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Two models were studied theoretically which describe the dynamics of two nonlinear elements with linear and nonlinear
interaction between them. These models correspond to the commutators in nonlinear fiber optics and artificial lattices of magnetic
nanodots or magnetic layers in quasi-two dimensional compounds. The models illustrate the common situation in the nonlinear
systems with two degrees of freedom. Usually the absence of additional to the total energy integrals of motion leads to the
appearance of a chaotic component of the dynamics. This chaotic behaviour masks the reqular part of the total dynamics. In the
studied in the paper two integrable systems the chaotic component is absent and the reqular dynamics manifest itself per se. In the
paper at first the dynamics of the systems was investigated qualitatively in the corresponding phase planes. Two integrals of motion
correspond to the total energy E and the number N of elementary excitations in the system (photons and spin deviations). The
phase analysis demonstrates the complicated its dynamics. The excitations of different types are classified in the plane of the

integrals (N,E) . For the fix number of excitations N in the domain of small N the dynamics is close to the linear one and divides

into two regions for quasi-inphase and quasi-antiphase oscillations. But for the large level of the excitation after the definite value of
N = Nb in the bifurcation way the region of another dynamics appears. For N > Nb the minimum of the energy corresponds to the

essentially nonlinear regime with nonunifor average distribution of the energy between two oscillators. At the same time the critical
point which correspond to the in-phase oscillations transforms into saddle one and in-phase regime becomes unstable. As integrable
the studied systems allow the solutions in the quadratures. The exact solution of the dynamical equations for nonlinear dynamics
were obtained and analysed. The main result consists in the above prediction of the nonuniform states with different energies of
subsystems, their stability and instability of inphase oscillations. The nonuniform states corresponds to the solitonic excitations in
the systems with distributed parameters.

Keywords: dynamical systems, excitations, integrability, integrals of motion, phase portrait, critical points, bifurcation,
Landau-Lifshits equation, magnerization.
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TeopeTHyHO PO3MIITHYTO IBI MOJENI, OI0 ONHCYIOTh JHHAMIKY JBOX HENIHIHHX C€IEMEHTIB 3 JIHIHHOIO 1 HEeNiHIHHOIO
B3aeMopiero Mk HuMH. L{i Momeni omucyroTh, HANMpPHUKIAJ, NEPEeMHKadi B HENiHIMHMX ONTHYHUX CBITJIOBOJAX, a TAKOXK IITY4HI
PELITKH MarHiTHUX HAHOAOTIB i MarHiTHI IIapy y KBa3iIBOBHMIPHUX MAarHiTHHUX CIIOJMyKaX. 3alpOIIOHOBaHI MOJENl LTIOCTPYIOTH
3araibHy CUTYaLil0 B HEJIIHIHHUX CHCTEMax 3 JIBOMa CTYHCHSIMHU BUIBHOCTI. 3BUYAiHO BiACYTHICTh iHTErpaja pyxy, J0AaTKOBOIO 10
MOBHOI €Heprii, IPU3BOJUTH /IO MOSBH XaOTHYHOI KOMIIOHEHTI pyxy. Ll XaoTH4YHa MOBEAIHKA 3aTEMHIOE TOJIOBHI XapaKTepPUCTHKU
PEryJISIpHOTO PyXy. B pO3IISIHYTHX B CTAaTTi JBOX IHTErPOBAHHMX CHCTEMaxX XaOTHYHA KOMIIOHEHTA BIJICYTHS i peryiisipHa AWHAMIiKa
HPOSBISETECA B yUCTOMY BUIIIsiAl. Crouatky B poOOTi AMHAMIKY CHCTEMH PO3IVISHYTO SIKICHO Ha BiANOBIAHUX (ha30BUX ILIOLIMHAX.
JlBa inTerpana pyxy BiINoOBinaoTh ToBHil emeprii E i umcmy enemenrapmux 36ymikens N (pOTOHIB i CHiHOBHX BiAXHJIEHE)
cucremu. Da30Buii aHaNi3 AEMOHCTPYE CKIATHMI XapakTep AUHAMIKH. 30YIDKEHHsS PI3HOTO THIY KIacHU(IiKyIOThCS Ha IUIOIIHHI
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IHTEeTpaNiB pyxy (N,E) . Ilpu dikcoBanomy umcni 30ymkenb N B obnacti Manux 3HaueHp N 1guHamika Gnu3bka 10 AWHAMIKK
JMHIHHAX cHUCTeM 1 I 00JacTh MOAUISAETHCS HA 1BI 3 KBasi-cHH(a3HUMH 1 KBa3i-IpoTH(a3HHUMH THUIAMH KOJIWBaHb. AJle NpH

