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Analytical consideration of particle transport in 1D nanostructures
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The paper presents an analytical study of one-dimensional fluxes of ballistic quasiparticles in the presence of scattering centers.
Such a situation can be realized at very low temperatures or systems of very small sizes — nanostructures. To describe such a situation,
the approach of heat transfer by radiation, which goes back to Casimir, is used, in which the interaction of phonons with image
boundaries is taken into account, or, for example, the Landauer approach, where the probability of phonon transition from the initial
state to the final state is introduced. At the same time, the intermediate regime, the mean free path of phonons due to their interaction
with each other, is comparable to the size of the samples; to this day, it remains a rather difficult problem for a theoretical or numerical
solution. In this work, we propose the probabilistic approach in the Landauer model to describe heat transfer in the one-dimensional
ballistic motion of quasiparticles. Within the framework of the theory of random walks, a model of successive scattering centers is
considered. An explicit analytical expression is obtained for the dependence of the flux of quasiparticles on the probability of scattering
and the number of scattering centers. In order to explain the physical sense of the obtained result the comparison with the result of
iterative approach is made. As well the results are used for description of the problem of the heat flux in multilayered structures, in
which one should take into account not only the thermal resistance inside the layers, but also the Kapitsa resistance between the layers.
The practical application of the obtained results to one-dimensional nanostructures and to quasi-one-dimensional heat-conducting
systems is discussed, various limiting cases are considered and a comparison with experimental data is made.
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AHaIITUYHUNA PO3TIIS]] IEPEHOCY YaCTUHOK B OJITHOBUMIPHHUX

HAaHOCTPYKTypax

. AMpiml, T. Medim;eeaz, K. Hemuenxo?, T. Bixmuncoka
LIMSI-CNRS, Université Paris-Saclay, 91405, Orsay, France
2 Xapriscoxuil nayionanvnuil ynicepcumem imeni B.H. Kapasina, m. Ceo600u 4, 61022, Xapxis, Ypaina

2

VY crarTi npencTaBiIeHo aHATITHYHE JOCIIIPKEHHS OTHOBUMIPHUX MOTOKIB OAJIiICTHYHNX KBa319aCTUHOK Y TIPUCYTHOCTI IIEHTPIB
po3sciroBanHs. Taka cuTyallisi MOXXe peaji3yBaTHCS TPH TyXKe HU3BKHX TeMIeparypax abo y CHCTeMax OyXe MalliX po3MipiB —
HAHOCTPYKTYypax. J[ys omucy Takol cuTyanii BAKOPUCTOBY€ETHCS TMiIX1/1 TeIUIONepeiadi BUIIPOMIHIOBAHHSM, 10 CXOIUTH 10 Kasnmupa,
B SIKOMY BPaxOBYEThCs B3aeMofisi ()OHOHIB 3 MekaMH 3paskiB, abo, Hampukiaa, miaxia Jlanmayepa, J1e BBeIEHO WMOBIPHICTH
(hOHOHHOTO Tepexoy 3 MOYATKOBOTO CTaHy B KiHLIEBHH. Y TOH e yac iCHye MPOMDKHUH PEXUM, KOJIM Cepe/Hiil BiTbHUN MpoOir
(OHOHIB BHACTIZOK iX B3aeMOJil MiX COOOIO, 3PIBHIOETHCS 3 PO3MIpOoM 3pa3kiB. Ha ChOTOIHIIIHIA JEHB OMHC IBOTO PEKHUMY
3aIUIIAETECS JJOCHTHh CKJIAJHOIO MPOOJIEMOIO U TEOPETHYHOTO UM YHCEIBHOTO PO3B’s3aHHA. Y Miif poOOTI MM NPOIOHYEMO
IMOBIpHICHUIA miaXia y Moneni Jlanaayepa Ui omicy Teruionepeaadi B OJHOBEMIPHOMY 0aliCTHYHOMY pyci KBa3idacTHHOK. B paMkax
Teopii BUMAAKOBUX OJNyKaHb PO3IIISIAETHCS MOJENb MOCIIJOBHUX LEHTPIB po3ciroBaHHA. B pesymbrari poGOTH OTpUMAHO SBHHMIT
aHAITHYHUHN BUpa3 U 3QJISKHOCTI TOTOKY KBa3i4aCTHHOK BiJf HMOBIPHOCTI PO3CIFOBaHHS Ta KiJBKOCTI IIEHTPIB po3citoBaHHs. [l
HOSICHEHHsI (DI3UYHOTO CEHCY OTPHMAHOTO Pe3yNbTaTy TMPOBOAUTHCS MOPIBHSIHHSA 3 Pe3ysbTaTOM iTepaliiiHoro migxony. OtpuMani
pe3yNbTaTH TAaKOXX BHKOPHCTOBYIOTHCS [UIsl ONMUCY MpOOJIEeMH TEIUIOBOTO MOTOKY B 0araTOLIapoBHX CTPYKTypax, B SIKiX CIiJ
BPaXOBYBAaTH HE TiJIbKU TEIIOBHH OIip BCepeAnHi Imapis, ane it onip Kamimi Mixk mapamu. OOroBoproeThest MPaKTHYHE 3aCTOCYBaHHS
OTPUMaHHX PE3yJIbTaTiB Z0 OJHOBHMIpPHHUX HAHOCTPYKTYp Ta J0 KBa3iBUMIPHUX TEIUIONPOBIAHUX CHUCTEM, PO3IILIIAIOTHCS Di3Hi
IpaHUYHI BUIAJKK Ta IPOBOAUTHCS MOPIBHSHHS 3 €KCIIEPHMEHTAIBHUMH JaHUMHU.

