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Introduction
Studying the properties of motion of a liquid in a 

siphon U-tube has a long history and is still of an essential 
interest nowadays. System like communicating vessels 
has a fundamental and practical importance. Here we can 
reference work [1] which examined transmission of liquid 
helium through superleak connecting two vessels in process 
of heating one of the containers. This process is interesting 
because a thermomechanical eff ect [2] in phonon regime 
take place, which is also discussed in terms of an increase 
of quantum degerancy in colder compartment. However, 

the way of changing the quantum degerancy is not uniform; 
another method to cause it is adiabatic displacement of the 
wall dividing two compartments of homogeneous quantum 
fl uid. On the thermomecanical eff ect a well-known process 
called helium fountain is based: if superfl uid helium is 
heated, the fl ow of liquid can achieve velocity high enough 
for a short-time liquid excess the level of vertical vessel [3]. 
Practical importance of connected vessels is, for example, 
that using them as a U-tube damper systems can lead to 
reduction of the vibration amplitude of high buildings; on 
ships these systems are used to reduce the rolling motion 
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The dynamics of oscillation processes in a siphon U-tube is studied for the system of connected vessels fi lled with homogeneous 
liquid. The equations and phase paths describing the motion of non-viscous liquid and fountain eff ects are given, oscillation frequencies 
are considered. Oscillations are nonlinear in general case, but they turn into linear by setting special parameters of the system. Phase 
portraits are obtained and their dependences on parameters of the system are analyzed for the linear and non-linear cases. It is shown 
that the behavior of the deep and shallow water in such a system could be discussed using analogy with the propagation of elastic 
waves in condensed matter. Some interesting analogies between a siphon U-tube and hydrodynamic, mechanical, electromagnetic 
phenomena, wave motion are also analyzed.
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В работе исследована динамика колебательных процессов в сифонной U-образной трубке на основе системы 
сообщающихся сосудов, заполненных однородной жидкостью. Приведены уравнения и фазовые траектории, описывающие 
движение жидкости без учета вязкости и фонтанирования, рассмотрены частоты колебаний в исследуемой системе. В общем 
случае колебания являются нелинейными, но при определенных параметрах системы возможна их линеаризация. Получены 
и проанализированы в зависимости от параметров системы фазовые портреты в линейном и нелинейном случаях. Показано, 
что рассмотрение поведения глубокой и мелкой воды в сифонной U-образной трубке может быть проведено по аналогии 
с распространением упругих волн в конденсированных средах. Также рассмотрены аналогии с гидродинамическими, 
механическими, электрическими явлениями, волновым движением.

Ключевые слова: сообщающиеся сосуды, колебания жидкости, уравнения движения, фазовые траектории.

У роботі досліджена динаміка коливальних процесів у сифонній U-подібній трубці на основі системи сполучених сосудів, 
які заповнені однорідною рідиною. Наведені рівняння та фазові траєкторії, які описують рух рідини без врахування в’язкості 
та фонтанування, розглянуті частоти коливань в досліджуваній системі. В загальному випадку коливання є нелінійними, але 
при певних значеннях параметрів системи можлива їх лінеарізація. Одержано та проаналізовано в залежності від параметрів 
системи фазові портрети в лінійному та нелінейному випадках. Показано, що випадки мілкої та глибокої води у сифонній 
U-подібній трубці можуть бути розглянуті по аналогії з розповсюдженням пружних хвиль в конденсованому середовищі. 
Також розглянуто аналогії з гідродинамічними, механічними, електричними явищами, хвильовим рухом.

Ключові слова: сполучені посудини, коливання рідини, рівняння руху, фазові траєкторії.
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caused by waves [4]. By the principle of communicating 
vessels water locks of the rivers and channels operate, as 
well as the level-measuring tubes for water tanks. Siphon 
U-tubes are also used to determine the volume of a non-
magnetic body of a random shape [5]. There is also an 
interesting example of relations between principles of 
system of communicating vessels in which one vessel is 
half-immersed into another: this principle can be used in 
experimental studies of 4He equilibrium in its liquid/solid 
state [6]. Other important phenomena in this fi eld are siphon 
properties of liquid, i. e. the ability of liquid to overcome a 
certain barrier without external mechanical action [7].