BEJIMKOMY DiBHI 30y/PKEHHSI ITICJISl NIEBHOTO MICIS 3HAUCHHS N=Nb OiypKariifHIM YHHOM 3’SBISETHECS 00JACTh MapaMerTpiB 3

30BciM iHmoK auHamikow. Ipu N >Nb MIHIMYMY €Hepril BiAIOBifa€ CyTTEBO HENIHIMHMN PeXHUM 3 HEOTHOPITHUM CepemHIM

MOMITIOM eHeprii MiX OxkpeMuMH ocmwisitTopamMd. OnHOYacHO ocoOnmBa TOYKA, IO BiNOBigae CHH(MA3HUM KOJMBAHHSM,
MEPETBOPIOETHCST Ha CIIIOBY 1 PeXUM CHH(A3HUX KOJMBaHb CTa€ HECTIMKUM. SIK MHTErpOBHI, PO3INISHYTI CHCTEMH IOIYCKAIOTh
PO3B’SI3KH B KBajipaTypax. Byio orpumaHo i mpoaHanizoBaHO TOUHI PO3B’S3KM PIBHSAHB HeNiHiHOI quHaMiku. ['onoBHMI pe3ynbrar
MOJISIra€ B mepeadavueHHi HEOJHOPITHUX CTAHIB 3 PI3HUMH €HeprisiMH mifcucteM. Lli cTaHu BiINOBIAAIOTH COTITOHHUM 30yKEHHS B
CHCTEMax 3 PO3IOIUICHUMH MapaMeTpaMH.

KorouoBi cioBa: nuHaMivHI cucTeMy, 30y/DKEHHS, IHTETPOBAHICTh, IHTETPAIN PyXy, (a3oBHH HMOPTPET, OCOOJHBI TOUKH,
6idypxaris, piBustas Jlanaay-Jlidmuis, HaMarHUICHHS.
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TeopeTuuecku pacCMOTPEHBI [BE MOJCNIH, ONUCHIBAIOIINE IMHAMMKY JBYX HEIMHCHHBIX 3JIEMEHTOB C JIMHEHHBIM HU
HEIIMHEWHBIM B3aUMOJCHCTBHEM MEXIy HUMH. DTH MOJENH ONHKCHIBAIOT, HANPUMEp, MEePEKII0YaTeI! B HENMHEHHBIX ONTHYECKUX
CBETOBOJAX, a TAaKXKE HCKYCCTBEHHBIC PEHICTKH MAarHWTHBIX HAHOJZOTOB M MAarHWTHBIE CIOHM B KBa3HABYMEPHBIX MarHUTHBIX
COCJMHEHUAX. BpUIN MoslyyeHbl U MIpoaHalIu3UpOBaHbl TOUHbIE PELICHUS YpaBHEHUI HenuHelHoH nquHamuku. OCHOBHOU pe3ysbTaT
COCTOHUT B TPEACKA3aHNHM HEOJHOPOJHBIX COCTOSIHMHM C Pa3IHMYHBIMH SHEPTHAMH MOACHCTEM. OTH COCTOSIHHS COOTBETCTBYIOT
COJIMTOHHBIM BO30Y)XIEHHSM B CHCTEMax C paclpeieleHHbIMH Hapamerpamy. I[IpeiokeHHble MOJIENTH WILTIOCTPUPYIOT OOIIyIO
CHUTYaIHIO B HENMHEHHBIX CUCTEMAaX C ABYMs CTETEHSIMH cBoOOIbI. OOBIYHO OTCYTCTBHE MHTETpaia JBHKEHHS, JOMOTHUTEIHHOTO K
MIOJIHOH 3HEepruu, NPUBOJUT K MOSIBICHUIO Xa0THYECKOM KOMIIOHEHTH! JUHAMUKU. JTO Xa0THYECKOE IOBEJICHUE 3aTeHsSeT OCHOBHBIC
XapaKTepUCTUKY PEryJIsIPHOTO ABMKEHHMs. B paccMaTpuBaembIx B paboTe JBYX HHTETPHPYEMBIX CHCTEMax XaoTHYeCKash KOMIOHEHTa
OTCYTCTBYET M pEryisipHas IUHAMHKA IPOSBISETCS B YHCTOM Bujae. B pabore BHawane AWHAMHKA CHCTEM PAacCMaTPHBAETCS
Ka4eCTBEHHO Ha COOTBETCTBYIOIINX (ha30BBIX INIOCKOCTAX. J[Ba MHTErpasa ABIKEHUS] COOTBETCTBYIOT ITOJHOM SHeprun E u umcmy

