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One of the problems that arise when studying the thermal conductivity of low-dimensional phonon systems at low temperatures
is the appearance of differences in expressions for the thermal conductivity as a function of sample size, as well as the appearance of
unusual dependences of heat fluxes on temperature gradients. For example, in the generally accepted Casimir — Zaiman model, it is
assumed that a linear temperature gradient is created on the lateral surface by external sources. Moreover, the Casimir model requires
two conditions at the border. This is a diffuse reflection in which the phonon is reflected with an isotropic angular distribution function.
The second condition is the presence of redistribution of phonons by energy, so that the distribution of reflected phonons corresponds to
the radiation of an absolutely black body - that is, the reflection of phonons must be inelastic. And if the first condition can be achieved,
for example, by boundaries with a certain degree of roughness, the second condition can be achieved only in the presence of thermal
contact between the side edges of the sample and the thermal medium at a certain temperature distribution. In the case of thermally
insulated sample boundaries (for example, when the sample is in vacuum) or at least with imperfect thermal contact, the fulfillment of
the second condition is practically impossible.

In this paper, we consider the problem of thermal conductivity of two-dimensional nanostructures - nanobands - in the temperature
range, when the interaction between phonons can be neglected. In this ballistic mode, heat fluxes can be limited only by the interaction
of phonons with the sample boundaries. A number of types of interaction of phonons with the boundaries of two-dimensional samples
are considered: absorption at the boundary, finite number of reflections, absorption inside the sample on defects, impurities, etc.
Explicit expressions of thermal conductivity in these cases are derived. Interpolation relations are obtained, which generalize the
existing expressions of thermal conductivity in the case of mirror reflection and reflection with losses.
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The influence of phonon boundary scattering on the thermal conductivity of a two-dimensional
noninteractive phonon system of nanosized structures

3aiimaHa nepen0adaeThCs, MO Ha O1YHIN MOBEpXHI 30BHINIHIME JKEPEIaMU CTBOPIOETHCS JIHIHHII TeMIepaTypHuii rpajieHT. binbie
Toro, B Mofeni Kasumupa HeoOxinHi 1Bi yMOBH Ha kopioHi. [{e andysHe BinOUTTS, npu KoMy (OHOH BiIOMBAETHCS 3 130TPOITHOIO
($yHKIIE0 KYyTOBOTO po3mofiny. [pyra ymMoBa — HasBHICTH MEpepo3noniry (JOHOHIB 3a €HEPTri€r0, TAKMM YHHOM, MO0 PO3MOILT
BiIOUTHX ()OHOHIB BIINOBiaB BUIPOMIHIOBAHHIO aOCONIOTHO YOPHOTO Tijla — TOOTO BiZOMTTS (OHOHIB Mae OyTH HEMpYXHUM. |
SIKIIO MepIIa yMOBa MoXke OyTH IOCATHYTa, HAaIPUKJIaJ, 3a JOIOMOTOI0 KOP/IOHIB 3 MIEBHUM CTYNEHEM ILOPCTKOCTI, TO Apyra yMoBa
MOJKe OyTH JIOCATHYTA JIMILE 33 HAasSBHOCTI TEIJIOBOTO KOHTAKTY MiXK OIYHUMH KpasMH 3pa3Ka Ta TePMIYHUM CEPEIOBHUILEM 32 IEBHUM
PO3IOIIIOM TemIleparypu. Y pas3i TepMOi30JIbOBAaHMX KOPJIOHIB 3pa3ka (HaIpHKIa], KOJU 3pa3oK 3HAXOIAMThCSA y BakyyMmi) abo,
NIpUHAMHI, 3 HE/IOCKOHAJIMM TEIJIOBHM KOHTAKTOM, BUKOHAHHS IPyTol YMOBH € IIPAKTUYHO HEMOXIIBHM.

