations. It should be noted that such a system is also
analyzed in [8], where the relation between heights of the
liquid in two vessels and time is obtained, and the period
of oscillation is derived through a transformation formula
of the elliptical integral of the second order. The main idea
of an article [8] is using the unsteady Bernoulli equation
(energy method) for describing the liquid motion in the
U-tank. We obtain the characteristics describing the motion
of a liquid by means of Euler-Lagrange equations and the
law of energy conversation. Of interest are also cases of
deep and shallow water; which can be examined by using
analogy with propagation of elastic waves in condensed
matter. System like siphon U-tube has some analogies with
the various physical processes, i.e. there are some relations
between motion of liquid in communicating vessel and
hydrodynamic, mechanical, electromagnetic phenomena,
and a wave motion.

Overview of the system

Here we study the behavior of incompressible liquid in
U-tube in Earth’s gravity field. Geometry of this system is
shown in Fig.1. Index g corresponds to the wide container
(tube), index s corresponds to the narrow container (tube),
L corresponds to the communicating tube; S, and S are
cross sections of the vertical tubes, H_ and H_ are heights of
liquid in these tubes. Zero coordinate of Z - axis is assigned
to the equilibrium height H; of liquid under the upper line
of the connecting tube, S, is the cross section of this tube.
The levels of the liquid never reach the height low enough
to let the surrounding air enter the connecting tube. Length
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Fig. 1. Geometry of the system.

of the tube L is measured between the axes of vertical
vessels, as shown in Fig.1.

In case of the free oscillations in the system disturbed
from equilibrium state, motion equations for incompressible
liquid could be written as a balance between volumes of
liquid in vertical vessels or by using parameters such as
cross sections and height of the liquid:

S,H,=-SH,, (1)

and after differentiation we obtain an equation for the
speeds of the liquid in the different tubes of the system:
2

Sng ==Sv =-S,v,.

Here we consider that integer constant is zero.
Directions of the speeds v, u v_are shown in Fig.1. Flow
through the connecting tube S, does not change the
volume of liquid in it. Let us perform calculation of the
main physical properties of this system using Lagrangian
formalism.

Dynamical equations of the system
of communicating vertical vessels
To obtain Lagrange function L=T-U (where T is a
kinetic and U is a potential energy) we first find potential
energy U when liquid is disturbed from equilibrium
state, which can be done by various ways: for example,
by heating the liquid or by means of mechanical impact
on liquid surface. In the narrow container the height of
the liquid is H/2, and the change of its mass is positive
m =pAV=pS H>0. For a large container the height of mass
center of the liquid is Hg/2, and the change of its mass is
negative m, = pAV = pSgHg < 0 because the liquid flows
from large to narrow container. So the corresponding
potential energies are:

3)

K

1
U =—pgS (H) >0.
2

1
U, = 3 pgS (H,)" > 0. 4)

Kinetic energies in the respective parts (tubes) of the
vessel are:
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7:_ :%ms_vj :%pS“_(HO-i-HX)Vf, (5)
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T, =~ :EpSLLvL. (7

Introducing the dimensionless parameters significantly
simplifies the analysis of liquid behavior in a U-tube:

S, S S L H
Op=—"00,=—,0, =", l=—, y="t

sg S Lg S

g 8 s

And Lagrange function equals to the difference
between total kinetic and total potential energies can be
written as:

L=T-U-= —%pgSjHé{y2(1+O'sg)—

/ (®)

-V y(-oy)+(1+0,)+—]1}
o

Ls

Here we introduce the dimensionless time 7 =1/z, ,

& :VHo/g-

Dynamics of the system is described by Lagrange
equation:

2j}[y(1—asg)+1+;]+
o,(+0,,) )
)'/2(1—0'%,)+2y =0.