N aJeMeHTapHBIX BO30YXIeHHH ((OTOHOB M CHMHOBBIX OTKJIOHEHHH) cucTeMbl. Da3oBbI aHAIM3 AEMOHCTPHPYET CIOXKHBIH
XapakTep AWHAMHUKHA. Bo030yXIeHHs pa3sHOTO THMA KIACCHOUIMPYIOTCS HA IUIOCKOCTH HMHTETPAJiOB JBIKEHHS (N,E)‘ Ipn

¢bukcupoBanHOM uncie Bo30yxaeHnii N B obiactu mManbix 3HadeHnit N IuHamuka O0JM3Ka K JUHAMMKE JIMHEHHBIX CHCTEM, M 3Ta
obracTh paszjensercs Ha JBe C KBa3HM-CHH(A3HBIM M KBa3H-NPOTHBO(A3HBIM BUIamu Kkonebanuil. Ho mpu Gonbimom ypoBHe
N =N

BOSGy)K}IeHI/IH MOCJIC OIIPECACICHHOIO 3HAYCHUA b GI/I(bypl(aLlI/IOHHLIM 06p330M MOSIBJIIETCS  00J1aCTh mapamMeTpoB C

COBepIIEHHON apyroil auHamukoi. Ilpn N > Nb MMHUMYMY OSHEPIUM COOTBETCTBYET CYLIECTBEHHO HEJIMHEHWHBIA DPEXHM C

HEOJHOPOJHEIM CPEIHUM paclpelelieHHeM JHEPIHH MEXKAY OTAENbHBIMU ocmuuriTopaMu. OXHOBpEMEHHO ocodas TOUKa,
COOTBETCTBYIOIAss CHH(A3HBIM KOJICOAHUSM IPEBPAIIACTCS B CEAJOBYIO TOYKY M PEKHMM CHH(A3HBIX KOoleOaHHH CTaHOBHTCS
HEYCTOHUYMBBIM. Byny4n MHTErpUpyeMbIMH, paCCMOTPEHHBIE CHCTEMBI JOIYCKAlOT PEIIeHHs B KBajpaTypax. BeUIM momydeHbl u
MIPOAHATU3UPOBAHEl TOYHBIC PEUICHUS YpaBHEHWH HeNMMHEHHOW auHamMukn. OCHOBHOW pe3ynbTaT COCTOMT B IIpeACKa3aHUH
HEOTHOPO/IHBIX COCTOSIHUI C Pa3MYHBIMU SHEPTHAMH IOJCHCTEM. JTH COCTOSHHSI COOTBETCTBYIOT COJIMTOHHBIM BO30YXKICHUSIM B
CHCTEMax C pacrpeie/IeHHbIMU MTapaMeTpaMH.

KiioueBble cj10Ba: JTHHAMHYECKHE CHCTEMBI, BO30Y)XACHHUS, HHTETPUPYEMOCTh, HHTETpalbl JIBWKEeHHS, (a30BbId MOPTpET,
oco0ble ToukH, bnudypkauus, ypasHenue Jlanaay-JIudmia, HaMarHHYEeHHOCTb.

Although the non-linear dynamics of dynamical
systems is a traditional field of physics, the last half-
century exhibits its essential progress, related to the active
study of soliton excitations and their manifestations in the
physics of condensed matter. Recently a particular interest
is connected with the study of non-linear discrete systems
linking the areas of nonlinear oscillations and nonlinear
waves. Under a weak localization of non-linear

excitations in discrete systems, the whole non-linear
dynamics is localized on several elements of the lattice.
Recently, this problem has become more actual due to the
active research and application in nano-objects such as the
coupled effective spin torque oscillators [1], the cavities
containing SQUIDs with Josephson junctions connections
as the equipment for the quantum computer [2], high-gain
weakly nonlinear flax-modulated Josephson parametric
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amplifier using a SQUID arrays [3,4], coupled
micromechanical resonators [5], microelectromechanic
(MEM) coupled cantilevers and nunoelectromechanical
(NEM) systems [6], magnetic bilayers with F/N/F
structures [7], bicomponent magnonic crystals [8], arrays
of optical waveguides, optical switch and coupled modes
in nonlinear optical waveguides [9]. As it was first
demonstrated in [10,11], many elements of solitary
physics in systems with distributed parameters have their
analogous in systems with the final number of degrees of
freedom, particularly in systems with two elements [12].
Unfortunately, in hamiltonian systems with two degrees
of freedom, in the absence of additional integral of
motion, there appears a chaotic component of dynamics,
which defaces such an important element of motion as the
localization of excitations on one degree of freedom. In its
evident form, this phenomenon manifests itself in
integrable systems with two degrees of freedom. Some
examples of such systems are discussed in this article. As
a first example, consider two bounded elements of the so-
called DSTM (discrete self trapping model). It describes,
for example, a system of two closely connected optical
fibers or two weak coupled magnetic nanodots.