Our article is devoted to the research of the behavior 
of liquid forced out of an equilibrium state and left to itself. 
In other words, we study the free vibrations of liquid in the 
system of communicating vessels including oscillations, 
which can lead to realization of the siphon mechanism. At 
the same time we do not take into account pouring, viscous, 
and fountain eff ects. Actually, we examined such motion 
as oscillations so for describing them the diff erential 
equations and phase portraits were used. The equations 
are nonlinear in general case, but special parameters of 
the system, for example the equality of the cross sections 
of vertical vessels, leads to motion described by linear 
equations. It should be noted that such a system is also 
analyzed in [8], where the relation between heights of the 
liquid in two vessels and time is obtained, and the period 
of oscillation is derived through a transformation formula 
of the elliptical integral of the second order. The main idea 
of an article [8] is using the unsteady Bernoulli equation 
(energy method) for describing the liquid motion in the 
U-tank. We obtain the characteristics describing the motion 
of a liquid by means of Euler-Lagrange equations and the 
law of energy conversation. Of interest are also cases of 
deep and shallow water; which can be examined by using 
analogy with propagation of elastic waves in condensed 
matter. System like siphon U-tube has some analogies with 
the various physical processes, i.e. there are some relations 
between motion of liquid in communicating vessel and 
hydrodynamic, mechanical, electromagnetic phenomena, 
and a wave motion.

Overview of the system 
Here we study the behavior of incompressible liquid in 

U-tube in Earth’s gravity fi eld. Geometry of this system is 
shown in Fig.1. Index g corresponds to the wide container 
(tube), index s corresponds to the narrow container (tube), 
L corresponds to the communicating tube; Sg and Ss are 
cross sections of the vertical tubes, Hg and Hs are heights of 
liquid in these tubes. Zero coordinate of Z - axis is assigned 
to the equilibrium height H0 of liquid under the upper line 
of the connecting tube, SL is the cross section of this tube. 
The levels of the liquid never reach the height low enough 
to let the surrounding air enter the connecting tube. Length 

of the tube L is measured between the axes of vertical 
vessels, as shown in Fig.1.

In case of the free oscillations in the system disturbed 
from equilibrium state, motion equations for incompressible 
liquid could be written as a balance between volumes of 
liquid in vertical vessels or by using parameters such as 
cross sections and height of the liquid:

,g g s sS H S H                                    (1)

and after diff erentiation we obtain an equation for the 
speeds of the liquid in the diff erent tubes of the system:

.Lg g s s LS v S v S v                                  (2)   

Here we consider that integer constant is zero. 
Directions of the speeds vL и vs are shown in Fig.1. Flow 
through the connecting tube SL does not change the 
volume of liquid in it. Let us perform calculation of the 
main physical properties of this system using Lagrangian 
formalism.

Dynamical equations of the system 
of communicating vertical vessels 

To obtain Lagrange function L=T-U (where T is a 
kinetic and U is a potential energy) we fi rst fi nd potential 
energy U when liquid is disturbed from equilibrium 
state, which can be done by various ways: for example, 
by heating the liquid or by means of mechanical impact 
on liquid surface. In the narrow container the height of 
the liquid is Hs/2, and the change of its mass is positive 
ms=ρ∆V=ρSsHs>0. For a large container the height of mass 
center of the liquid is Hg/2, and the change of its mass is 
negative mg = ρ∆V = ρSgHg < 0 because the liquid fl ows 
from large to narrow container. So the corresponding 
potential energies are: 

21
( ) 0.

2s s sU gS H                          (3)

21
( ) 0.

2g g gU gS H                         (4) 

Kinetic energies in the respective parts (tubes) of the 
vessel are:

Fig. 1. Geometry of the system.
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Introducing the dimensionless parameters signifi cantly 
simplifi es the analysis of liquid behavior in a U-tube: 
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And Lagrange function equals to the diff erence 
between total kinetic and total potential energies can be 
written as:
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Here we introduce the dimensionless time 0t t  , 

0 0t H g . 

