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In bounds of the non-linear and system paradigms, been formulated by L. F. Chernogor in the last 1980th, all processes
in open, non-linear, dynamical systems are very complex, non-linear, ultra-wideband or fractal ones.

According to the fractal paradigm put forward in the early 2000s by V. V. Yanovsky, fractality is one of the
fundamental properties of the surrounding world. Therefore, the study of fractal characteristics, in particular, of natural
physical processes is actual, interesting and useful.

The fractal dimension based on the Hurst exponent is one of the oldest and most famous ones. Based on the study of
model fractal signals, it is demonstrated that the dependence between the estimate of the Hurst fractal dimension, obtained
by the normalized range method, and its true value is significantly non-linear. To decrease of influence of the errors
arising as a result of this, it is proposed to use the method of the corrective function.

The practical effectiveness of the proposed method is demonstrated on the example of the analysis of experimental
results obtained in the middle 1960s by H. E. Hurst, which discovered the presence of a somewhat strange grouping of
the values of the Hurst fractal dimension around the value of 1.27 for various natural physical processes. A hypothesis
about the possibility of explaining this fact precisely by the nonlinearity of the mentioned dependence for R/S-method
was proposed.

Keywords: nonlinear paradigm, natural physical process, fractal paradigm, fractal analysis, fractal dimension, corrective
function, rescaled range analysis method, Hurst exponent.
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INTRODUCTION

It is well known that the term ‘fractal’ (from the Latin
‘fractus’, meaning ‘broken’) has been proposed by great
American physicist and mathematician Benoit Mandelbrot
in 1975 [1]. After some tens of years accompanied by
strong scientific fights between the thousands of supporters
and opponents, the fractal ideas had fully won (see, for
example, [2 — 12]).

Following so called ‘fractal paradigm’ proposed in
2003 by famous physicist Prof. V. V. Yanovsky (Kharkiv,
Ukraine), fractality (as non-linearity earlier) was appeared
to be one of the fundamental properties of the world around
us [13, 14]. Fractality has already become a new paradigm
of modern science. Moreover, in the non-linear and the
system paradigms been formulated in 1980s by Prof.
L. F. Chernogor (Kharkiv, Ukraine), it has been claimed
that in the open, complex, non-linear, dynamical systems,
many natural and artificial processes, in particular, inspired
by operation of the powerful, non-stationary sources of
energy release can be classified as short-time, ultra-
wideband, non-linear and fractal ones [15].

To discover, research, describe and explain the fractal
properties of natural and artificial processes, it is necessary
to apply different methods of mono-fractal and multi-
fractal analysis (see, for example, [16]). Namely these
methods give an useful and comfort set of different
numerical characteristics been able sufficiently fully
reflect all main peculiarities of the signals and processes
investigated.

A fractal dimension D is appeared to be one of the most
important such numerical characteristics (see, for example,
[12]). In general, there are a lot of different fractal
dimensions, which can be estimated as for mathematical,
as for physical (natural) fractal signals and processes (see,
for example, [16]). Each of them has own peculiarities for
calculation methods and own set of appropriate cases for
application. In this paper, we shall deal with only one of
such fractal dimensions, namely, the Hurst dimension Dy
and with only one method for its calculation, namely,
rescaled range (R/S) analysis method called frequently as
simply ‘R/S method’.

The purposes of the paper are to investigate the
peculiarities of the Hurst dimension estimation with R/S
method and to try explaining some seems strange
regularities obtained in 1980th by B. Mandelbrot for Hurst
dimension Dy (and, of course, for the Hurst exponent H)
of many natural physical processes.

R/S METHOD AND
HURST FRACTAL DIMENSION
Being as natural, as artificial origin, many real signals
and processes in nature have fractal properties and,
therefore, are the physical fractals [1 — 9]. It is important,

that in the most cases, these properties are understood
namely in statistical sense, not in algebraic or geometric
ones [1 — 9]. Therefore, to describe them correctly, the
statistical numerical characteristics should be used.

The Hurst exponent H been introduced by H. E. Hurst
in 1951 (twenty-four years before fractals!) in the paper
[17] is appeared to be such the oldest statistical numerical
characteristic. In bounds of the Generalized Brownian
Motion (GBM) Model [3], the Hurst exponent H and
fractal dimension Dy called as the Hurst fractal dimension
are connected with the relation Dy = 2 — H.