I. DSTM for two coupled non-linear elements.

It is convenient to describe the dynamics of a linear
oscillator in  terms of  complex  quantity
w =(wyx+ip/m)/ /2w, , which plays the role of a

classic analogue of the annihilation operator for the
quantum of the excitation of oscillator with frequency @

. By taking into account the weak (Linear) interaction
between oscillators and the simplest form of self non-
linearity (of on-site potential), we get for the two
oscillators in a resonant approximation the system of two
equations:

W, = oy, _Cxll/lnl2 Va +8(Wn _l//m) (1)

where n,m=1,2. The system of equations (1) is the
integrable one, with two integrals of motion: full energy

E=Y (@l —alw| 12)+elv-w.f @

and additional integral

N=> vl (3)

coincided with the adiabatic invariant and represented the
number of excitations under the quasi-classical
interpretation of the dynamics of the coupled oscillators.

Whereas N =const, it's convenient to introduce the
following new variables

73 =\mcosl9exp(i¢1),

w, =N sin 9exp(ig, ), (4)
in terms of which equations (1) will be rewritten as

u=2&siny, )
y = 2&ctg(u)cosy —a Ncos(u), (6)

where u=29 and y =¢, —¢ . This closed system for the
variables U and y is supplemented by the equation for
the variable ¢=¢, +4, :

$=-2(a,+&—aN[2)+2scosy /sin(u), (7)
In new variables the energy reeds as

E:(w0+8(1—5i“(U)C°5V’))N‘, (8)

—a(1+cos” (u))N* /4

Equations (1) allow single-frequency solutions
corresponding to stationary states with the following
relation between the amplitudes of oscillators:

(a-a,)(a+a)(aa,—&/a)=0.

Thus the in-phase (s), anti-phase (a) and nonuniform
(n) stationary states with the following dependencies of
frequency oscillations on the solution norm are possible

o, =awy—aN /2, o, =ay—aN/2, (9)

w, =w,+2s—aN/2, a, =—a, a, =—a,, (10)

o, =oy+s—aN, a,=cala. (11)

These dependencies demonstrate two important
properties of non-linear oscillations: the dependence of
the frequency of oscillations on their energy (or, what is
the same - on their norm), and the appearance in

bifurcation way at the critical level of the excitation
N >N, =2¢/a of the new type of motion with

different amplitudes of oscillations for the different
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elements of the system @, # a,, i.e. the localization of

energy on one of the oscillators. These features of the
dynamics are illustrated in Fig. la. Unfortunately, only
the single-frequency solutions can be depicted on the

plane (@, N), while the vibrations of the general type are

two-frequency with incommensurate frequencies. Their
properties are convenient to discuss on the plane of the

integrals of motion (E,N).

The dependences of the energy of single-frequency
oscillations on their norms (adiabatic invariants) is
determined by the usual mechanical ratio w=dE/dN.
Therefore, it is easy to get the relation between the motion
integrals for single-frequency vibrations, corresponding to
dependencies (9-11):

E. =a,N-aN?/4, (12)
E,=(@,+26)N—-aN?/4, (13)
E,=(0,+&)N-aN?/2-&*la,  (14)
E. =(a,+&)N-aN?/2, (15)
E=(m,+&)N-aN?/4-2¢%/a. (16)

Here the important (as it will be seen below)
dependences (15, 16) are given in which there appear the
significant changes in the dynamics of the system). The
dependencies (12-16) are depicted on Fig.1b.

On Fig. 1b, the line (a) corresponds to anti-phase
oscillations (phases of which differ on ), line (s) —

(Obb'sE, ) — to in-phase oscillations, line (n) — (bnE,) —

to localized states with different levels of excitation of the
oscillators (localization of energy on one element of the

system), and line (Ob’E*) corresponds to the dependency

from Eq.(14). Equations (5, 6) correspond to the effective
system with one degree of freedom and the integration of
motion (7), which can be integrated in quadratures, and its

dynamics is depicted on the “phase plane” (u,y) —

Fig.2.

On Fig. 2a, the special points such as "center” (s) and
(@) correspond to single-frequency in-phase and anti-
phase oscillations and to the lines (Ob) and (0a) in Fig.1b,
while the detached separatrix (C) separates the
oscillations close to the in-phase one from those close to

the anti-phase oscillations. It corresponds to the
dependence (14) and to the line (0b’) in Fig.1b.

(a)
Ea
Ea
E
i Es
0 N, 2Ny 2N, N
(b)

Fig. 1. Dependences of the stationary state frequencies on
the norms of the solutions (a) and (b) - the area of existence

of solutions with different dynamics on the plane (E, N) of

integrals of motion.of integrals of motion.