Dynamics of the system is described by Lagrange 
equation:
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Nonlinear parts of motion equation appear because 
of variation of the height of liquid when it moves in the 
vessels with diff erent cross sections. It is clear that when 
σsg=1 (Sg=Ss) the equation  is linear:

0.Lsy y
l


                                (10)

So only equality of cross sections of vertical vessels 
is important  for the linearity of the equation (9); the cross 
section of horizontal connecting tube thus can actually be 
of an arbitrary value. Equation  is  linear in a variable y and 
describes ordinary harmonic oscillations with a frequency 
(in dimensional parameters): 

0
0
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SLH
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

                    (11)

Period of those oscillation can be written using 
reduced length 0 02 (1 2 ) :r Ls Lsl H L H l    

0 22 2 2 ,s L rH LS S lT
g g

  



            (12) 

As we see there takes place analogy with physical 

pendulum. In case of equality to zero of the parameter 
l=0 the reduced length coincides with the equilibrium 
height of liquid H0, and the physical pendulum becomes 
mathematical with oscillation period T=2π(H0/g)1/2. The 
reduced length equals to equilibrium height of liquid in 
case of σLs=∞ too as then the component LSs/(2SL) is zero. 
If cross sections of connecting tube and vertical tubes are 
of the same value (σsg=1, σLs=1), the reduced length diff ers 
from equilibrium liquid height H0 on a half of length of 
connecting tube L. Otherwise at equality of all cross 
sections reduced length equals to the half of length of a 
connecting tube. The equation also becomes linear in the 
case of infi nitesimal amplitude of oscillations (y<<1); then 
oscillation frequency is defi ned by equation (11). If we 
assume cross sections to be equal within a certain small 
parameter α (σsg = 1+α), we will receive the equation which 
is nonlinear in general case, but if α is small as well as y, we 
have in the fi rst order of a smallness in accuracy expression 
for linear oscillations, but in the second order of smallness 
we do not anymore obtain the equation like (10).

 
Phase portraits. Analysis of nonlinear 

oscillations of the system
Let us consider behavior of the system generally and 

integrate the equation  (9). Without friction the integral of 
motion is a total energy of the system:
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(13)

Constant of integration is defi ned by maximum 
value of liquid height in narrow vertical vessel y0=Hmax/H0 
(turning point when y=const), i.е.:  
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For studying of phase portraits it is convenient to 
rewrite the equation (13) into: 
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               (15)

This rearrangement allows to fi nd period of nonlinear 
oscillations as the integral of this equation [9]. The equation  
(15)  defi nes a phase portrait of the system generally.

 Phase portraits of the linear oscillations of the system 
A t equality of vertical tubes cross sections (σsg=1) 

oscillations of the liquid are described by linear  equation , 
and thus in the denominator of expression  there is no 
dependence on coordinate y. In this case phase portrait of 
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the system is ellipse with semiaxes 2 2
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Obviously, if we have harmonic oscillations when 
parameters of the system are fi xed, all ellipses are similar 
for diff erent oscillation amplitudes. Direction of rotation is 
topological invariant (see Fig. 2).

Interesting dependence on parameter l/σLs=LSs/(SLH0) 
follows from the equation (16): in extremely minimum 
case l/σLs=0 phase portrait on plane y – y0 is a circle. This 
parameter may become zero (or closely near to zero) in two 
ways: when equilibrium liquid height in vertical vessels 
much exceeds the length on connecting tube (l = 0), or 
when two vessels are connected by sealed channel with 
large cross section (σLs=∞). The increase in parameter l/
σLs leads to the fl attened phase portrait in Fig. 2 (b), and the 
decreasing of the frequency of oscillations.

Phase portraits of nonlinear oscillations 
In case of the maximum amplitude y0 =  Hsmax/H0 = 1 at 

big diff erence in sections of vertical tubes (σsg=0), and on 
condition l/σLs=0 the equation  is reduced to:

2 1 .y y                                    (17)

On the phase plane it is equation of the parabola (Fig. 
3 (a)) closed by a vertical segment. Analyzing the equation  
it is possible to see that at increase in length of a connecting 
tube the parabola is fl attened and turns into an ellipse. The 
graphic analysis of fl uctuations for the case l/σLs=0 is also 
given in [4] where two phase paths in the limiting cases 
are presented: when the cross sections of vertical tubes 
are identical and when they are much diff erent. When 

amplitude changes within 0<y0<1 (displacement from – y0 
to y0) in the system takes place the following evolution of 
phase paths: semiaxes of ellipses at y0→0 increase with 
a growth of amplitudes, elipses being strongly deformed 
in the foots reached by a fl uid column; angles of paths on 
phase plane at an approximation to a parabolic form are 
sharped (Fig. 3 (b)).