Kuio4oBi cii0Ba: KBa3i4aCTHHKH, HAHOCTPYKTYPH, TEIJIONEepeaaya, OJTHOBUMIPHHIL PyX, IIEHTPH PO3CIOBaHHS.
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B cratbe MPEACTABJICHO aHAJIMTUYECKOC UCCIIEA0BAaHUE OAHOMEPHBIX ITOTOKOB OaTUCTUYCCKUX KBa3u4acTHUIl B IPUCYTCTBUU

LEHTPOB paccestHus. Takas CHUTyalllsi MOXET PEealnn30BaThCs NMPU OYEHb HU3KHX TEMIIEpaTypax MM B CUCTEMaX OYEHb MAalbIX
pa3MepoB — HAaHOCTPYKTypax. Jlns omMcaHusl Takod CHTyallMH HCIIOIB3yeTCs MOAXOJ TEMJoNepefauyd H3ITyuYeHHEM B MOIENIU
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Kasumupa, B KOTOpOM y4YHTHIBaeTCS B3auMOeHCTBHE (OHOHOB C TPaHMUI[AMHU OOpas3IoB, WM, Hampumep, noaxon Jlanmayspa, rae
BBOJUTCS MOHSITHE BEPOATHOCTH (DOHOHHOTO MEPEXOA U3 HAYaNbHOTO COCTOSIHUS B KOHEYHOe. B TO ke Bpems CyIIecTBYeT
MIPOMEKYTOUYHBIA PEKUM, KOTIa CPeAHUI CBOOOAHBIN Tpober (POHOHOB BCIIEACTBHE UX B3aUMOAEHCTBUS MEXIy COOOM, CpaBHUBAETCS
¢ pasmepoM oOpa3noB. Ha cerongmsmHuii IeHbP ONHMCaHHE ATOTO PEKHMA OCTaeTcs JOCTATOYHO CIIOKHOM IpoOiIeMoi st
TEOPETHIECKOTO WM YHCIEHHOIO penreHus. B 3Toif paGoTe MBI mpeiyiaraeM BepOSITHOCTHBIN Moaxox B moxenu Jlanmayspa mis
OIMCaHMs TEIUIONepenady MpU OJHOMEPHOM OaNTMCTUYSCKOM ABVDKCHUH KBa3HYACTHIL. B paMkax Teopuu CIydaiHBIX OIyskmaHMit
paccMaTpHBaeTCsl MOJENb IOCJIENOBAaTENbHBIX IIEHTPOB paccesHus. B pesynbrate paOOTHl IMONYyYSHO SIBHOE aHAIUTHIECKOE
BBIp@XKEHHE JUIS 3aBUCHMOCTH TIOTOKA KBAa3HYACTHI[ OT BEPOATHOCTH PACCESHUS U KOJIMUYECTBA IIEHTPOB paccesHus. [ oObsICHeHNs
(HU3UIECKOTO CMBICTA TOMYYEHHOTO pe3ylbTaTa MPOBOJUTCS CPAaBHEHUE C PE3YNbTaTOM MTepaloHHOro noaxopa. IlomyueHHble
PE3yNBTAThI TAKAKE HCIONB3YIOTCS UL ONUCAHUS MPOOJIEMBI TEIJIOBOTO MOTOKA B MHOTOCIONWHBIX CTPYKTypax, B KOTOPBIX CIEXyeT
YUUTHIBaTh HE TOJBKO TEIUIOBOE COMPOTHBIECHHE BHYTPH CIOEB, HO M compoTuBieHne Kamuusl Mexay ciosmu. O6cyxnaercs
IIPaKTUYECKOE NPUMEHEHUE MOIYYEHHBIX PE3yJIbTATOB B OJHOMEPHBIX HAHOCTPYKTYpaxX U B KBa3HMOJAHOMEPHBIX TEIJIONPOBOAAIINX
CUCTEMaXx, paCCMaTPUBAIOTCA PAa3IMYHbIC IPE/EIbHbIC CIy4au U IPOBOAUTCS CPABHEHUE C 3KCIICPUMECHTAILHBIMY JaHHBIMH.
KiroueBble cj10Ba: KBa3U4aCTHIbl, HAHOCTPYKTYPEL, TEILIONEpegada, OJHOMEPHOE JBHKCHUE, ICHTPHI PACCESIHUA.

The description of the thermal conductivity of crystals