Special points of the type of "centeres” are stable, which
indicates the stability of in-phase and anti-phase
excitations in this interval of the values of norm. At the
point of bifurcation (b) there appear two new states with
different values of oscillators excitations: two new centers
in Fig.2b. They correspond to the line (n) in Fig.1a and the
line (bnE,) in Fig.1b. The saddle point (u=y =0) is
now associated with in-phase oscillations. This denotes
that the in-phase oscillations become unstable while
N > N, . They correspond to the dashed line (s) in Fig.1a

and the line (bb'sE;) in Fig.lb. The last line
simultaneously corresponds to the separate loops S in Fig/
2b. The areas inside the separatrix S, between the
separatrices S and C and outside of them, correspond
respectively to the domains B, S and A in Fig.1b. The
second bifurcation takes place at N =2N,, i.e. in the
point of merging of separatices S and C on the phase
portrait (triangles in Fig.2c). Finally, at N > 2N, the two
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separatrices are separated again (Fig..2d), but the
separatrix which going out of the saddle point of the in-
phase oscillations does not have a form of closed
separation loop.

(@)

(b)

(©)

(d)
Fig. 2. Phase portraits of the system (5,6) on the plane of
variables (u,y/) at different values of the complete norm of
the solution: N < N, (a), N, <N <2N, (b), N =2N,
(cyand N >2N, (d).

The states studied in the phase plane allow exact
analytical solutions. From Eq. (7) it results the relation

w=y(uEN):

(E.—E)+(aN?/4)sin*u

eNsin(u) (17

cosy =

and for the new variable f =(\/EN/2)cos(u) Eq.

(5) can be reduced to a closed equation for the function
f:
f2la=(A-17)(f"-A,), (18)

where
(19)

1. In the domain with small level of excitation with
N <N, ,inwhich E<E, <E, <E<E, (Fig. 2a),

A= (E—E)+% E-E =a’<b’, (20)
2¢ 2
A =-(E- )_ﬁ E-E, =-b (21)
and the solution to the equation (18) reads
f =acn(«/a2+b2«/Zt,k), k=—2 _ (22)
Va2 +b?

where cn(z,k) denotes Jacobi's elliptical cosine. For
E=E, we have: a=0, b®=2¢(N+N,) and a=0,
b?=2¢(N,—N) for E=E,. The frequency of the

relative amplitude of oscillations of subsystems is equal to

ﬂ'x/a
Q(E,N)=———a, 23

(EN)= 209 @)
where K(k) is the complete elliptical integral of the first

kind. On the boundaries for the area of the solution
existing ((@) and (s) in Fig.lb) k—0, a—0 and

bs,a—>,[aNb(Nb:LN). That is, the frequency of

periodic energy transfer between the oscillators is equal to
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Q,, =aN,(N,FN)=2:\1FTN/N, . (24)
In the linear limit, one gets the well-known result
Q=2¢. The elliptical integral module reaches the

maximum value k,=N/2N, on the line E=E,(N)

(15) on which a2 =aN? /4. This line corresponds to the

separatrix C in the phase portrait in Fig.2a.

The formula (24) describes the relative oscillations of
the amplitudes of the two oscillators and they are
determined by the interaction of subsystems. In addition,
the system demonstrates a common "rotation™ (similar to
the joint rotation of two related magnetic moments) with
frequencies close to the oscillators' own frequency ;.

This movement resembles the oscillations of two bound
linear oscillators, which vibrate with the frequencies of
their own modes (in-phase and anti-phase) and
simultaneously demonstrate the wobbling with the
frequency of the order of the magnitude of the interaction
between them. In this case, there is also the transfer of
energy between oscillators with frequency (24), but now
the principle of superposition and normal nodes do not
exist. The complete dynamics of the system is described
by the following formulas:

N 5 ip. .
Vi, :\/;\/P_rcos uexp(§j¢dt+zjz//dtj , (25)

in which the values i and ¢ are defined by Eq. (6,7).

The azimuthal rotation of oscillators is determined by the
exponential indicators and is expressed through the
elliptical integrals of the third kind. This movement
consists of average rotation with  frequency

v:<¢3¢¢/>/2, where angular brackets mean the

averaging over the period, and additional azimuthal
oscillation with frequency Q.