VY crarti MU po3DIIgaEMo IpoOieMy TEIUIONPOBIAHOCTI JBOBUMIPHUX HAHOCTPYKTYP — HAHOCTPIYOK — B JTialla30Hi TEMIIEparTyp,
KOJIM B3a€MOJIi€I0 MK (DOHOHAMH MOXKHA 3HEXTYBAaTH. Y LBOMY OaliCTHYHOMY PEKHMi TEIUIOBI MOTOKHM MOXYTHh OyTH OOMEXeHi
JMIIe B3aEMOJiE0 (OHOHIB 3 MekaMH 3pa3kiB. Po3musimaeTscsi HU3Ka THINB B3aeMomil ()OHOHIB 3 MeXaMH JBOBHMIPHHX 3pa3KiB:
MOTIMHAHHS Ha MEXi, KiHIIEBE YHMCIO BiJOWTTIB, MOIIMHAHHSA BCEPENUHI 3pa3ka Ha neeKTax, AOMIllIKax TON0. BHUBEICHO sBHI
BHpa3W TEIUIONPOBIHOCTI B IUX Bumaakax. OTpHUMaHO IHTEPHOJIIMHI CIIBBITHONIEHHS, SKi Y3araJIbHIOIOTH ICHYIOUI BHpasu
TEIIONPOBITHOCTI Y BUIAAKY J3€pKaJbHOTO BiIOUTTS Ta BIONUTTS 31 BTpaTaMu.

Ku1ro4oBi cj10Ba: TeIIonpoBinHicTh, GOHOHH, TEIUIOBHH MOTIK, JBOBIMIipPHI HAHOCTPIUKH.

INTRODUCTION

One of the problems that arises when studying
the thermal conductivity of phonon systems with low
dimensionality at low temperatures is the appearance of
divergence in the expressions for the thermal conductivity
coefficient as a function of sample size [1 — 4], as well as
the appearance of unusual dependences of heat fluxes on
temperature gradients [2, 5].

For example, in the generally accepted Casimir—
Ziman model [2] it is assumed that a linear temperature
gradient is created on the lateral surface by external sources.
Moreover, in the Casimir model, two conditions at the
boundary are necessary. This is a diffuse reflection, in which
a phonon is reflected with an isotropic angular distribution
function. The second condition is the redistribution of
phonons by energy, so that the distribution of reflected
phonons corresponds to the radiation of a absolutely black
body - that is, the reflection of phonons must be inelastic.
And if the first condition can be achieved, for example,
by using boundaries with a certain degree of roughness,
then the second condition can be achieved only if there is
thermal contact between the lateral edges of the sample and
thermal media, and with a given temperature distribution.
In the case of thermally insulated sample boundaries (for
example, when the sample is in vacuum) or, at least, with
imperfect thermal contact, the second condition is almost
impossible.

In this work, we study the stationary nonequilibrium
state of the phonon system, which is provided by the
interaction of phonons with the lateral boundaries of the
samples. Particularly, we consider the influence on the heat
flow of the phonon absorption at the boundaries, the finite
number of phonon interactions with the boundaries, as well
as the dependence on the finite value of phonon lifetime. As
the result we get the exact results for definite cases and the
interpolation formulas for intermediate cases.

As the object of study, we consider phonon system of
a rectangular two-dimensional strip of width # and length
L (Fig. 1). For simplicity we consider just longitudinal

phonons and do not include bending vibrations and
transverse phonons. For such a system, we introduce two-
dimensional densities of energy £ and heat capacity C:

E= J' hon(T)dr

]\75 :8_E :J.ha)wdl“, (1)
oT | oT

Here ® = w(k) is the energy-momentum relation for
phonon, n(7) is the distribution function of phonons and

d'=dk dk. | (2x )2 is two-dimensional phase

volume.
As a heat flux, we consider two-dimensional heat flux
ow
Q= Iha)—kn(T)dl“. )
ok
that is the flow of energy per unit of time and through the
unit of length and has a dimension W/m.

Fig. 1. The geometry of the problem.