Taking into account a numerical factor the behavior of 
the system in cases σsg=1 and y0<<1 coincide.

When there is small diff erence between cross 
sections, the phase paths are ellipses, and in the process of 
decreasing of the parameter they ar e imposed at each other, 
almost merging into one curve. Further, if the oscillation 
amplitude is small (y<<1), we have the linear description of 
liquid oscillations in vessels with a frequency . Assuming 
the amplitude to be a small, but such that we neglect only 
an item contain square of diff erential from y, we obtain 
a nonlinear equation. In Fig. 3 (с) change of phase paths 
in process of increase in parameter l/σLs is the following: 
elliptic paths are fl attened to an ordinate axis having one 
generic point.   

Oscillation frequencies in the system 
of connected vessels

For studying nonlinear oscillations of the system 
and analyzing oscillation period we fi nd the integral of  
equation:

0 2 2
0

(1 ) ,  sg
y q

t t d
y

y
y




  


 
              (18)

Where t0 is the constant of integration, and 

 2

1 .
1 1sg Ls sg

lq
  

 
 

Fig. 2. Evolution of the phase portraits of linear 
oscillations of the system  when: a) connecting tube 
section is fi xed as l/σLs=2, parameter y0=0.2; 0.5; 0.7; 
0.9; 1; b) maximum amplitude of oscillations is fi xed 
as y0=1 while the parameters of the connecting tube l/
σLs=0; 0.125; 0.5; 2; 4. 

Fig. 3. Evolution of a phase portrait of nonlinear 
oscillations of the system  when: a) maximum amplitude 
is constant y0

2=1 and cross sections strongly diff er σLs=0, 
the ratio l/σLs=0; 0.125; 0.5; 2; 4; b) cross sections 
strongly diff er σsg=0 and l/σLs=0 while the oscillations 
amplitude y0=0.2; 0.5; 0.7; 0.9; 1; c) amplitude is small 

2 0y   and the ratio of cross sections is fi xed σsg=0.5, 
the parameters of the connecting tube l/σLs=0; 0.125; 
0.5; 2;4.
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If limits of integration are substituted:        
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where E(φ, k) is an elliptical integral of a second type and 
introduced denominations are:

0 0
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The half-period of oscillations is a time span of the 
oscillations amplitude changing from its minimum to 
maximum point (from –y0 tо y0). We see that if we substitute 
the limits into an expression (19), the second term becomes 
zero both at minimum and maximum value. Furthermore 
we see that in the case of y = –y0, sinφ = 0  and thus, φ = 0, 
and if y = y0 then sinφ = 1, and thus φ = π/2. Because E(0,k) 
= 0, then oscillation frequency is: 

   02 1 ,
2sg y q E k        

  
         (20)

The infl uence cased by initial amplitude y0 and by 
parameters of the system l/σLs and σsg is shown in Fig. 4 
(a) and in Fig. 4 (b). Fig. 4 (a) presents the dependence of 
oscillation amplitude on initial amplitude and parameter l/
σLs when the relation between cross sections is constant. 
It is obvious that oscillation amplitude increases with 
initial amplitude growth and the exponential law describes 
decreases with growth of parameter l/σLs, and dependence 
of frequency on parameter l/σLs. In Fig. 4 (b) there is a 
dependence of the oscillation frequency on initial amplitude 
y0 and a parameter l/σLs. As we can see here, oscillation 
frequency changes with an increase of an initial amplitude 
y0 as an exponential function and with an increase of relation 
between cross sections σsg as a logarithmic function. To the 
linear cases of the oscillations lines of constant frequency 

correspond. For example, if k = 0 (i. e. y0 = 0) E(π/2,k) = 
π/2 and then frequency is:

0

0

1 1
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.
L g s

s gS SH
g H SS S




                (21)

In addition, k becomes zero at q→∞ (i. е. at σsg = 1), 
and then we receive the expression for frequency which is 
totally coinciding with a formula (11).