Nonlinear parts of motion equation appear because
of variation of the height of liquid when it moves in the
vessels with different cross sections. It is clear that when
ngzl (Sg:SS) the equation is linear:

O-Ls

=0.
/ Y

J+ (10)

So only equality of cross sections of vertical vessels
is important for the linearity of the equation (9); the cross
section of horizontal connecting tube thus can actually be
of an arbitrary value. Equation is linear in a variable y and
describes ordinary harmonic oscillations with a frequency
(in dimensional parameters):

(11)

L S,
Hy[l+——— "]
2H, S,

Period of those oscillation can be written using
reduced length I, = Hy + L/20, = H,(1+1/20,,):

H, +LS /2
TZZ_”ZZH /Mzzﬁ\/z, (12)
(2 g g

As we see there takes place analogy with physical
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pendulum. In case of equality to zero of the parameter
/=0 the reduced length coincides with the equilibrium
height of liquid H, and the physical pendulum becomes
mathematical with oscillation period T=2m(H /g)"*. The
reduced length equals to equilibrium height of liquid in
case of 6 =00 too as then the component LS /(2S,) is zero.
If cross sections of connecting tube and vertical tubes are
of the same value (0,=1,0,=1), the reduced length differs
from equilibrium liquid height H; on a half of length of
connecting tube L. Otherwise at equality of all cross
sections reduced length equals to the half of length of a
connecting tube. The equation also becomes linear in the
case of infinitesimal amplitude of oscillations (y<<1); then
oscillation frequency is defined by equation (11). If we
assume cross sections to be equal within a certain small
parameter o (ng = 1+a), we will receive the equation which
is nonlinear in general case, but if o is small as well as y, we
have in the first order of a smallness in accuracy expression
for linear oscillations, but in the second order of smallness
we do not anymore obtain the equation like (10).

Phase portraits. Analysis of nonlinear
oscillations of the system
Let us consider behavior of the system generally and
integrate the equation (9). Without friction the integral of
motion is a total energy of the system:

W:T+U:%pgSSH§[y2(l+asg)+
(13)

!
VA=) +1+o,)+ ——l=const.
Ls

Constant of integration is defined by maximum
value of liquid height in narrow vertical vessel y=H _/H,
(turning point when y=const), i.e.:

2 -2 2
y(+o )+y y(l-o,)+

! (14)
+(l+0,)+—]= y§(1+o—xg).
O-LS

For studying of phase portraits it is convenient to
rewrite the equation (13) into:

2 yé _y2
y =

(15)

l-c )+l+——
y(l-o,) o (1t

This rearrangement allows to find period of nonlinear
oscillations as the integral of this equation [9]. The equation
(15) defines a phase portrait of the system generally.

Phase portraits of the linear oscillations of the system
At equality of vertical tubes cross sections (o =1)
oscillations of the liquid are described by linear equation ,
and thus in the denominator of expression there is no
dependence on coordinate y. In this case phase portrait of
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Fig. 2. Evolution of the phase portraits of linear
oscillations of the system when: a) connecting tube
section is fixed as /o, =2, parameter y=0.2; 0.5; 0.7;
0.9; 1; b) maximum amplitude of oscillations is fixed
as y,=1 while the parameters of the connecting tube I/
6, =0;0.125; 0.5; 2; 4.

2
the system is ellipse with semiaxes a” = y;, b’ = _ N
1+//o,,
. )
and eccentricity &* = ———:
(I+0oy,)
2 -2
y .y
—+5=1 (16
aZ bZ )

Obviously, if we have harmonic oscillations when
parameters of the system are fixed, all ellipses are similar
for different oscillation amplitudes. Direction of rotation is
topological invariant (see Fig. 2).

Interesting dependence on parameter /6, =LS /(S H )
follows from the equation (16): in extremely minimum
case 1/c, =0 phase portrait on plane y —y, is a circle. This
parameter may become zero (or closely near to zero) in two
ways: when equilibrium liquid height in vertical vessels
much exceeds the length on connecting tube (1 = 0), or
when two vessels are connected by sealed channel with
large cross section (o, =0). The increase in parameter I/
o, leads to the flattened phase portrait in Fig. 2 (b), and the
decreasing of the frequency of oscillations.

Phase portraits of nonlinear oscillations
In case of the maximum amplitude y, = H__/H = 1at
big difference in sections of vertical tubes (5,,=0), and on
condition /o, =0 the equation is reduced to:

V=l-y. a7

On the phase plane it is equation of the parabola (Fig.