Integral in expression (25) also gives an additional
linear in time contribution, and the total formula in the
limits E—E, and E—E, leads to synchronous in-

phase and anti-phase rotations with frequencies (9,10).
The amplitude of modulation for the excitations of

individual oscillators is equal to SN =4a”*/aN , and on
the line E=E, (N) we have 5N, =N, i.e. the periodic
full pumping of energy between oscillators is observed.
Thus, in the system of coupled anharmonic oscillators,
the movement is two-frequency, but it does not represent

the overlay of normal modes: the frequency of energy
exchanging between oscillators (radial movement) does

not represent a difference between the frequencies of
azimuth rotations (main non-linear oscillations).
2. In the domain of large excitations

N, <N <2N,, where E <E <E<E, (Fig.2b), we
have

with

2 ,
A&=_(E—E)+fz,/E—En —a’, E, <E<E,, (26)

~ 2 2
A2=_(E—E)—J—%,/E—En —-b? E,<E<E,, (27)

@:—(E—E)—j—gﬁ:c%az,

E,<E<E,. (28)

Thus, the area for the acceptable values of parameters
N and E is divided into two parts with E >E, and

E < E;. (The domain (27) corresponds to (A) in Fig.1b).
From the same picture one can see that now the
dependence E(N) is inside the domain (A), and while

passing through over the parameters (E, N) the solution
slightly changes: at E<E<Ea as in previous case
a’ <b?, and when E, <E<E we have a’>Db’. For
a’>b® in this area at the border E =E, parameters

b=0 and @’ =2&(N—N,). Thus, on the border E = E,

corresponding to the separatrix S in Fig.2b, the module
k =1 and the solution is aperiodical:

2Ny, (N-N -
cosu:McoseCh uwt . (29)
N N,

(The line E= E still corresponds to the separatrix C
in Fig.1b). In the region E, < E < E the solution

is radically modified:

2 2

a“—c

f =adn(a\/7t,k), sz. (30)
At the border E =E, the parameters of the solution
are equal to a*=2&(N-N,), c=0 and k =1. On the
other E=E,
a’=c’=a(N?-N¢)/4 and k=0. Modulation of the

border they take the values
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levels of excitations of two oscillators is determined by
the expression

N,, :%iidn(a\/;t,k). (31)

Ja

It is important that although in this area of the system
parameters N >N, and E, <E <E_, as above, there is

the periodic exchange of energy between oscillators with
the frequency

aa

Q:m

a(E,N), (32)

but now the average level of the excitations of individual
subsystems is not equal:
(Ny,) =N (1t 7a/JaNK)/2. (33)

At the border of the area for the existence of solutions
with the maximum difference of the excitations of

oscillators we have <Nl‘2>:N(li«/1—N§/N2)/2. In

the limit N — oo the total energy is concentrated on one
of the oscillators: (N,) = N, (N, —0). Such the spatial
localization of energy in the system of identical oscillators
is the nature of the solitary localization in non-linear
systems with distributed parameters.

From Fig.2 it is clear that the purely in-phase
oscillations correspond to a special point of the "saddle"
point. Therefore the in-phase oscillations become unstable
(see dotted line in Fig.1la). From this point separatrix
loops "come out”, which correspond to the aperiodic
evolution for the amplitudes of oscillators. (But they are
accompanied by periodic in-phase rotation of oscillators
with a large frequency of order of @,). The specific type
of separatrices depends on the norm of the solution N .
While N, <N <2N, two separatrices S and Cin
Fig.2b (E, and E, in Fig.1b) separate quasi-in-phase and
quasi-anti-phase oscillations and quasi-in-phase and
heterogeneous oscillations, respectively. For N =2N,

(Fig.2c) these separtricec merge and the aperiodic
component of the movement looks particularly simple:

u=7z/2+y and N, =N/2ch*(2¢t). Oscillators rotate
with frequency Q =@, —& and with the total phase shift
equal to 7. This phase shift is also preserved at N > 2N,
for one of the separatrices ( E, on Fig.1b).

I1. The dynamics of the two interaction magnetic

moments.

The linearly interacting anharmonic systems were
considered above. Another object of study is non-linearly
interacting dynamic systems. An the example is two
bounded classical magnetic moments (interacting
magnetic nanodots, magnetic layers or two interacting
magnetic sublattices). In particular case, such a system
describes the spatially homogeneous excitations in
antiferromagnets. Let's restrict ourselves with the case of
the easy-type magnetic anisotropy, in which the classical

magnetic moments of the two subsystems M, and M,at
ground state are oriented along the so-called "easy axis" (

Z — axis). The total energy of such a system reads [13]:

E=-Jmm,—(8/2)) m.+J+4, (34)

where M =M, /M, -normalized magnetic moment,
S =, - the constant of single-ion anisotropy (frequency

of homogeneous ferromagnetic resonance), J —the
constant of exchange interaction (below J =¢), which is
positive for ferromagnetic case and negative for
antiferromagnetic. (While choosing the energy in the form
(34) the ground state of a "ferromagnetic™" type has zero
energy). In the classical approach, the dynamics of the
magnetic system can be described in the framework of a
discrete analogue of the Landau-Lifshitz equation [14]:

dri; / dt =[ m; x O / an; | In components

v, =m, +im, and m; =m, they have the form:

idl//i/dt:a)oy/imi+g((//imj—l//jmi), (35)
have the same structure as the equations (1) and
transform into them in linear limit.