and quantum liquids in the phonon model is one of the
achievements of physics. This model is based on the
consideration of a system of strongly interacting atoms as
a gas of weakly interacting thermal excitations — phonons.
Using this approach, the dissipative properties of matter
can be considered in the gas-kinetic model of a weakly
nonideal phonon gas. In particular, it is possible to use the
Boltzmann kinetic p+r =1equation. This equation is a

rather complex integro-differential equation, which, in the
general case, is non-linear. For the case of the state of the
phonon system, which differs slightly from the existing
quasilocal equilibrium state, the solution of the Kinetic
equations for phonon systems was carried out in the
Callaway model. In another (opposite) case, a situation is
possible when phonons do not interact with each other and
their motion is ballistic. This situation is realized at very
low temperatures or systems of very small sizes -
nanostructures. To describe such a situation, the approach
of heat transfer by radiation, which goes back to Casimir,
is used, in which the interaction of phonons with image
boundaries is taken into account, or, for example, the
Landauer approach [1], where the probability of phonon
transition from the initial state to the final state is
introduced. At the same time, the intermediate regime, the
mean free path of phonons due to their interaction with
each other, is comparable to the size of the samples; to this
day, it remains a rather difficult problem for a theoretical
or numerical solution.

In this work, we use the probabilistic approach in the
Landauer model to describe heat transfer in the one-
dimensional ballistic motion of quasiparticles [2 — 4].

In the ballistic motion of phonon thermal conductance
is determined by the type of reflection from the boundaries
— diffuse or specular. In one-dimensional motion, these
processes can be reduced to the concept of processes of
passage of a conductor and the back reflection:

Q:Qmaxp ) (1)

where P is the probability of a phonon passing from a warm
reservoir to a cold one. Maximum heat flux

Qmax = KoAT 2

which can flow through a one-dimensional channel is
determined by the so-called quantum of thermal
conductance, which for one phonon mode is equal to:

kgT 7?