3 (a)) closed by a vertical segment. Analyzing the equation
it is possible to see that at increase in length of a connecting
tube the parabola is flattened and turns into an ellipse. The
graphic analysis of fluctuations for the case I/, =0 is also
given in [4] where two phase paths in the limiting cases
are presented: when the cross sections of vertical tubes
are identical and when they are much different. When
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Fig. 3. Evolution of a phase portrait of nonlinear
oscillations of the system when: a) maximum amplitude
is constant y *=1 and cross sections strongly differ 5, =0,
the ratio 1/o, =0; 0.125; 0.5; 2; 4; b) cross sections
strongly differ ng:() and l/c, =0 while the oscillations
amplitude y =0.2; 0.5; 0.7; 0.9; 1; ¢) amplitude is small
3 — 0 and the ratio of cross sections is fixed c,=0.5,
the parameters of the connecting tube l/c, =0; 0.125;
0.5;2:4.

amplitude changes within 0<y <1 (displacement from -y,
to y,) in the system takes place the following evolution of
phase paths: semiaxes of ellipses at y,—0 increase with
a growth of amplitudes, elipses being strongly deformed
in the foots reached by a fluid column; angles of paths on
phase plane at an approximation to a parabolic form are
sharped (Fig. 3 (b)).

Taking into account a numerical factor the behavior of
the system in cases c,~1 and y,<<I coincide.

When there is small difference between cross
sections, the phase paths are ellipses, and in the process of
decreasing of the parameter they are imposed at each other,
almost merging into one curve. Further, if the oscillation
amplitude is small (y<<I), we have the linear description of
liquid oscillations in vessels with a frequency . Assuming
the amplitude to be a small, but such that we neglect only
an item contain square of differential from y, we obtain
a nonlinear equation. In Fig. 3 (c) change of phase paths
in process of increase in parameter I/, is the following:
elliptic paths are flattened to an ordinate axis having one
generic point.

Oscillation frequencies in the system
of connected vessels
For studying nonlinear oscillations of the system
and analyzing oscillation period we find the integral of

equation:
y+q
t—t,=J0-0,)[dy P
-y

0

(18)

Where t, is the constant of integration, and
g= 1 N /
= —.
1_6-5‘8 O-Ls (1_O-Sg)
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If limits of integration are substituted:

= /(1—%)? %dyzﬂ/l—% x

o 10 (19)
o =) +,)
X2| E(@,k)\y, +q — |- 202 |
[ (0, k) v, + Vi ]

where E(¢, k) is an elliptical integral of a second type and
introduced denominations are:
k= \/ 20
Yot+4q

sing = J(yo ) +1,)
2y,(y+9)

The half-period of oscillations is a time span of the
oscillations amplitude changing from its minimum to
maximum point (from -y, to y ). We see that if we substitute
the limits into an expression (19), the second term becomes
zero both at minimum and maximum value. Furthermore
we see that in the case of y =y, sing = 0 and thus, ¢ =0,
and if' y =y, then sing = 1, and thus ¢ = /2. Because E(0,k)
= 0, then oscillation frequency is:

co=7r/[2 (1-0,,) (7 +q)E(72r,kD (20)

The influence cased by initial amplitude y, and by
parameters of the system /o, and o, is shown in Fig. 4
(a) and in Fig. 4 (b). Fig. 4 (a) presents the dependence of
oscillation amplitude on initial amplitude and parameter 1/
o,, when the relation between cross sections is constant.
It is obvious that oscillation amplitude increases with
initial amplitude growth and the exponential law describes
decreases with growth of parameter 1/cLs, and dependence
of frequency on parameter /cLs. In Fig. 4 (b) there is a
dependence of the oscillation frequency on initial amplitude
Yy, and a parameter 1/, . As we can see here, oscillation
frequency changes with an increase of an initial amplitude
¥, as an exponential function and with an increase of relation
between cross sections o asa logarithmic function. To the
linear cases of the oscillations lines of constant frequency

10

Vs

Fig. 4. The graph of dependence of an oscillation
frequency: a) at fixed ratio of cross sections o _=0.5
of vertical tubes, dependence on the initial amplitude
Yy, and parameter l/c_; b) at fixed parameter l/c, =0.5,
dependence on the initial amplitude y, and ratio of cross
sections o_.
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correspond. For example, if k = 0 (i. e. y, = 0) E(n/2.,k) =
7/2 and then frequency is:

H A
o=1/ [>T+ "5
g H,S, (S, +S,)

In addition, k becomes zero at q—o (i. e. at 6, = 1),
and then we receive the expression for frequency which is
totally coinciding with a formula (11).