For the description of the magnetic moments it is
convenient to use the polar coordinate system in which
w, =sing exp(ig ). Then the system of two complex

equations (35) is reduced to a system of three first-order
real equations for 4 and w=¢, —¢:

d&dt = 2esin 9, siny (36)
d&dt = —2esin g siny (37)

dy /dt = (26— @, )(cos 3 —cos Y, ) —2& cosy *
. (38)

*(sin” 9, cos 9, —sin® 9, cos 4 )/ sin 9 sin 9,
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In addition to the total energy (34), the system under
consideration has the additional integral of motion — a

complete projection of magnetization M = ZCOSISIi onto

the easy axes. This integral is similar to the total norm in
the previous example, and the total number of spin
deviations 2—M =N plays the role of the number of
elementary  excitations while the quasi-classical
quantization. Unlike the previous case, the number N is
now limited by the value: O0<N <2. (The value 2
corresponds to the configuration in which both the
moments are perpendicular to the easy axis). The
presence of two motion integrals leads to the complete
integrability of the system under consideration and the
possibility of obtaining its solution in the quadratures.
The difficulty of the problem is connected with the
choosing of the convenient variables which takes into
account the presence of one of the motion integrals ( N ).
Let us introduce instead of two variables 3 , one variable

P, such that cosd =M/2+(1-M/2)P, and the

condition of the conserving for the total magnetization is
fulfills automatically. Finding from the expression for the
energy

E =, (sin g, +sin® 8, )/ 2— )
—&(c0s g cos 9, +sin g sin g, cosy )+ ¢

the connection z//=¢//(l9i,E) and substituting it in (36),
we obtain the closed equation for the value P :

(dP/dt)* =—A—BP? —CP*, (40)
where
A=4(E-,(1-M?/4))*
*[E_((w0+2£)(1—mz/)21)]/(1—M/2)2’ “
B=8((w—¢)E-af (1-M?/4)+257),  (42)
C =4, (@, —25)(1-M 12)". (43)

Solutions of the equation (40-43) can be represented
in terms of elliptical Jacoby functions, but at first we
research the obtained system qualitatively. It allows the
single-frequency states (stationary states) which describe
the synchronous pure rotations of two magnetization

vectors: y;, =a exp(—iat). As in the previous example,

rotations are accepted with phases which differ in =

(anti-phases—(a)) and with the same phases: with the same
amplitudes (in-phase —(s)) and different amplitudes
(nonuniform ones—(n)). Nonuniform states exist only
when inequality & <a, /2 is valid. (In real magnets, the

exchange interaction is essentially large then the energy
of magnetic anisotropy (J >> p’), but in layered quasi-

two-dimensional magnets and nanodots systems, the
inequality we have used can be performed). The
amplitudes of the rotations of the moments are linked by
the relation:

(m —m,)((2 —2)aa, —e(1+mm,))=0.  (44)
In in-phase and anti-phase states m =m, and
a =za,, in the nonuniform stationary states

mm, =-1+M (1-«)/v1-2x, where x=c/w@,. In

stationary states, the frequencies of these excitations
dependence on the number of spin deviations N has the
form of

o, =, (1-N12), a,=a, (45)
o, =(w, +2¢)(1-N12), a,=-a, (46)
@, = oy (M —V1-2r), a,#a . (47)

These dependences are shown in Fig. 3a. At the
critical value of the level of excitation

N, = 2(1—«/1—2;<) two dependences for the nonuniform

rotations (n) split from the line of in-phase rotations.

Corresponding dependencies of energy on the norm
for the three types of stationary rotations of magnetic
moments have the form:

E, =a,N-oyN?/4, (48)

E, =(@,+2¢)(N-N*/4), (49)

En:(a)0+2€)/2—a)o(M —x/1—21c)2/2, (50)
E, =(@f (N=N*/4)+22%)/ (@, -¢).  (50)
These dependencies are represented in Fig.3b. (On the

line E,=E,(N) ((5) and (q) in Fig.3b) the value B in

(42) changes the signs). The domain N >2 corresponds
to the similar excitations above another ground state with
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M =-2. Inthe limit N —2 (M —0), the frequency of

in-phase and anti-phase rotations of magnetization tends
to zero and It appears the static configurations with

collenear and  anti-collinear ~ configurations  of
magnetization vectors in the "heavy" plane.
W A
W,+2€

(@)

(b)

Fig. 3. The dependences of stationary state frequencies on
the number of spin deviations (a) and (b) - the domains of
the existence for the solutions with different dynamics

subject to the values of motion integrals (E, N)

