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The paper presents thorough theoretical and numerical analysis of the anomalies accompanying light diffraction on periodical
structures (gratings). We have developed appropriate theoretical approach allowing to consider strong anomalous effects. Obtained
results are presented in the form of analytical expressions for the quntities of interest, both diffracted field amplitudes and the
outgoing waves energy fluxes. It is proved existence of the fluxes extrema at the specific grazing angle of incidence6 or wavelength.
Namely, the specular reflection can be suppressed even for rather shallow gratings up to approximately total suppression.This effect
is accompanied by essential energy redistribution between all outgoing waves depending on the grating profile. It is of essence that
the energy maxima exist in all nonspecular diffraction orders at the same point (angle, wavelength) as the minimal specular
reflectivity. For small period gratings, such that there do not exist other outgoing waves except the specular one, the reflectance
minimum is attended by approximately total absorption of the incident radiation. Thus, we show that the grazing anomaly (GA) can
be accompanied by redirection of the incident wave energy into nonspecular diffraction channels and into absorption. The results are
applicable in the wide spectral region, from visible and near-infrared to terahertz and high-frequency regions for metals and
semiconductors with high permittivity.

The anomaly considered is well expressed for high electromagnetic contrast of the adjacent media, say, air and metal or
semiconductor. Then the high contrast is due to the high value of the metal/semiconductor dielectric permittivity &, g\ >1, and the

anomaly corresponds to incidence of TM polarized wave. It is shown that the grazing anomaly (GA) is of rather general type and can
take place if other than the specular diffraction order experiencies grazing propagation also. This property follows from the results
obtained by strict application of the optical reciprocity theorem to the geometry under consideration.

The specific case of harmonic relief grating is discussed in detail. It is demomstrated existence of the characteristic

inclination, a, , of the relief inclinatuion for the grating period comparable with the incident radiation wavelength, a, = \/@«1,

cr !

where & stays for the surface impedance, & :]/J? The condition a ~ a,,, or greater, corresponds to highly expressed GA. The

theoretical results are illustrated by numerical applications to gratings on Cu\vacuum (air) interface in THz region.
The results obtained can be simply transferred to the TE polarized waves. For this we have to consider the adjacent media

with high contrast magnetic properties, i.e., high value of the magnetic permeability u, ,u‘ >1. This case is of high interest for

nowaday applications in nanophotonics and metamaterials development.

As compared with other anomalies GA is attributed to the resonance-type behaviour of the energy flux, not wave amplitudes,
the latter change monotonically within this anomaly contrary to the well known Rayleigh and resonance anomalies, where the wave
amplitude experiences fast nonmonotonous dependence on the angle of incidence and wavelength.

Keywords: diffraction grating, energy flux anomaly, resonance.

AHOMaisl B OTOII1 BIIOUTOI €HEPTil MPU KOB3HOMY MaJ1HHI: aHAJIOT1s 3

KyTOM bprocrepa
T.M. Poxmanosa, O.B. Kaig

Incmumym paoioghizuxu ma enexmponixu im. O.A. Ycuxosa HAH Vkpainu, eyn. Ilpockypa 12, 61085 Xapxis, Yrpaina