If the cross sections of vertical tubes considerably 
diff er, the oscillations period does not depend on a cross 
section of a vertical tube with a large diameter.
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   (22)

Analogies
Analogy with electric current. In case of σsg=1 the 

equation  takes the following form: 
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               (23)

After redesignation 2 2
0y y   , 2y U , 

LL S r , 02H S R , the  equation  transforms into an 

U=εR/(R+r), which is similar to an expression for the 
electric fi eld strength, where r is an internal resistance, R is 
a load resistance, ε is an electromotive force. Instantaneous 
value of a deviation of level y from equilibrium level y=0 
defi nes a potential energy of the system and is the reason of 
fl ow of a liquid. Redesignation corresponds to that from the 
total energy of all system (vertical containers and a 
connecting tube);the potential energy of vertical vessels is 
neglected. The kinetic energy of vertical vessels and a 
connecting tube exactly corresponds to electromotive force 
of a source of electric current. In the work [10] it is also 
discussed how to map the U-tube vessel to an electric 
circuit.  

Mechanical analogies. As it was already considered 
above, in case of equality of cross section of vertical vessels 
we obtain the frequency period  similar to small frequency 
period of a physical pendulum T=2π((h+r2/h)/g)1/2, where H0 
corresponds to the distance from the suspension point to a 
pendulum center of gravity h, and LSs/(2SL) corresponds to 
the moment of inertia concerning the axis passing through 
a center of gravity. And if parameter l/σLs equals to zero too, 
we obtain oscillation period of mathematical pendulum. 
Same way we can obtain analogy with oscillations of 
a spring pendulum T=2π(m/κ)1/2 in case of equality of 
all cross sections in the system if we consider that to the 
weight m corresponds the value ρS(H0+L/2), and to the 

Fig. 4. The graph of dependence of an oscillation 
frequency: a) at fi xed ratio of cross sections σsg=0.5 
of vertical tubes, dependence on the initial amplitude 
y0 and parameter l/σLs; b) at fi xed parameter l/σLs=0.5, 
dependence on the initial amplitude y0 and ratio of cross 
sections σsg. 
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stiff ness there corresponds value κ = ρgS. In case of the 
maximal possible amplitude and condition l/σLs = 0, when 
the equation describing motion has a form (17) we see that 
dimensionless oscillation period is T/2=√2. Respectively, 
dimensional period is: 

02 2 .T H g                              (24) 

Here we observe the analogy to periodic vertical 
motion of the ball which elastically bounces off  a horizontal 
surface, where H0 corresponds to the height from which the 
ball was dropped. The phase path for such a ball motion 
has the similar shape to the path in Fig. 3 (a) for l/σLs = 
0. Fig. 5 shows the time dependence in this case, it is set 
of parabolic segments (in linear case we have a sinusoidal 
dependence). 

Analogies with wave motion. If all cross sections of 
the tubes in the system are equal, an analogy also could 
be considered with the propagation of elastic waves in 
condensed matter. Using accordance for stiff ness κ = ρgS 
(on the assumption that vertical tubes and horizontal has 
the identical cross sections) we can rewrite expression for 
Young’s modulus as:

0

0

( )
2 ( ).

2L

LH LE g H
S





                  (25)

Consider longitudinal waves we see that phase 
velocity of the running waves is:

0 2
E Lv v g H
 

     
 

               (26)

Here we regard oscillations in U-tube as standing 
wave with the wavelength λst = λ/2 = L where L is the 

distance between vertical containers (walls). This standing 
wave is a superposition of the running wave and refl ected 
wave with wavelength λ.

An expression for group velocity of running waves is 
the following:

 
 0

0

4 .
8 4
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gr f

v gv v g H
g H

 
 


    

 
 
(27)

Let us analyze the limiting cases, i.e. we will consider 
deep and shallow waters. As the criterion of defi nition of 
the deep and shallow water, we will take a ratio of length 
of a connecting tube and a equilibrium height of the liquid. 
If we consider that for the deep water the length of a 
connecting tube considerably exceeds liquid column height 
in a vertical vessel L/2 >> H0, expression for phase speed 
has an appearance:

4.f g                                    (28) 

That practically coincides with an expression vf for 
gravity  waves in deep water [11], and the group velocity 
of those is:

4 .
8 4 2

f
gr

vg
gv 


                             (29)

i.e. group velocity is twice less than the phase one.
Now consider a case, when the length of a connecting 

tube is much smaller than the liquid column height in 
a vertical container, L/2 << H0. Then the speed of a 
longitudinal wave equals to:

0fv v gH                                    (30)

Thereby we received phase velocity for gravity waves 
in shallow  water. This speed is dispersion-free (vf = vgr).