The nonuniform state in this limit represents the anti-
collinear configuration with moments along the easy axis

with precession frequency @ = @, J1-2k . The frequency
of inhomogeneous excitations turns to
N, =2-+1-2«c. In this case, the vectors of two

moments are orthogonal as it shown in Fig.3b.
The expression (41) can be represented in the

A=4(E-E,)(E-E,)/(1-M/2)".
Therefore the value A is negative in the area of the

zero at

following form:

parameters between the lines (&) and (s) in Fig.3b and

is positive in the area between (s) and (n). Constant C

is positive in the whole domain of the acceptable
parameters of the solutions. At last, B>0 for

E,<E<E, and B<0 for E, <E<E,. So the phase

portrait of the system in the “phase plane” (P, F") has
different structure for N >N, and N <N,, and for
E,<E<E, and E, <E<E, in the domain N >N,
(see Fig.4). In the previous model it was possible to draw
all phase trajectories in the same figure. Now we are able
to represent all trajectories only in two figures for the
oscillations close to in-phase one and to anti-phase. These
two types of orbits are separated by phase trajectory with
the largest size which correspond to the line E,(N) in

Fig.3b with
E, =2(a,+&)(N-N?/4). (52)
The phase portrait of the system for N <N, is

demonstrated in Fig.4a. It is similar to the portrait for
linear system. The two maximal orbits in two parts of the
figure are the same and correspond to the value E=E,.
This figure is the analogues to the Fig.2a and the line with
E =E, is the same as separatrix C .

In the region N >N, the phase portrait is more
complicated. The separatrix E,
unstable saddle point for
(P =0,P= 0) and separates
nonuniform rotations of two moments. Two stable
“center”-type critical points with E =E, correspond to

“begins” and “ends” in
in-phase  oscillations

the domain with the

the states in which only one from two moments oscillate.

Ld

A.P grouth of energy A P
E=E. P FE=Ea’// P
— — —
N<Nb
. (@
AP E, Eq Es Ea_fP
P
Nb<N
(b)

Fig. 4. Phase portraits of two coupled moments for N < N
(ayand N > N. (h)

In all the area on the outside of the separatrix E,
(upper in energy from the line (s) in Fig.3b) the exact
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solution of Eq.(40) has the form similar to the solution
(22) in previous model:

_ 2 2 _ a
P_acn(\/a +b ft,k), k—m, (53)

but with another definition of the parameters. For N < N
and for N > N, in the domain E, <E <E, they are

a2 =(B/2C)(,/4|A|C/BZ+1—1), (54)
b* = (B/2C)(|/4|AlC/ B +1+1). (55)

For the small levels of excitations N <N, at the
borders of area for the solutions E = E,, E  parameter A

tends to zero and a — 0 with k — 0. So the function (53)
transforms into trigonometrical one. The solution (53-55)
describes the relative oscillations of two magnetic

moments with the frequency Q=7za\C/2kK (k). As

above these oscillations are accompanied by the common
rotation of all the system with the frequency close to the
resonant frequency @, for small exchange interaction.

At N >N, the solution (53) preserves its form for

energies E, <E<E, but with another definition of the

parameters:
a’ = (|B|/2c)(4AIC /BT +1+1),  (56)
b* = (|B|/2C)(J4[AIC/ B7 +1-1]. (57)

Now at the line of in-phase oscillations E, ((s) in
Fig.3b) parameter b—0 and modulus k —1: the
solution at the separatrix E, becomes aperiodic and one
spin deviates from another passing through the easy axis.

At last in the domain of the parameters E, < E < E, as

in the previous case nonuniform distribution of energy
between the two moments takes place and correspondent
solution of Eq.(40) has the form (30):

2 2
P=adn(at,k), L (58)
a
with
a® —(|Bl/2C)(1+1-4ACTB?),  (59)

b* = (|B]/2C)(1-1-4ACTB7).

(60)

In the limit E—E, as it follows from (40)

B> =4AC and modulus k is equal to zero. It follows
from this that P =a(N) does not depend on time and so

@ =const: magnetic moments rotate around the

direction of the easy axis as common object.

Conclusions.

We investigated the nonlinear dynamics for the
integrable systems of two identical coupled nonlinear
elements with linear and nonlinear interparticle
interaction and pay attention to some common features of
this dynamics. (1) Although the principle of the
superposition is absent in nonlinear systems, nevertheless
the spectrum for the integrable one contains the
frequencies of two definite quasilinear modes with the
periodical transfer of the energy between them. (2) The
most interesting facts consists in the appearance of the
additional states with at the average nonuniform
distribution of the energy between the degrees of
freedom. This nonuniform nonlinear mode appears in the
bifurcation way at the critical value of the total energy.
(3) These states can be treated as the soliton analogous in
the system with the finite numbers of the degrees of
freedom.
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