As heat sources we consider the heat reservoirs of
infinite heat capacity with given temperatures: the hot one
with a temperature of 7, and cold one with a temperature of
T, which are in thermal contact with the end faces of H H,
and C,C, (see Fig.1), respectively. It is assumed, that these
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reservoirs provide a constant temperature on these sides
and interface heat contacts are ideal. In this case, the heat
flux that is radiated by these walls will be determined by
the law of radiation of an absolutely black body [5].

1
= — L T l .
QBBR eff

where the effective phonon velocity is introduced as follows

Vyy = [ hewy @n(T)dT | [heon(T)dT, &)

3)

Now we can consider the different cases of phonon
scattering on the lateral sides of the sample and influence
of this scatterings on the heat flow.

ABSOLUTELY ABSORBING BOUNDARY

Now we consider the limiting case in which the lateral
boundaries of the sample are absolutely absorbing. In
this case, the resulting heat flux will be determined only
by phonons, which are emitted on the hot wall and fall on
the cold one and conversely without reflections from the
lateral walls. Then the resulting heat flux density for small
temperature differences is determined as

1
Qo = ;Veﬁ’CS (Th _TC)RO ®)
Here the value of form-factor R,
w arcsin(x/L)
o
—2 cos(p)d
! e ! (p)de ©)
RO = /2 =

2 2
2[c0s(<p)d¢ NW+ L+ L

0

is equal to the part of the energy emitted by one of the sides,
which goes directly to the other side, without reflections in
the lateral walls (see, for example, line 4 B, at Fig. 1). It is
determined by the isotropic nature of the radiation (6) and
the geometric dimensions (and shape) of the sample:

Now we can introduce the effective coefficient of
thermal conductivity, as the coefficient of proportionality
between the heat flux density and the ratio of the temperature
difference to the length of the sample:

(7, -T.)
L

The thermal conductivity coefficient turns out to be
presented in the form, which is usual for phonon systems:

|

Oy = Koy (7

®)

This expression contains information about the

dimension of the conductor (two in the denominator), the
heat capacity of the phonon gas, the effective velocity and
effective path length of the phonons:

_2pp o2 LW

"o WA+ L

From this formulae it follows that for large /¥ and (or)
small L, the presence of lateral boundaries can be neglected,
and the heat flux turns out to be equal to the difference in
fluxes (3) from the hot and cold edges and does not depend
on the distance L between them.

In the case of small W and (or) large L, the resulting
heat flux is determined by the width of the sample, and
the mean free path of phonons is determined by a ratio
that is similar to the corresponding expression for three-
dimensional heat conductors in this limit:

A —0)=Lw .
T

A

)

(10)
Now consider the opposite case of specular reflection.

ABSOLUTELY SPECULAR BOUNDARY

In the case of absolutely specular lateral boundaries,
all phonons emitted by the heater and the cooler reach the
opposite ends without loss. This leads to the obvious result
[3, 4] that the heat flux will not depend on the length of the
conductor. In this case, the thermal conductivity determined
by relation (7) will linearly increase with length. A similar
result follows from (8) in the limit of small L, but in this
case all the phonons fall at opposite ends due to the absence
of reflections in the side walls.

Let’s obtain the same result analytically, taking into
account all phonon reflections in the side walls. To account
all the reflections, we use the image method. In this method,
a phonon moving, for example, along the trajectory 4,D B,
in Fig. 1 is considered as a phonon freely moving along the
A,D B, path, where point B, is an image of point B, in the
lateral wall /,C,. In this case, the phonon flux which have
exactly n reflections from the lateral walls and was radiated
by warm (left) end

h(n) = Q(HOHI - CnCn+l) +

+Q(HH, —->C C, )= (10)
= ZQ(HoHl - CnCn+l)
and cold (right) end
Qc(rn) =0(C,C,>H,H, )+
+O(C,C,>H_ H )= (11

—20(C,C,>HH.)