L P ®)
Thus, the problem of calculating heat fluxes in such one-
dimensional systems is reduced to determining the
probability of passing through a one-dimensional channel
that connects a warm reservoir with a cold one. In this case,
it is assumed that the system contains a number N of
defects (reflecting screens) for which the probability of
transmission p and reflection r absorption of a phonon are
determined. The sum of these values is equal to unity:

p+r=1. 4)

Now the coefficient P can be found by using the
formalism of matrix eigenspace or by iterative formalism.
In both these cases it has the following final form:

— p(ﬂ’ +_ﬂ‘ —) (5)
Ala-pa)-2ta-pa.)

Here 4 , are the eigenvalues of matrix S:

A, =b+b? -1 (6)
Where
(p*-0°)+1
b=—-—"—. (7)
2p

The obtained desired result (5) allows considering
various limiting and special cases.
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The simplest non-trivial case corresponds to the
absence of absorption. In this case, the particles experience
only reflections on the screens and the total particle flux is
reserved:

Qo = Qout + Qpack 8)

In this case, from the general result (5), we obtain the
following expression

o P 0
p+NQL-p) ©

This result accounts multiple back scattering and may
be used to explain the experimental data and to determine
the parameters of the systems in the presence of a certain
number of consecutive defects.

A rather interesting special case is obtained in the case
of equiprobable forward and backward scattering, that is,
inthe case p=q = 1/2:

(10)

The main feature of the results (9) and (10) is the
absence of characteristic exponential dependences on the
number of defects and (or) on the length of the conductors,
which are typical for ordinary absorption. Apparently, this
is due to the fact that as a result, all possible trajectories of
the particle's motion were taken into account and this result
cannot be represented as a product of factors respecting to
separate spatial parts of a conductor or a product of factors
that correspond to successive time intervals. In other
words, this process cannot be represented in the form of
Markov chains, and is an example of a non-Markovian
process. Thus, the model of radiative heat transfer with
successive scattering centers and absorption considered in
this article corresponds to a certain integral process with a
certain integral equation. Strictly speaking, such integral
equations were obtained and investigated in two-
dimensional [5] nanostructures.

Another feature of the result (9), and even more so of
the result (10), is their unexpected simplicity. It testifies,
among other things, that this result may have a simple
physical meaning or a mathematical derivation. Indeed, the
results (9) and (10) can be obtained by the induction
method starting from the case of one defect, when P(N =
1) = p (or the case of the absence of defects P(N = 0) = 1)
and the recurrence relation that connects P(N) and P(N —
1):

Rt = R+ E. (1

On the one hand, the solution of the recurrent equation
(11) immediately gives the result (9). On the other hand,

this result allows us to pass to the notations of heat
resistances in relations (1) and (2).

Q=1 aT
RZ

(12)

If we assume that the cells in the considered problem
consist of different materials, then the probability forward
scattering at the boundaries will be unambiguously related
to Kapitsa's resistance. In this case, the resistance of such a
sample will be determined by the sum of the resistances:

Ry = Ruyin + NRy (13)

Here R.;, =1/ K, is the reciprocal of the quantum of heat

conductance, and Rk is the Kapitza resistance for one-
dimensional case:

1-—
R == R (14)

The relations similar to (21) were used in [6] to describe
the thermal properties of polycrystals.

Thus, the article proposes an original approach for
calculating the phonon-induced heat flux in one-
dimensional nanostructures. This approach is implemented
within the framework of the theory of random walks in the
presence of scattering centers. As a result, an explicit
expression (5) was obtained for the probability of a phonon
passing through a system consisting of a given number of
defects with a known transmission coefficient. Limiting
cases (9) and (10) of the general result are considered. The
relationship between the obtained result and the results of
other works is discussed.
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