V crarTi HaBeleHUH TOKIaIHUN TEOPETHYHHI Ta YHCENIbHUI aHaNi3 aHOMAJIH, SKi CYIPOBOUKYIOTh AU(PAKIMIO CBITIA Ha
MepioANYHHX CTPYKTypax (Ipatkax). Po3BHHYTO HEOOXIMHHHI ISl pO3IIIIAHHS CYTTEBUX aHOMAIIiil TeopeTHuyHuit minxin. OtpuMani
pe3yiIbTaTH HaBeAeHi y pOpMi aHATIITUYHUX BUPa3iB I TTapaMeTpiB, 0 YSABISAIOTH (i3HUHMIT IHTEpeC, TaKuX, K aMILTITYAN XBUIb
Ta TIOTOKH €Heprii XBHIIb, SIKI BIITAISIOTHECS Bl MeXi MoJiTy. JloBeIeHO HasBHICTh EKCTPEMYMIB 32 KyTOM KOB3aHHS Ta JOBXKHHOIO
XBWJI y MOTOKIB eHeprii. 30Kkpema, HaBiTh U BEIbMM IOJOTMX I'PAaTOK MOJMIIMBHM BHUSBISETHCS 3aINyILICHHS I3€PKAIbHOIO
BiZIOMBAHHA JI0 Maiixe MOBHOTrO 3artyieHHs. Lleil eekT cynpoBOIKYy€ETbCS CYTTEBUM MEPEPO3NOUIOM eHeprii HOMDK XBUIIAMH, 1110
BIAJAJISIOTHCS, SIKUH BUSIBISIETBCS BENIbMU 4yTIHUBHM 10 npodins rpatku (71 Dypbe cnektpy). MakcuMymu eHepril HeA3epKalbHUX
KOMIIOHEHT PO3TAIlIOBaHi B Tii ’&e TOYlli (32 KyTOM MaJiHHs Ta JOBXHHOIO XBHJII), IO i MiHIMYM J3epKajbHOTO BiIOMBaHHSI.
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Huobpakiuis Ha rpaTkax 3 MaJdM IepioJoM, TaKUX LI0 KPiM A3epKanbHO BiAOMTOI XBHJI HE ICHYE IHIIMX XBHIIb, IO
PO3MOBCIO[KYIOTbCS, MIHIMYM J3€pKajbHOTO BiIOMBaHHA CYNPOBOIKYETHCS Maike TOBHMM IIOTVIMHAHHAM I1aJaI04oro
BUMPOMiHIOBaHHS. TakuM YHHOM, JOBEICHO, 110 KOB3HA aHoMauis (GA) CyMpoBOIKYETHCS MEPEPO3MOALTOM EHEpril XBHUIL,IIO
najgae, B HeA3epKanbHI MUQpaKIiiffHI KaHANIM, a TakoXX y IOMIMHAHHA. Pe3ynpraTd € MIHCHEMH y IIMPOKOMYCIIEKTPaJIbHOIY
niarmaszoHi, B BumauMoro Ta OikHbOTO IK 1m0 TeparepmoBoro ta HBY niama3oHiB Ui METaiB Ta HAMiBIPOBIIHUKIB 3 BUCOKOIO
JIieTIeKTPUIHOIO IPOHUKHICTIO.

GA no0pe BUpakeHa IIPH BUCOKOMY €JISKTPOMArHITHOMY KOHTPACTi CyMDXKHUX CEpPEIOBHIL, HAIIPUKIAJ, IOBITPS 3 METAIOM
Yy HamiBOpoBiZHUKOM. [Ipy 1IbOMY BHCOKHI KOHTpAcT 3a0e3MeuyeThcsl BENMKUM 3HAUCHHSAM AieJICKTPUYHOI MPOHUKHOCTI MeTana
(HamiBIIPOBIHUKA) & ,

g‘ >1, a aHOMaJIis BUHHKAaE TpH naaiHai 1M nonspusoBaHoi xBwii. [IpogemMoHcTpoBaHo, mo GA € moBoii

3MTaITFHOI0 aHOMAIIEO 1 MOXKE CHOCTEPIraTHCs TaKOX 32 YMOB, KOJM OAWH 3 U PaKIiHHAX HOPSAKIB BiANOBiKae KOB3HIH xBuii. s
BJIACTUBICTh BHXOAWTH 3 HABEJCHUX pE3yIbTAaTiB IUIIXOM 3aCTOCYBAaHHS OINTHYHOI TEOpEeMH B3a€MHOCTI K TeoMeTpii, IIo
JOCTIIKEHa.