where n=1,2,3..., are defined by following relations:

h(n) = Qe (T},) (Rn - Rn—l) and
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Qc(-n) = Oy (1) (Rn R, ) (12)
The quantities R are determined by an integral
similar to (6)
1 W $,(x)
R,=—/[dx [ cos(d)dp. a3
W 0 0
but with other limits of the angular variable:
. (n+1)W —x
sing, (x) = — - (19
JCn+DW =x) + L
As a result

R, = V;(\/(n F1P WP+ L =W+ I ) (15)

From this relation, it obviously follows that if the
reflections are specular, the corresponding terms are
cancelled, if one summarizes the quantities (10) or (11):

Q:ZOIQn:QBBR +i[Rn_Rn—1] )

1

= OpprR., = Oppp

Here Roo =1 is the limiting value of R when n tends

(15)

to infinity.

This answer is fairly obvious, and suggests that
in the absence of resistive processes it is impossible to
create a temperature gradient inside the sample. Now we
can proceed to consider possible resistive processes at the
boundaries that will lead to the presence of a temperature
gradient inside the conductor and, consequently, to the final
value of the thermal conductivity coefficient.

FINITE NUMBER OF REFLECTIONS
The simplest model of such processes is the restriction
the reflections number N, that will allow us to consider the
nature of the divergences in a number of limiting cases. In
this case, after mutual reductions in the values of R , only
the last of them remains:

Oy = ZQ,, :[QBBR(Th)_QBBR(T;)]'RN =
0 (16)

- %(\/(NJr W2+ 12 NP+ I )

For the convenience of further discussions, a

normalized heat flux is introduced that is directly related
to the dimensionless effective mean free path of phonons:

QN ”A

==N - (17)
AQ 2L

q

Thus, for a finite number of reflections, this heat flux
is
QN+ W

(18)
N+ W+ 12 N W2+

dy =

For infinite N, we obtain the limit of completely
specular reflections (15)
qspec = 1’ (19)
which does not depend on the sample sizes.
In the case of finite N for short samples, when the
contribution of the reflections becomes negligible, the
result is again equal to (18)

qnoreﬂ =1 (2())

For enough narrow and long conductors at finite N
we obtain

2N +1W
Qov="0"77" @
Thus, for the effective phonon mean free path
2N +1
Noy=—"7"W. (22)
T

we obtain a value that is determined by the N-fold width of
the sample.

THE CASE OF ABSORPTION AT THE BORDER

Another simple resistive process that can be proposed
is the absorption at the boundary, in which the angle of
reflection of the phonon is equal to the angle of incidence,
but the number of phonons decreases p times, that is, the
value of p play the role of the absolutely specular reflection
probability.

This situation takes place if the conductor does not
have free boundaries but borders on another substance. In
this case, the phonon with a certain probability p can be
reflected back at the boundary, and with a probability 1 —p
it leaves the sample.

In this case, the heat flux is determined by the sum of
the infinite convergent series

4, =40+ ),q,0" =R+ D (R,—R,)p" (23)
1

1
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Fig. 2. The comparison of the analytical approximations
with the results of calculation (red squares) for various
L/Wratio—a) 3, b) 10, ¢) 30. Green line refers to limiting
case (26). Blue line respects to interpolation (28).
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Fig. 3. The comparison of the analytical approximations
with the results of numerical calculation by Eq. (30)
(points) for various L/W ratio a) 3, b) 10, c¢) 30. Line
refers to analytical interpolation (32). Different points
refers to different number of reflections: red to N=5, blue
to N=10, green to N=100.
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In sum, we can rearrange the terms and get a simpler
expression:

q,=Ry(1-p)+(1-p)> R,p" =
1

w
W+ + L
=(1-p) +°° Cn+DW )
] \/(n )W+ L+
For great ¥ we get the expectable results

Gy =(-p) 1+ p" =(1—p){1+£}=1,<25)
1

_|_

24

since reflections do not contribute at the small distance
between the heater and the cooler.
For a narrow and long sample, we get

/4 < Wl+p
=(1-p)—|1+ ) Qn+)p" |=——=, 26
450 =(1-p) Z( w3,
and for effective length
A=l 1P _p 1tp @7
T l-p I-p

This result contains a well-known denominator that
takes into account the efficiency of specular reflection p
and gives the correct limit transition to the case of complete
absorption at the boundaries (14) when p = 0.