If the cross sections of vertical tubes considerably
differ, the oscillations period does not depend on a cross
section of a vertical tube with a large diameter.

H L 2
Z: _02\/y0+1+ Ss E Z’ l yOLS
2 Vg S,H, |2 \/y0+1+H \

0~L

@n

(22)

Analogies
Analogy with electric current. In case of ng=1 the
equation takes the following form:

2H,
yz yz (yg _y2 S 0
.2 0 s
Y ] 2H, L 3
1+— —+—
O S, S
After  redesignation y, -y’ >e, U,

L/S, »r, 2H,/S — R, the equation transforms into an

U=eR/(R+r), which is similar to an expression for the
electric field strength, where r is an internal resistance, R is
a load resistance, € is an electromotive force. Instantaneous
value of a deviation of level y from equilibrium level y=0
defines a potential energy of the system and is the reason of
flow of a liquid. Redesignation corresponds to that from the
total energy of all system (vertical containers and a
connecting tube);the potential energy of vertical vessels is
neglected. The kinetic energy of vertical vessels and a
connecting tube exactly corresponds to electromotive force
of a source of electric current. In the work [10] it is also
discussed how to map the U-tube vessel to an electric
circuit.

Mechanical analogies. As it was already considered
above, in case of equality of cross section of vertical vessels
we obtain the frequency period similar to small frequency
period of a physical pendulum T=2n((h+r*/h)/g)"?, where H,
corresponds to the distance from the suspension point to a
pendulum center of gravity h, and LS /(2S, ) corresponds to
the moment of inertia concerning the axis passing through
a center of gravity. And if parameter /o, equals to zero too,
we obtain oscillation period of mathematical pendulum.
Same way we can obtain analogy with oscillations of
a spring pendulum T=2n(m/x)"? in case of equality of
all cross sections in the system if we consider that to the
weight m corresponds the value pS(H, +L/2), and to the
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stiffness there corresponds value k = pgS. In case of the
maximal possible amplitude and condition I/, .= 0, when
the equation describing motion has a form (17) we see that
dimensionless oscillation period is T/2=V2. Respectively,
dimensional period is:

T/2=\2H,/g.

Here we observe the analogy to periodic vertical
motion of the ball which elastically bounces off a horizontal
surface, where H  corresponds to the height from which the
ball was dropped. The phase path for such a ball motion
has the similar shape to the path in Fig. 3 (a) for I/ =
0. Fig. 5 shows the time dependence in this case, it is set
of parabolic segments (in linear case we have a sinusoidal
dependence).

+H,/2
h /\ /\
0 t
T 2T

H2

24

Fig. 5. The height-vs-time dependence in narrow vessel
in extremely nonlinear case according to equations (17)
and (24).

Analogies with wave motion. If all cross sections of
the tubes in the system are equal, an analogy also could
be considered with the propagation of elastic waves in
condensed matter. Using accordance for stiffness k = pgS
(on the assumption that vertical tubes and horizontal has
the identical cross sections) we can rewrite expression for
Young’s modulus as:

w(H, + 5

E- - pg(H, +5) (25)

SL

Consider longitudinal waves we see that phase
velocity of the running waves is:
L
g (H o T EJ

f
A e
P

Here we regard oscillations in U-tube as standing
wave with the wavelength A = M2 = L where L is the

(26)
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distance between vertical containers (walls). This standing
wave is a superposition of the running wave and reflected
wave with wavelength A.

An expression for group velocity of running waves is
the following:

0 A
Vgr :Vf —l%:ﬂg(f[o +i/4)—§ﬁ (27)

Let us analyze the limiting cases, i.e. we will consider
deep and shallow waters. As the criterion of definition of
the deep and shallow water, we will take a ratio of length
of a connecting tube and a equilibrium height of the liquid.
If we consider that for the deep water the length of a
connecting tube considerably exceeds liquid column height
in a vertical vessel L/2 >> H , expression for phase speed
has an appearance:

v, =Ag/4.