JleTabHO PO3IIIIHYTUH BUNAJOK IPATOK 3 FapMOHIHHUM npodineM. BusBiieHa HasBHICTb XapaKTEPHOHO HAaXWIy &, JULL

IPATOK, NPOCTOPOBMH MEPioJ AKMX € 3iCTABHMM 3 JOBXMHOKO I1aJarodoro BUIPOMIHIOBAaHHSA, a, = M <1, ne ¢ o3Hauae

MOBepXHEBUH iMmenaHc, & ::I/ Je . Ymopa a~ a, (a -- Haxwu IpaTKy, IO PO3IJILNAEThCs) abo Olmblue BIAIOBINAE SCKPABO

BUpaXCEHI aHoMamii. Pe3ynpTaT TEOPETMYHOrO PO3IIAAHHSA UIIOCTPYIOTBCS TPHUKIAJAaMH  YHCETbHHUX PO3PAaxyHKIB Yy
TeparepIoBOMY Jiana30Hi JOBXKHH XBUJIb JJISI IPaTOK Ha MOBEPXHI Miji, sIKa MEXYE 3 BAKYYMOM(TIOBITPSIM) .

OTpuMaHi pe3ynbTaTd AO3BOJSAIOTH NMPOCTHH MEPEeHIC Ha BHMAAOK |E MOMIpU30BaHMX XBHJb. i1 LBOrO HEOOXIAHO
PO3IIITHYTH MEXYIOUi CepelloBHINA 3 aMCOKMM KOHTPACTOM MAarHiTHHUX BJIACTHBOCTEH, KOJNM OJHE 3 HMX Ma€ BHCOKY MAarHiTHY

MIPOHUKHICTD 4 , ‘ y‘ > 1. lle#l BUIIQAOK € BEIbMU I[IKaBUM JUISI Cy4aCHHX 3aCTOCYBaHb B HAHO(OTOHII, a TAKOX IIPH CTBOPEHHL

HaHOMaTepialiB.

Ha Bigminy Bix iHmmx anomaniii GA o0yMOBIIeHa PE30HAHCHUX XapaKTepPOM MOBEMIHKHM MOTOKY €Heprii, a He aMILTITyIu
BiAmoBinHOi XxBuii. B okoni GA aMIUliTyan XBHIIb 3MIHIOIOTBCS MOHOTOHHO, Y TPOTHJIEKHOCTI 0 TOTO, IO MaE€ Micle B OKOJaxX
PeneiBcpkoi Ta pe30HaHCHOT aHOMAJIii, e aMIUTITYAa BiAMOBITHOI XBHJII 3MIHIOEThCS INBUAKO Ta HEMOHOTOHHO i3 3MiHOKO KyTa
magiHHsg a00 JOBXHHHU XBHIIL.

KorouoBi ciioBa: nudpaxuiiina rpaTka, aHOMaisl IIOTOKY €Heprii, pe3oHaHC.

AHOMaIHs B MOTOKE OTPAXKEHHOW YHEPTUHU IPU CKOJIB3SIIEM NaJCHUU:

aHaJIoTus C yriiomMm Bp}OCTepa
T.H. PoxmanoBa, A.B. Kan

Hnemumym paouoguzuxu u snexkmponuxu um. O.A. Yeuxoea HAH Vkpaunwi, ya. Ilpockypa 12, 61085 Xapwros, Ykpauna

B craTthe mpencraBieH moapoOHBI TEOPETHUSCKUI W YUCICHHBINA aHAN3 aHOMAJIMA, COMPOBOKAAIOMINX AUPPAKIHIO CBETA
Ha TIEPHOIUYECKUX CTPYKTypax (pemieTkax). Pa3sBUT HE0OXOAMMBIA U ONMUCAHUS CHUIBHBIX aHOMAIMHA TEOPETHYECKHH MOIXOI.
[lonmy4eHHble pe3ymbTaTHl NPEACTABICHB B (OpPME AHATUTHYECKUX BBIPAKEHUH I TPEICTABILIOMMNX (DU3NYECKU HHTEpec
MapaMeTpoB, TAKUX KaK aMIUTUTYIbl BOJH ¥ MOTOKU SHEPTHM YXOMASIIMX OT TPAHHUIBI BOJH. J[0Ka3aHO HalMuhe IKCTPEMYMOB Y
MOTOKOB HEPTUH MO YIIIy CKOJILKEHUS U JUIMHE BOJHBI. B 4acTHOCTH, JaXke A BeCbMa MOJIOTHX PENIeTOK BOZMOXKHO I10JIaBJICHHE
3epKaTbHOTO OTpaKEHHWE BIUIOTH JO MOYTH TMOJHOTO TIOAABIEHHsA. OTOT J(deKT conpoBoXKIaeTcs CyIECTBEHHBIM
niepepacnpeaeneHieM SHepT Ul MeXy YXOSIMMH OT TPaHHUIIbI BOJHAMH, BECbMa 4yBCTBUTEIBHBIM K TpoGmo pemerk (ee Dypobe
CHeKTpy). MakCHUMyMbI SHEPTHH He3epKaTbHBIX KOMIOHEHT PACIOJI0KEHBI B TOH JKe TOYKe (TI0 YTy MajJeHus U JJIMHE BOIHBI), YTO
¥ MHHUMYM 3€PKaJIbHOTO OTPaKEHHSI.