Today, to estimate the Hurst exponent of a signal X (t),
there are many different ways. Being proposed by
H. E. Hurst in 1965 [18], the oldest way is well known as
the Rescaled Range Method or R/S method [3].

According to the new fractal analysis method
classification introduced in 2022 [19], all existing mono-
fractal analysis methods can be divided at six different

groups, namely, methods based on the geometric
characteristics, methods based on the algebraic
characteristics, methods based on the statistical

characteristics, methods based on the frequency and time-
frequency characteristics, complex methods and special
methods. Being statistical by the origin, R/S method is
appeared to be a member of the group of methods based on
the statistical characteristics.

As the examples of another ways of the Hurst exponent
estimation, the Variogram [20] or Semivariogram [21]
Method, the Mandelbrot and Wallis Method [22], the
Dispersion Analysis Method [23] known as the Standard
Deviation Analysis [24] too, the Autocorrelation Analysis
Method [25], the Second Moment Method [26], the Peltier
and Levi-Vehel Method [27], the Variance Plot Method
[28], the Detrended Fluctuation Analysis Method [29], the
Aggregated Dispersion Method [30], the Aggregated
Signal Absolut Values Method [30], the Scaled Windowed
Variance Method [31], the Detrended Moving Average
Method [32], the Signal Summation Conversion Method
[33], the Diffusion Entropy Analysis Method [24], the
Variational Dimension Method [34], the Adaptive Fractal
Analysis Method [35], the Fractal Dimension Algorithm
Method [36], the Generalized Variogram Method [37] and
many others can be listed.

As well known, the main idea of the R/S method is
following (see, for example, [21]). Note, we shall speak
about a discrete signal investigated, since in practice, if the
digital signal processing methods are applied, all the
signals and the processes researched should be represented
in discrete form only.

Let’s consider a discrete signal s; containing N points
(i= 1,_N, that is the variable i varies in bounds from 1 to
N with a unit step). For this signal, its partial sums

y(n) =Y s,n=1,
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dispersions (square of the standard deviations S(n))
1 1 2
S2(n) = ~¥in [si —;y(n)] ,n=1
a so called ranges R(n) should be estimated. As well

known, the range R(n) of the signal s; is given by the
relation:

R(n) = max (y(t) - %y(n)) - min (y(t) - %y(n)).

Basing on these values, so called R/S statistics is build:

R _Rm_ 1
sWESm 5w
n=1.

In 1951 [17], basing on the results of empirical
investigations, H. E. Hurst found that the mathematical
expectation of such statistics showed a power-law
relationship with the size of the observation window length
n as:

E[R/S(n)] ~ CnM,
where C is some limited, positive constant, which doesn’t
depend on n, H is the Hurst exponent, E|[ ]is the operation
of a mathematical expectation calculation.

Therefore, varying the observation window length n,
the plot of the logarithms of E[R/S(n)] vs. the logarithm
of n can be obtained. If a signal s; investigated has really
the self-affine (and fractal, of course) properties, all points
calculated should be appeared to be grouped around some
straight line. Being equal to the angle coefficient of this
straight line, the Hurst exponent H can be estimated with
usage of the least square method.

It is very important to note, that if that points were
appeared to be not grouped around any straight line, it can
be claimed, that a signal investigated hasn’t a self-affine
property and, therefore, is not a fractal one. The Hurst
exponent H cannot be estimated in such case at all.

On other hand, in most practical cases, a signal
investigated is appeared to be fractal in some limited scale
range only, not in all range. In such case, the experimental
pointes plotted in the double logarithmic coordinates can
be successfully approximated with a linear function in
some scale range only, not in all range too. Therefore, they
should speak about limited scale range fractal properties of
the signal or process researched.

Moreover, as it had been found by B. Mandelbrot (see,
for example, [1, 3]), for fractals, the Hurst exponent value
H should be limited in the range 0 < H < 1. Otherwise the
signal analyzed is appeared to be not self-affine and,
therefore, is not fractal [3]. If the condition 0 < H < 1 was
successfully satisfied, then one can believe that the signal
investigated has mono-fractal properties in this range. It is
quite possible that for the same signal, some different scale

ranges with different Hurst exponent values will be
obtained [3].

It is necessary to point, that R/S method can be
successfully applied for investigations of the functions as
time, as space variables. Fortunately, formal replacing of a
time variable by a space one doesn't destroy the R/S
method correctness.