That practically coincides with an expression v, for
gravity waves in deep water [11], and the group velocity
of those is:

v, =gra-2e v

8A/4 2

(28)

(29

i.e. group velocity is twice less than the phase one.

Now consider a case, when the length of a connecting
tube is much smaller than the liquid column height in
a vertical container, L/2 << H/. Then the speed of a
longitudinal wave equals to:

v, =v, —>/gH, (30)

Thereby we received phase velocity for gravity waves
in shallow water. This speed is dispersion-free (v.= Vgr).

When carrying out analogy to wave motion and
consideration of deep and shallow water, an interesting
question is: what exactly in the system of communicating
vessels is defined as the limits of deep and shallow water?
The criteria of definition of deep and shallow water can be
chosen not only as a ratio of length of a connecting tube
and equilibrium height, but also as a ratio of diameter of a
vertical tube and equilibrium height of the liquid level in
vertical containers. In a general case we obtain the nonlinear
equation which solution will be expressed through elliptical
integral and will have the form of a common solution of
the nonlinear equation. Therefore we will focus on the less
complicated case of the identical cross sections of vertical
tubes.

For the deep water the equilibrium height of liquid
in both vertical tubes well exceeds their diameters, and,
respectively, the cross sections are H >> \/Sg v H >> \/SS,
and then the period and frequency are:

T/2=.H,/gr, o> =g/H,. (31

Having made redesignation k=H,;', we obtain the ratio
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®* = gk, that has an appearance similar to a dispersion ratio
for deep water @* = gk [10], where k is a wave vector.
For shallow water (H, << VS, H << S) it is visible

that frequency is:
o= |—5
LS, /28,

The dispersion ratio for shallow water from [11] has
an appearance ®’=gkh/y, where x = M(2r) is a reduced
wavelength. For the obtained expression we observe the
following analogies: as well as for deep water a wave vector
is k = 1/H, to reduced length of a wave there corresponds
value y = LS/2S . Respectively, expressions for phase
velocity for deep and shallow water are:

/ S
v, = g%S—", and v, =/gH,.
L

It is interesting that both approximations for deep and
shallow water will well be coordinated among themselves.
If in the formula (28) as length of a standing wave we take
the value LS /S, (i.e. considering that the cross sections
of vertical containers differ from the cross section of
the connecting tube), then for deep water we receive
expression that exactly coincides with the one for deep water,
equation (33). Equality of phase velocities (30) and (33)
for shallow water is apparent.

(32)

(33)

Conclusions

1. Oscillations of liquid in the system of
communicating vessels are studied. Frequencies and
periods of free oscillation are discribed for the general case
through elliptical integral.

2. Phase portraits are plotted for the general case
of oscillations when different parameters of the system
are changed, i. e. dependence of liquid motion on one
parameter of the system when other parameters are fixed.
When oscillations are linear, phase paths are elliptical,
while in the case of nonlinear oscillations we have
parabolas closed by a vertical segment. The same kind
of phase portraits also correspond to the vertical motion
of a ball elastically bouncing off a horizontal surface,
which suggests analysis of the strong analogies between
the various mechanical motions and the oscillations of the
liquid in the communicating vessels.

3. Analogies are considered with some diverse
physical systems: mathematical, spring and physical
pendulums, an electric current. We have also studied an
interesting analogy with wave propagation in condensed
matter which arises when we consider the cases of deep
and shallow water. Notice two different ways to approach
the problem: after obtaining expressions for the velocities,
we can reveal the connection between oscillations in the
U-tube and elastic waves, or otherwise we can first analyze
the cases of deep and shallow water and then turn to elastic
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waves.

4. In this work the internal friction (viscosity) is
neglected, which must have an influence on real liquids’
motion. If we consider viscosity, the general motion
equations would be changed, and that will lead to the
results different from obtained here for the frequency of
oscillations. It is of interest to further analyze the general
expression for oscillations frequency because in the current
work analysis is presented for the more simple case of the
identical cross sections of two vessels. It is also prospective
to consider the siphon mechanism within this system and
study the fountain effect caused by special initial conditions.
Using discussed system of communicating vessels such
extraordinary phenomena as superfluid flow (for example,
liquid helium or diluted quantum gas) and supersolid (‘He)
could be experimentally studied.
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