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The magnetic response of a degenerate electron gas in nanotubes
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Within the framework of a simple model of the energy spectrum of electrons on the nanotube surface with a superlattice in a
magnetic field, an analytical expression for the magnetic moment of a degenerate electron gas is obtained. It is shown that in the case of
a large number of filled energy levels of the transverse motion of electrons there exist monotonous and oscillating contributions to the
magnetic moment. The oscillation part demonstrates de Haas-van Alphen type of oscillation on electron density and Aharonov-Bohm
like oscillations on longitudinal magnetic field.
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Ha ocHOBe MOJENBHOTO CIIEKTpa YHEPIHU AJIEKTPOHOB Ha MOBEPXHOCTH HAHOTPYOKH CO CBEPXPELICTKOH B MarHUTHOM MOJIe
MOJTyYeHO AHAJIUTHYECKOE BBIPaXKEHHE JUII MarHUTHOTO MOMEHTa BBIPOXKICHHOTO JJIEKTPOHHOTO rasa. IlokaszaHo, 4To B ciydae
OOJIBIIIOTO YHCIIa 3aMIOHEHHBIX YPOBHEH SHEPTHH ONEPEYHOTO JBIKEHHS YJICKTPOHOB CYIIECTBYIOT MOHOTOHHBIC H OCIMLINPYIOIINE
BKJIAJbl B MarHUTHBIH MoMeHT. [locmemHmii MCHBITEIBAaeT ocIpuuiinuy Tuma ae [aaza-Ban Anb(eHa C M3MEHEHHEM ILUIOTHOCTH
9MEKTPOHOB M OCHMLIAINT AapoHOBa-boMa ¢ M3MeHeHneM MarHUTHOTO TTIOTOKA Yepe3 CedeHHne TPyOKH.

KoaroueBble ciioBa: HaHOTpyOKa, CBEPXpEIIETKA, MAarHUTHOE TI0JIE, MAaTHUTHBIH MOMEHT.

Ha ocHOBI MOJENBHOTO CHEKTPY €Heprii eJICKTPOHIB Ha MOBEPXHI HAHOTPYOKH i3 HAATPaTKOIO y MarHiTHOMY IOJI OTPUMAaHO
QHANITHYHUI BHpa3 U1 MAarHITHOTO MOMEHTY BHPOJKEHOTO E€JIEKTPOHHOro ra3y. IlokaszaHo, IO y BHIAAKy BEIHMKOI KiTBKOCTI
3allOBHEHHX DIBHIB €HEPTil MOMEPEYHOr0 PyXy €JEKTPOHIB iCHYIOTh MOHOTOHHI Ta OCIWIIIOIOYiI BHECKH JO MAarHiTHOTO MOMEHTY.
OcranHiil Bunpo06oBye ocumawii Tumy e ['aasa-Ban Anbgena 31 3SMiHOIO TYCTHHU €JIeKTPOHIB 1 ocimisinii AapoHoBa-boma 31 3MiHOIO

MarHiTHOTO MOTOKY Yepe3 IePeTHH TPyOKu.

Kirwuogi ciioBa: HaHOTpYyOKa, HaArpaTka, MarHiTHE TOJIe, MATHITHUI MOMEHT.

Introduction

The study of the magnetic response in nanostructures
with cylindrical geometry (nanotubes) provides us the
important information about the electron energy spectrum
and the potential of geometric confinement of electrons in
such systems [1-6]. This is because the magnetic response
of such nanostructures is mainly determined by the shape
of the electron spectrum, which in turn depends on the
geometry of the system.

Interest in carbon [1-3] and the semiconductor [4-6]
nanotubes is caused by their unique characteristics — high
strength and conductivity, magnetic, waveguide and optical
properties. These systems are obtained by folding a sheet
of graphene or two-dimensional heterostructures in a tube.
Depending on the method of a folding the tube has a metal,
semiconducting or dielectric properties.

Modern production methods allow one to create not
only nanotubes, but also nanotubes with superlattices.
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Along with the flat superlattices [7-15] there exist the
superlattices with cylindrical symmetry [16]. They are
radial and longitudinal [16,17]. The radial superlattice
represents a system of coaxial cylinders and the
longitudinal superlattice is similar to the system of coaxial
rings. The tubes with longitudinal superlattice are created
by lithographic methods and by the introduction of
fullerenes in a tube. In such a system there is a periodic
potential acting on the electrons moving along the tube.
The miniband appears in the energy spectrum of electrons.
The density of electron states has a root singularities on the
miniband boundaries [18].

It is important to note that the theoretical study of
magnetic properties of nanotubes with a superlattice is
quite a complex problem. The effect of one-dimensional
superlattice on the magnetic moment of the semiconductor
nanotubes is relatively little known. The theoretical research
in this field is usually limited to numerical calculations.