But as it can be seen from Eq. 24, the result (26) is
incorrect, because for any small value W/L for enough great
n, the product nW/L ceases to be small.

To account this feature, one can use the following
interpolation formula

_ w(l+ p)
Toon = L= py+ W1+ p)

=(+q,)s @9

which describes the real sum (24) with high accuracy (see
Figure 2).

As a result, for the effective length we propose
following result

1

l-p W~

+7
1+p 2L

that can be used for the values of the ratio W/L < 1 and in
the entire range of value p.

To consider the behavior of the ¢ near the value p =
1 we go back to the case of finite number N of reflections
and present the partial sum of the infinite series fom (26)
as follows:

1+
JN)=(1- Vo« =

q(p,N)=( p)2L S @nenyp
] (30)

=K 1—‘_—p—ppN L+2N+1
2L 1-p l-p

In the case p < 1 and N —> 00O this result obviously

gives the Eq.(26). In the case if finite NV and p close to unity
we get the expression that demonstrate the competitive
influence of number of reflections N and absorption at one
reflection p:

W
q(p~1N) :Z(NH)Z(I_‘D)' (31)

This result shows, as p tends to unity, the contribution
of terms with a finite number of reflections R decreases in

comparison with the limiting value ROO = 1, which

formally corresponds to an infinite number of reflections.
Thus, any physical resistive process that limits the phonon
mean free path will lead to the elimination of a divergence
of the form (27).

Expression (30) can be used for interpolation
folrmulae like (26)

g,(p.N)=(1+4"(p.N))

As can be seen from Fig.3, the resulting expression
practically coincides with expression (18) for various sizes
of the system. Thus, we have obtained expression (19) for
a finite number of reflections and use it for description of
experimental data.

(32)

CONCLUSION

In the paper we studied the stationary nonequilibrium
state of the phonon system, which is provided by the
interaction of phonons with the lateral boundaries of the
samples. Particularly, we consider the influence on the heat
flow of the phonon absorption at the boundaries and the
finite number of phonon interactions with the boundaries.
As the result we get the exact results for definite cases
and the interpolation formulas for intermediate cases.
Particularly, the exact expression (24) for heat flow in the
case of absorption on the lateral boundary was derived and
the simple interpolation formula (28) was proposed. For the
case of finite number of reflections the general expression
(30) was presented and an analytical approximated formula
(32) was derived. The comparison of numerical calculations
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by exact expressions with analytical interpolation formulae
was carried out and demonstrated good agreement.

REFERENCES

1. A.Ramiere, S. Volz, J. Amrit. J. Phys. D: Appl. Phys., 49, 11,
8(2016). doi:10.1088/0022-3727/49/11/115306

2. H.B.G. Casimir. Physica, 5, 6, 495 (1938). https://doi.
org/10.1016/S0031-8914(38)80162-2

3. T Klitsner, J.E. VanCleve, H.E. Fischer, R.O. Pohl. Physical
Review B, 38, 11, 7576 (1988). https://doi.org/10.1103/
PhysRevB.38.7576

4. H.J.Maris. Phys. Rev. B, 85, 5,054304, (2012). doi: 10.1103/
PhysRevB.85.054304

5. J. Amrit, K. Nemchenko, and T. Vikhtinskaya. J. Appl. Phys.,
129, 8, 085105, (2021). https://doi.org/10.1063/5.0036935

BicHuk XHY imeHi B.H. KapasiHa, cepis «®isunkay, sun. 35, 2021

23



	_Hlk89091606
	_Hlk89094158
	_Hlk89245276
	_Hlk89245553
	_Hlk89098600
	_Hlk89179000
	_Hlk89222237