When carrying out analogy to wave motion and 
consideration of deep and shallow water, an interesting 
question is: what exactly in the system of communicating 
vessels is defi ned as the limits of deep and shallow water? 
The criteria of defi nition of deep and shallow water can be 
chosen not only as a ratio of length of a connecting tube 
and equilibrium height, but also as a ratio of diameter of a 
vertical tube and equilibrium height of the liquid level in 
vertical containers. In a general case we obtain the nonlinear 
equation which solution will be expressed through elliptical 
integral and will have the form of a common solution of 
the nonlinear equation. Therefore we will focus on the less 
complicated case of the identical cross sections of vertical 
tubes. 

For the deep water the equilibrium height of liquid 
in both vertical tubes well exceeds their diameters, and, 
respectively, the cross sections are H0 >> √Sg и H0 >> √Ss, 
and then the period and frequency are:

2
0 0/ 2 / , .T H g g H                    (31)

Having made redesignation κ=H0
-1, we obtain the ratio 

Fig. 5. The height-vs-time dependence in narrow vessel 
in extremely nonlinear case according to equations (17) 
and (24).
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ω2 = gκ, that has an appearance similar to a dispersion ratio 
for deep water ω2 = gk [10], where k is a wave vector.

For shallow water (H0 << √Sg, H0 << √Ss) it is visible 
that frequency is: 

.
2s L

g
LS S

                                 (32)

The dispersion ratio for shallow water from [11] has 
an appearance ω2=gκh/χ, where χ = λ/(2π) is a reduced 
wavelength. For the obtained expression we observe the 
following analogies: as well as for deep water a wave vector 
is κ = 1/H0, to reduced length of a wave there corresponds 
value χ = LSs/2SL. Respectively, expressions for phase 
velocity for deep and shallow water are:

,
2

s
f

L

SLv g
S

 and 0 .fv gH                 (33)

It is interesting that both approximations for deep and 
shallow water will well be coordin ated among themselves. 
If in the formula (28) as length of a standing wave we take 
the value LSs/SL (i.e. considering that the cross sections 
of vertical containers diff er from the cross section of 
the connecting tube), then for deep water we receive 
expression that exactly coincides with the one for deep water, 
equation (33). Equality of phase velocities  (30) and (33) 
for shallow water is apparent.

Conclusions
1. Oscillations of liquid in the system of 

communicating vessels are studied. Frequencies and 
periods of free oscillation are discribed for the general case 
through elliptical integral. 

2. Phase portraits are plotted for the general case 
of oscillations when diff erent parameters of the system 
are changed, i. e. dependence of liquid motion on one 
parameter of the system when other parameters are fi xed. 
When oscillations are linear, phase paths are elliptical, 
while in the case of nonlinear oscillations we have 
parabolas closed by a vertical segment. The same kind 
of phase portraits also correspond to the vertical motion 
of a ball elastically bouncing off  a horizontal surface, 
which suggests analysis of the strong analogies between 
the various mechanical motions and the oscillations of the 
liquid in the communicating vessels. 

3. Analogies are considered with some diverse 
physical systems: mathematical, spring and physical 
pendulums, an electric current. We have also studied an 
interesting analogy with wave propagation in condensed 
matter which arises when we consider the cases of deep 
and shallow water. Notice two diff erent ways to approach 
the problem: after obtaining expressions for the velocities, 
we can reveal the connection between oscillations in the 
U-tube and elastic waves, or otherwise we can fi rst analyze 
the cases of deep and shallow water and then turn to elastic 

waves. 
4. In this work the internal friction (viscosity) is 

neglected, which must have an infl uence on real liquids’ 
motion. If we consider viscosity, the general motion 
equations would be changed, and that will lead to the 
results diff erent from obtained here for the frequency of 
oscillations. It is of interest to further analyze the general 
expression for oscillations frequency because in the current 
work analysis is presented for the more simple case of the 
identical cross sections of two vessels. It is also prospective 
to consider the siphon mechanism within this system and 
study the fountain eff ect caused by special initial conditions. 
Using discussed system of communicating vessels such 
extraordinary phenomena as superfl uid fl ow (for example, 
liquid helium or diluted quantum gas) and supersolid (4He) 
could be experimentally studied. 
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