G.1. Rashba

The number of electrons, considered in these numerical
studies, is little and such research methods can not be
used for the study of nanostructures, containing hundreds
or thousands of electrons. In addition, the most important
thing is that the numerical methods do not always reveal
the physical nature of the phenomena studied. In Ref. [19]
the magnetic response of the electron gas on the surface of
semiconductor nanotubes in a longitudinal magnetic field
without the superlattice is considered. The Ref. [20] takes
into account the effect of the superlattice on the magnetic
moment. However the authors of [20] had obtained results
which are expressed in terms of integrals. The authors Ref.
[20] argue that these integrals are not expressed in terms
of tabulated functions, and for this reason they are limited
themselves to the numerical calculation.

The goals of this article are: to choose the suitable
model for the description of the geometric confinement in
nanotubes, to offer a convenient expression for the energy
spectrum of electrons in the tube with superlattice, to obtain
an analytical formula for the magnetic response of the
electron system, to study the dependence of the magnetic
moment on magnetic field and the surface curvature.

The electron energy spectrum

Equilibrium properties of the electron gas in
nanosystems are determined by the electron energy
spectrum, which is caused by the geometry of the system
[19].

The energy of the electron with effective mass 7, on
the nanotube cylindrical surface in a magnetic field B
parallel to the tube axis was calculated by Kulik with taking

into account the radial motion quantization of electrons in
the tube of small thickness [21]:

n2k?

i = Eo(m+1) +—— (1)

o
where /i —quantum constant, im and 7k — the projection

of the angular momentum and electron momentum on the

2
axis of the tube, &, = % - rotational quantum,
msa

a —the tube radius, 77 = % —the ratio of the magnetic
0
flux O = ﬂazB through the cross section of the tube to

the flux quantum @, =27[c% [21]. Equation (1)
describes a set of one-dimensional contiguous subzones,

whose boundaries &5 = &y (m +77)2 coincide with the
quantized energy levels of the circular motion of the
electrons on the tube in a magnetic field. The density of
electron states has a root singularity at the subzone
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boundary. The simplest way to take into account the
superlattice on the tube is to replace the longitudinal motion
electron energy in the formula (1) by the expression

8k:A(1—COSkd)’ )

where d - the period of the superlattice, 2A — the width
of the energy spectrum band of the electron longitudinal
motion. This expression (2) is borrowed from the theory of
tight binding between the electrons and the lattice and it is
often used in the theory of layered crystals and superlattices
[20,22,23]. Thus, in the single-band approximation, the
electron energy with an effective mass m, and spin

magnetic moment fp on the cylindrical nanotube surface

with a longitudinal superlattice in the longitudinal magnetic
field is

Emko = 30(m+77)2 +A(l—coskd)+ougB | (3)

where o =%1 - spin quantum number. This band

corresponds to the wave number values situated in the first
Brillouin zone — % <k< % . The spectrum (3)

describes a set of allowed electron energy region in intervals
& <& <g +2A, which separated by gaps. According

to the analogy with the conventional superlattice theory
these bands are called minibands.

Magnetic moment of the electron gas
Using the standard expression for the thermodynamic
potential € [24], we obtain in considered case the
following expression

o Y
kpTL H=Epio
Q=— B;; z z J dkln{l+exp(T]f‘fH,(4)

m=-o o ()

where L — the nanotubes length, kB — Boltzmann
constant, H _ chemical potential. Using formula (4) we

find the magnetic moment according to the expression

M =-(%/ .
OB T Then we get the expression

D m,
T, -
o 1 Y m+—+o

M L 0]
__z_ﬂ Z Z .[dk (6 0 njo .5
exp| —— [+1

/uB T m m=—wo=—1 ()

where my) — the free electron mass. In Ref. [20] the spin is
not taken into account but in this article it will be taken into
account. The summation over # in the formula (5) is

calculated using the Poisson summation formula:
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Z V/( Z de(// Zmlx
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As aresult of simple transformations, it turns out that the magnetic moment of the electron gas on the surface of the

tube with a superlattice can be represented as the sum of three contributions M = M + M, + M5, where

7
M, 2Lo
1= dk | dx (6)
Hp ; T 0 I f

7
M, _ Z4Lm0 Zsm(zﬂlE] .[ dkj dx'x'sin (271x") / (x'). @
0 0

Hp o M o 0

~+00
d [ dx' cos(2xlx') f (x'). ®)
0

M 410 31 ) %
——322—2005[27#—}]'
B o 7 1= Do) %

The notation here we have used:

f(x)= :

expﬂ[gox'2 +A(1-cos kd)+tuB—,u} +1°

where 'B = kBT — the reverse temperature.