Meanwhile, in many cases, the real physical processes,
specially being in open, non-linear, dynamical systems
[15], are appeared to be non-stationary ones. Moreover, it
means that their fractal properties can vary with time too.
So, the Hurst exponent H should be estimated for some
limited, sliding time window W (t), but not for all signal
X(t) at once. In this case, the Hurst exponent becomes a
function of the time H = H(t) [38]. In our opinion, it is
convenient to connect these Hurst exponent values with
corresponding time locations of the center of the sliding
time window W (t) used. Namely such approach is applied
in this paper.

Let’s return to the Hurst fractal dimension Dy
calculation with the R/S method application for the entire
signal X (t). Namely such approach has been most popular
in the middle 1960™, when H. E. Hurst obtained some
strange results regarding a set of natural processes and
objects. He found (see, for example, [3, 39]) that the Hurst
exponent H is more or less symmetrically distributed about
a mean of 0.73, with a standard deviation of about 0.09. In
this case, the Hurst fractal dimension Dy has a mean of
1.27 and the same standard deviation, Dy = 1.27 £ 0.09.
Although this was purely empirical result obtained on the
base of generalization of huge amount of experimental data
having different natural origin, it looks some strange and
surprising. But up to current day, any reasonable
theoretical explanations of this strange fact haven’t been
proposed as by H. E. Hurst and B. Mandelbrot, as by other
famous specialists in fractals.

Nevertheless, all the results discussed above have the
same peculiarity. They have been obtained with R/S
method usage. Therefore, it can be done the following
assumption: the strange result obtained could be explained
by implying of some hidden peculiarity (or disadvantage)
of the R/S method. It is necessary to found it only.

CORRECTIVE FUNCTION METHOD

In 2022 in the paper [40], so called ‘Corrective
Function Method’ for mono-fractal analysis has been
proposed. The main idea of this universal method is in
following.

Let’s consider a mono-fractal analysis method, which
allows to obtain an estimation D* of unknown fractal
dimension D of a signal investigated. As it was proposed
above, this is a discrete signal s; containing N points (i =
1,N). The estimation D* is appeared to be an unknown
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non-linear function of D and N, that is D* = f(D, N). It is
understood, that in an ideal case this function must be
linear and simple (D* = D) and must not depend on N. But
in practice, this situation is appeared to absolutely
impossible.

For the sake of justice, we note that in general, the hints
of an idea of existence of the non-linear function D* =
f(D,N) for some methods of mono-fractal analysis were
be done by some specialists yet before the paper [40]
appearance. But there was no its clear formulation and no
ways to improve the situation proposed.

The main purpose of the Corrective Function Method
is to compensate the existing non-linearity of the function
D* = f(D,N) in some way and, therefore, to increase an
accuracy of the fractal dimension D estimation obtained
with given method of mono-fractal analysis.

To reach this purpose, in the paper [40], it was proposed
to inverse the non-linear function D* = f(D,N) on the
base of so called ‘Corrective Function’ (CF). For each
given mono-fractal analysis method, the CF should be built
on the discrete grid over the plain (D, N) with application
of the model fractal signal set with known changing values
of the variables D and N. The steps of changing on D and
N values can be chosen by each researcher in the way
which he like. For example, for our practical aims, we have
used D value changing in bounds 1 < D < 2, with the step
0.01, and N value given by N = 2%, k € N, where N is a
natural number set. It is clean, that the smaller these steps
are, the more precise the fractal dimension D estimation
will be. But in the same time, the data volume needed be
located in computed rises significantly. Therefore, each
researcher should choose between the needed accuracy and
the data volume allowed for given calculation.

When the CF on the discrete grid D;; = f(D;, N)), i =
I,_n, j= 1,—m has been obtained, the process of the non-
linear function D* = f(D, N) inversion can be started. For
fixed N value, N = Ng;,, the function D* = f(D, Ng;4), as
a function of one variable on the interval 1 < D < 2, can
have an inverse function D = f~*(D*, Ny;,) only in the
case, when the function D* = f(D, Ns;4) is monotonic
there. In this concrete case, the function D* = f(D, Ng;4)
should be a rising function of D in the interval discussed.

For comparatively big values of Ny, there are no
problems to satisfy this demand. But when N;, decreases,
for a function Dj; = f(D;, N;), the value Np;,, below of
which the monotonicity of the function D* = f(D, Ng;4)
discussed above (j = 1,(min— 1)) is appeared to be
disrupted, occurs. As well as all close explanations of this
process appearance causes and the bulky relations for the
fractal dimension D and its estimation error AD are
considered in the paper [40], which, if needed, can be

successfully downloaded for free, we avoid to repeat them
here.

Nevertheless, we believe (we don’t claim, of course)
that the algorithm of determination of the Ng;, value is
appeared to be very useful, since it allows to prepare a well-
founded and reasonable answer on the question of what
exactly is the minimum number of signal points Ny,;, and
why should be used in this method of monofractal analysis.

To prove the importantness of such answer existence, we
can cite an opinion of the world famous fractalist J. Feder,
which has claimed in the book [3], that for the R/S method,
minimal allowing Ny,;,, value should be equal at least 2500.
May be, this opinion would have some reason, but there was
no grounded explanation of such point of view. At the same
time, as it was found in the paper [40], for the R/S method,
the value Np,;, is appeared to be principally much smaller
(Npin = 32) due to the reasons described above. But it
should be taken into account that when N, value decreases,
the error of the Hurst fractal dimension estimation AD, of
course, rises.

RESULTS OF MODELING
WITH STOCHASTIC
MONO-FRACTAL SIGNALS USAGE

Let’s consider the non-linear function D* = f(D, N)
created for the R/S method on the basis of the model mono-
fractal signals.

All these signals used in this paper are the different
realization of the one stochastic mono-fractal signal model
with varying D and N values. This model is a well-known
model based on the modified cosine Weierstrass —
Mandelbrot function [41]:

MW(t) = Z::’O AP=Dn cos(A™t + @),
where A is a numerical parameter (4 > 1), D is a fractal
dimension (1 <D < 2), ¢, are the stochastic phases
having some chosen distribution law at the interval [0,27],
t is dimensionless time variable. Two examples of such
model signal realizations with different fractal dimension
D values are shown at the Fig. 1.

It should be pointed that if we consider ¢,, = const for
all existing n, a deterministic mono-fractal signal model
with given fractal dimension D appears.

As it was pointed above, in all the investigations
regarding a CF building, we used a discrete grid over the
plain (D, N), where D value was changed in bounds 1 <
D < 2, with the step 0.01, and N value was given by N =
2k, k € N. Namely this way is used now too.

As well as the model fractal signals used are principally
stochastic by their nature, for successful and correct
modelling, it is necessary to use many different realizations
with the same combinations of D and N with consequent
averaging of the results obtained. In this case, the
averaging over 300 stochastic realizations was used.
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Fig. 1. Model stochastic mono-fractal signals s(t) with
different fractal dimension D values: D = 1.2 (a) and
D = 1.8 (b). Here t is a dimensionless time.

At the table 1, the results of the Hurst fractal dimension
D™ estimation for the model stochastic fractal signals with
given D and N values obtained with R/S method usage are
shown. For each combination of D and N, as the Hurst
fractal dimension D* value calculated, as its error AD*
estimated are given. In all calculations performed in this
paper, the confidence level was used to be equal to 0.9.

From the table 1, the existing non-linearity of the
function D* = f(D, N) with fixed N values is clearly seen.
Moreover, there are some interesting tendencies. First, for
fixed D, the more N value is, the less difference between
D™ and D values occurs. Second, in the worst case, the error

*

D T T T T T T T T ™

1.8

1.6

1.4

1.2

1.0 o ), ] [ ). (] ] 1 ), J
10 12 14 16 18 D

Fig. 2. Comparison of the ‘ideal’ function D* = D (1) vs
the non-linear function D* = f(D,N) having fixed N
values: N =32 (2), N =128 (3), N =512 (4)and N =
2048 (5).

of the D* value estimation with R/S method usage doesn’t
exceed approximately 2.5%. Third, for the R/S method,
depending on the N value, there is some special bound D,
value, for which at the interval 1.0 < D < D, the results of
the Hurst fractal dimension D* estimations turn out to be
overestimated, but at the interval Dy, < D < 2.0 they turn
out to be, on the contrary, underestimated. For N = 32 —
2048 this Dy value is found to be slightly increasing in
bounds 1.3 < D, < 1.4 with value N rising.