(From the formulas (6)-(8) it is seen that under & = 0 the only contribution A 5 is non-zero.)
Expressions (7) and (8) are the result of the expansion of Fourier series of the magnetic moment of nanotube with a
superlattice:

ZZCzl sm(27ﬂ§] ’ ZZQ, cos(27zl§} , 9)

o =l 0 g o =l 0
Let us introduce the new variables x =k X 27x' = z and notation ' = S2A,
U, & z?
— 0
by (z)=Ho - 202
2A 87°A

where Mo = Mo —OHpB [y _ the chemical potential at zero temperature. Also we take into account that there is

S _ .02 . . . . .
an identity A (1 —Cos2x ) =2AsIn” X As aresult, we obtain the following expressions for the Fourier coefficients:

2 77 1

C3 = Pmd J.dzzsleJ. dx ﬁ'(sinzx—bg) , (10)
e +1
V4
%
Cy = 4LO- J dz cosIzJ. dx . 21 , (11)
ﬂ- o (sm x—bg)_i_1

It follows from (9)-(11), the magnetic moment of the semiconductor nanotubes is an oscillating function of magnetic
flux with a period equal to the flux quantum.
Following the authors Ref. [20], with the goal of qualitative research nature of the dependence of the magnetic
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moment of the magnetic flux, one considers the case 7'=0. Then in the jdx integrand takes the

formula ® (Sin2 x—b, ) , where ® (x) — the Heaviside theta function. Next, you need to consider the following case,

when 4, >2A.

In that case there exist the contributions for the magnetic moment:

27 Ho 24 27 |Ee
M, 2ml x V0 .
_72 _ 20 Zsln[27rl—j2 — I dzzsinlz + .[ dzzsinlzarcsin,/ba(z) (12)
Mg womd i Do S5 2 1o —2A
272- o =
€0
27 Ko 24 2z |He
M +M, 2L P “
——1 3 = 5 ZO‘ By I dz + I dz arcsin«/ba(z) X
Hp ned s 0 1, 2A
27 |Fe (13)
€o
400 q)
X 1+22cos 27xl— |coslz |.
= Dy

Further analysis of the magnetic moment dependence of the magnetic flux is performed using the values of typical

parameters Gads , which are commonly used in experiments [16,20]: m, = 0.07-m0 (mgy — free electron mass),
0
a=10"cm , ,u% =10, L=10um kK A=0.01eV, d =3500 A . Provided you use inequalities f; > 2A
0

Mg = &) it can be represented (12) in the form

2myL <
M, _2myL ZZ —sm{Zﬂl /'UUJ L ’u—gcos{Zﬂ'l ’u—aj sin(angJ. (14)
Hp  md 57 71N & “0 o

If we consider the inequality A< , we can neglect the first term in brackets in (14). The second term in brackets

max

in formula (13) contains the integral of the form _[ dzarcsin Y b ( ) coslz .

me

872 Hs 2
Proceeding in this integral to a new variable U# according to the formula Z = Z -—u
€0

followed by an approximate calculation under condition Ao > 2A 4 gives

2
Vs A Y7,
B z——COS(Zﬂ'l —"J. 15
2 \Eéols €o (1

As a result the contributions were obtained:

—M=2—LZU Ho 1+A+—Zcos(27ﬂ/ Jcos(ZﬂIE] . (16)
Hp d ‘7 o 2y Mo 1T €0 @,
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It is important to note, that the integral

872A j "
o |Ho_ 2
2A

arcsinu

can be calculated exactly. As a result of the integration
by parts it is equal to:

BTN 7 My Mo g [2A
g | 2V24 2A W\, )|

where £ (k ) =E (% N ) —the complete elliptic integral
of the second kind [25]:

@
E((p,k) = jdax/l —k*sin’ «
0
— elliptic integral of the second kind, k&

Performing expansion in the £ ( ’ 2% j over small
-

parameter 2A < M we obtain the result that is consistent

with (15) at / = 0.

The formula (14) and (16) undergoes Aharonov-Bohm
oscillations under variation of magnetic flux through the
tube cross-section. The oscillation period is equal to the
flux quantum @ . Also there exist the oscillations looking

BS =

— its module.

like de Haas-van Alphen ones. They are caused by transition
of root singularities of electron density of states at the
miniband boundaries through Fermi boundary due to the
tube radius variation or changing the electron density 7 .

The latter is related with the Fermi energy under £ >> 2A
as follows [26]

1 2
MU= —( hdn)
8m, ’
In addition, we neglect the weak spin levels splitting.
Analyzing the dependence of oscillations in (14) and (16)

on (adn )% we obtain the period

Y

1

asm,A

Conclusions
The increasing interest in electron properties of carbon
and semiconductor nanotubes is due to several reasons.
They are functional elements of various instruments and
devices. The existence of an additional parameter — the
curvature of the nanostructure — increases the number of

T =

)
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ways to control the properties of these systems. Modern
production methods allow us to create the superlattice on
the tubes. Nanotubes with a superlattice are characterized
by additional parameters — the period and amplitude of
modulating potential. As a result, the physical properties of
the electron gas on the surface of the tube with a superlattice
become richer.

Observation of the magnetic moment oscillations of
de Haas-van Alphen type allow us to determine the electron

effective mass m, , Fermi momentum, rotational quantum
&y and the superlattice parameters d and A. These

values determine the amplitude (14), (16) and period (17)
of magnetic response of the nanotube. The magnetic field
results in Aharonov-Bohm oscillations of the magnetic
moment caused by nonconnectivity of the area occupied by
electrons.
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