Table 1

Hurst fractal dimension D* estimation for the model stochastic fractal signals with given D and N values obtained with

R/S method usage at the interval 1.00 < D < 2.00

D
N 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 1.80 | 1.90 | 2.00
2 123+ | 125+ | 128+ | 131+ | 1,34+ | 137+ | 1,40+ | 143+ | 146+ | 1,50+ | 1,53+
0,03 | 003 | 003 | 003 | 003 | 003 | 003 | 003 | 004 | 004 | 0,04
54 120% | 1,23+ | 127+ | 1,30+ | 1,34+ | 1,39+ | 1,43+ | 1,48+ | 1,52+ | 1,57 | 1,61
002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 002 | 0,02
128 L19E | 1,22+ | 126 | 131% | 1,36 | 1,42+ | 147+ | 1,53+ | 1,58+ | 1,63+ | 1,67+
0,01 | 002 | 002 | 002 | 002 | 002 | 001 | 001 | 001 | 001 | 001
256 LI8E | 1,22+ | 126 | 1,32+ | 1,38 | 1,44+ | 1,50 | 1,56+ | 1,62+ | 1,67 | 1,72+
0,01 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001
51 L16E | 121+ | 127+ | 1,33+ | 1,40 | 1,47+ | 1,53+ | 1,60+ | 1,66+ | 1,71+ | 1,76+
0,01 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001 | 001
1024 L15: | 1,20£ | 126+ | 1,33+ | 1,41+ | 1,48+ | 1,56+ | 1,63+ | 1,69+ | 1,74+ | 1,79+
0,01 | 001 | 001 | 001 | 001 | 000 | 000 | 000 | 000 | 0,00 | 0,00
2048 14+ | 1,19+ | 126+ | 1,33+ | 1,41= | 1,49+ | 1,57+ | 1,64+ | 1,70+ | 1,76+ | 1,81+
0,00 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 0,00
1096 LI13+ | 1,19+ | 126+ | 1,34+ | 1,42+ | 1,50+ | 1,58+ | 1,66+ | 1,72+ | 1,78+ | 1,83+
0,00 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 0,00
8192 113+ | 1,18+ | 126+ | 1,34+ | 142+ | 1,50+ | 1,59+ | 1,66+ | 1,73+ | 1,80+ | 1,85+
0,00 | 0,00 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 0,00
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Table 2

Hurst fractal dimension D* estimation and its mean value D* for the model stochastic fractal signals with given D and
N values obtained with R/S method usage at the interval 1.00 < D < 1.40

N D D*
1.00 1.10 1.20 1.30 1.40

32 1,228+0,028 1,253+0,030 1,277+0,031 1,306+0,032 1,336£0,032 | 1,280+0,031

64 1,203+0,020 1,234+0,021 1,268+0,021 1,303+0,022 1,344+0,022 | 1,270+0,021
128 1,190+0,015 1,223+0,015 1,264+0,015 1,313+0,016 1,364+0,016 | 1,271+0,015
256 1,175+0,011 1,218+0,011 1,264+0,011 1,317+0,011 1,379+0,011 | 1,271+0,011
512 1,161+0,008 1,207+0,008 1,265+0,008 1,331+0,008 1,396+0,007 | 1,272+0,008
1024 1,147+0,006 1,200+0,006 1,263+0,006 1,334+0,005 1,410£0,005 | 1,270+0,006
2048 1,141+0,004 1,194+0,004 1,262+0,004 1,334+0,004 1,412+0,004 | 1,269+0,004
4096 1,134+0,003 1,191+0,003 1,258+0,003 1,336+0,003 1,418+0,003 | 1,267+0,003
8192 1,129+0,002 1,184+0,002 1,257+0,002 1,336+0,002 1,418+0,002 | 1,265+0,002

At the Fig. 2, a comparison of the ‘ideal’ function D* =
D (1) vs the non-linear function D* = f(D, N) having fixed
N values: N =32 (2), N =128 (3), N =512 (4)and N =
2048 (5) are shown. The fact of this function non-linearity
existence is well confirmed.

A ‘strange’ result obtained by H. E. Hurst and described
above is shown at the Fig. 2 as a small gray rectangle
corresponding to the upper and the lower bounds of the
confidence interval for the fractal dimension D*. It is
necessary to understand how exactly it is placed relatively
all the dependencies shown.

Let’s consider closer an interval of fractal dimension D
values having such bounds: 1.00 < D < 1.40. As it was
pointed above, for R/S method, as a rule, at given interval,
the overestimating of the Hurst fractal dimension D*
estimation appears. Assume that there is a set of mono-
fractal processes with their own true fractal dimension D
values uniformly distributed in this interval. As well
known, being persistent (0.5 < H < 1), each of such
fractal processes has some long-term dependence (see, for
example [1, 3]).

If we would have an ‘ideal’ estimator, then all right
values D* = D would be obtained. But instead of such
‘ideal’ estimator, at our disposal, there is a R/S method
only. In this case, we should obtain only the D* values
distorted by the non-linear function D* = f(D,N). The
value of these distortions depends on both the D value and
the N value. At least, for N = 32 — 2048, the interval
1.00 < D < 1.40 is appeared to be non-linearly mapped
approximately to the interval 1.15 <D < 1.40. In the
table 2, the non-linear function D* = f(D,N) on the
interval discussed is given with more accuracy.

Of course, after the mapping performed, the
distribution law of such mono-fractal processes is appeared
to be differed from the uniform, but seems it is not so
significant now. For simplification, let’s suppose that the
distribution remains uniform. In such case, for different N
values, the mean value of the estimated Hurst fractal

dimension D* on the interval 1.00 < D < 1.40 can be
simply obtained (table 2).

As for our opinion, these last results are looked to be
very surprising. One hand, for an ‘ideal’ estimator, it is
understood that D* = 1.20. Other hand, for R/S method,
this value is appeared to be significantly shifted up.
Nevertheless, at least for N = 32 — 8192 the ‘strange’
result of H. E. Hurst D = 1.27 £+ 0.09 is appeared to be

excellently agreed in all cases with D* values obtained with
R/S method usage. At the Fig. 3, the relative location of the
gray rectangle described above and the non-linear function
D* = f(D,N) with its confidence interval for N = 32
(Fig. 3,a) and N = 128 (Fig. 3, b) is shown.

DISCUSSION

Taking into account the fact that in middle 1960™, when
H. E. Hurst had obtained the results discussed above, there
were no effective practical ways to process the signals and
the processes with big values of points N, the maximal N
value should be limited approximately by 1000. Such
assumed value is well agreed with the information
contained in [3, 39].

It is necessary to ground why in our investigations,
namely the interval 1.00 < D < 1.40 is used. It was done
not accidentally. It is well known that H. E. Hurst has
collected and has investigated the processes having long-
term dependences. Today, such processes are well known
as persistent ones. They have the Hurst exponent H values
changing in the bounds: 0.5 < H < 1.0 and, of course, the
corresponding Hurst dimension Dy values satisfy the
condition: 1.0 < Dy < 1.5. At the same time, a value
Dy = 1.5 corresponds to a delta-correlated process which
has no time dependence at all. Of course, it should be
avoided and be excluded from a consideration. As well as
the Hurst fractal dimension error in the results obtained by
H. E. Hurst is ADy = 0.09, the upper bound in the
condition 1.0 < Dy < 1.5 should be decreased approxima-
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1.8 D
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Fig. 3. Comparison of the ideal function D* = D (1) vs
the non-linear function D* = f(D, N) (2) having fixed
N =32 (a)and N = 128 (b). The upper (4) and the lower
(3) bounds of its confidence interval, a small gray
rectangle (the confidence interval bounds) being a
graphical view of the ‘strange’ result obtained by

H. E. Hurst are shown.

tely at this value. Thus, we obtain the condition 1.00 <
D < 1.40 used is this work. On this reason, the results of
modelling described above are looked to be quietly correct
and useful.

Thus, we tried to formulate and to ground a hypothesis,
which is able to explain the ‘strange’ results obtained by
H. E. Hurst in 1960™ yet. On our opinion, an existence of
the significant shift for the Hurst fractal dimension D*
estimations observed for persistent natural physical
processes can be explained rather by special features of the
R/S method applied for processing of the experimental
data, than by own really existing properties of these
processes.

At the end, it important to point that this a hypothesis
only. We suppose, but we don’t claim this.

CONCLUSIONS

1. The R/S analysis method is the oldest and the most
popular way to estimate a Hurst exponent for any signal or
process.

2. In bounds of the Generalized Brownian Motion
model, the Hurst fractal dimension Dy and the Hurst
exponent H are connected with a simple relation, namely,
Dy=2-H.

3. Grounding on the results of numerical modelling
with simultanecous usage of the Corrective Function
Method and the set of model stochastic mono-fractal
signals based on the modified cosine Weierstrass —
Mandelbrot function, for R/S method, it was found that the
dependence between a fractal dimension value D*
estimation and a true own fractal dimension value D is
appeared to be principally non-linear.

4. The main peculiarities of the R/S method as the
oldest and the most popular estimator of Hurst fractal
dimension were investigated. The corresponding
corrective function was built.

5. A hypothesis, which is able to explain the ‘strange’
results obtained by H. E. Hurst in 1960th yet, was
formulated and grounded on the bases of the numerical
modelling results.

6. On our opinion, an existence of the significant shift
for the Hurst fractal dimension D* estimations observed for
persistent natural physical processes can be explained
rather by special features of the R/S method applied for
processing of the experimental data, than by own really
existing properties of these processes.
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VY BimnoBimHOCTI 10 HeMiHINHOI Ta cucTeMHOI mapaxurM, chopmynsoBanux JI. @. Yoproropom Hanpukinmi 1980-x pokis, Bci
NpPOLIECH Y BiJKPUTHX, HCMIHIHHUX, NUHAMIYHHX CHCTEMax € IyXe¢ CKIAJHHUMHU, HEIIHIMHUMH, HAIIIUPOKOCMYTOBUMH 200
(pakTanbHIMU.

Sk cTBepIKye (pakTaibHA MapaanurMa, BUCyHyTa Ha nmodatky 2000-x pokiB B. B. SIHOBcbkMM, (pakTaibHICTh B3araji € OJHI€0
i3 (yHmaMEHTaTbHUX BJIACTHBOCTEH HABKOJNWIIHBOTO CBiTy. TOMy BHUBUCHHS ()paKTaIbHHX XapaKTEPHCTHK, 30KpeMa, IPHPOIHHUX
(I3MYHNX TIPOIECIB € aKTyaJbHUM, IIKaBIM 1 KOPHCHHM.

OpakTanbHa PO3MIPHICTh, 10 0a3yeThCs Ha TMOKAa3HUKOBI XepcTa, € OAHI€0 i3 HalcTapimmx 1 HaiiBimomimmx. Ha ocHOBi
JOCII/UKEHHS. MOJENBHAX (DpaKTaJbHUX CHTHAIIB IPOAEMOHCTPOBAHO, IO 3aJEXKHICTh MK OI[HKOIO XepCTOBOi ()pakTanbHOI
PO3MIpPHOCTI, III0 OTPUMYETHCSI METOJJOM HOPMOBAHOTO PO3Maxy, Ta iCTHHHUM ii 3HAYEHHSIM € iCTOTHO HelNiHiiHOI0. J{JIs 3MeHIIeHHS
BILUTUBY ITOXHOOK, [0 BUHUKAIOTh y Pe3yJbTaTi IbOT0, 3aIIPOIIOHOBAHO BUKOPHCTOBYBATH METO/] KOPHTYIOUOi (DyHKIIII.

[TpomeMOHCTPOBAHO MPAKTHYHY €(DEKTUBHICTH 3alIPOMIOHOBAHOTO METO/1a HAa IPUKIIAl aHai3y eKCIIEPUMEHTAILHUX PE3YJIbTATIB,
oTpuMaHuX 1e B cepeauHi 1960-x pokis I'. E. XepcToM, sikuii BUSIBUB HasiBHICTH A0 JUBHOTO IPYITyBaHHS OTPUMAHUX HUM 3HaYCHb
XepcToBOi (hpakTaIbHOI PO3MIPHOCTI HABKOJIO BeNMUMHY 1.27 JuIs pi3HUX NPUPOAHUX (i3UUHMX mponeciB. BucyHyTo rinoresy mnpo
MOJKJIUBICTh MOSCHEHHS LHOTO (aKTy caMe HEeNiHIMHICTIO 3raJlaHoi 3aJIeKHOCTI U1l METOY HOPMOBAaHOTO pO3Maxy.

Knrwuosi cnoea: neninitina napaduema, npupoOuuti @isuunuii npoyec, GpakmaivHa napaouemd, @OpakxmaroHuil auanis,
dpakmanvha po3mipHiCmb, KOpUYIOUa QYHKYis, MEMoO HOPMOBAHO20 PO3MAXY, NOKA3HUK Xepcma
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