VY pemerok ¢ MajbIM MEepUOAOM, TAKHX, YTO HE CYIIECTBYET APYIHX YXOJSIINX BOJH, KPOME 3EPKAIbHOH, MHHUMYM
3EPKAIbHOTO OTPAKEHHS COMPOBOXKAACTCS MOYTH MOJHBIM MOTJIONIEHUEM MaJaroIero m3mydeHus. TakiuM oOpa3oM MOKa3aHo, YTO
"ckomp3smias anomanusa" (GA) MOXeT COMpOBOXIATHCSA IMepepachpefeiiCHHeM SHEPruM MaJarolieil BOJHBI B HE3epKaJIbHBIC
ﬂMq)(bpaKLll/IOHHble KaHaJIbl U B IIOTJIOLICHHUEC. Pe3yanaT1>1 NPUMCHHUMBI B HIMPOKOM CIICKTPAJIbHOM AHANa3oHE, OT BHAMMOIO U
ommxaero VK nmo teparepuoBoro m CBY nuana3oHOB Ui METAUIOB M IOJYNPOBOAHMKOB C BBICOKOW JAWIICKTPUYECKOI
IPOHHUIIAEMOCTBIO.

GA xopolIo BbIpaKeHa MPH BEICOKOM AJICKTPOMAarHUTHOM KOHTPACTEe MPUMBIKAIOLIMX CPEl, HalIpUMep, BO3ayXa U MeTaia
WA TIONYNPOBOAHUKA. [IpH 3TOM BBICOKHIT KOHTpAacT OOYCIOBIMBACTCS BBHICOKUM 3HAUCHHEM IUAICKTPHUYECKON MPOHHUIIAEMOCTH

MeTaa (MOJIyHNPOBOAHUKA) & , ‘g‘ >1, a aHOMaJusl BO3HHKAaeT Mpu najgeHun M mosspu3oBaHHOM BonHbL [lokasano, uto GA

SIBIIICTCS] aHOMaNMel BecbMa O0IIero THIA M MOKET Takke HaOII0AaThCsl, KOT/Ia OTUH U3 U(PaKIIMOHHBIX MOPSIIKOB COOTBETCTBYET
CKOJIB3SILEH BOJIHE. DTO CBOWCTBO CIEAyeT U3 MOJyYEHHBIX PE3yJbTaTOB MyTeM NPUMEHEHUS ONTHYECKOH TeOpeMbl B3aMMHOCTH K
HCCIIEIOBAHHON F€OMETPHU.

JleTaJiIbHO pacCMOTPEH Cllydal peIIeTOK TapMOHMYECKOro Hpoduis. BBIABICHO HaIM4YHME XapaKTepPHOrO HAKIOHA &, UL

PEIIETOK, NEPHO KOTOPLIX CPaBHUM C JUIMHOH Najaromieil BOJNHBL, @, =, j\g\ <1, roe ¢ obo3HAaYaeT MOBEPXHOCTHBIM MMIIEAAHC,

é :1/ Je . Yenosue a~ a, (a — HaKIOH paccMaTPHBACMOIl PEIIETKU) MM OOJBIIE COOTBETCBYET APKO BBIPAKEHHOOH aHOMAIIHHL.

Pe3yJ'H)TaTI>I TCOPETHUCCKOI'0 paCCMOTPCHUSA HJUIIOCTPUPYIOTCS MPUMEpPAMU YHCJICHHBIX PACUCTOB JId PCIICTOK Ha IMOBEPXHOCTH
MCIu, I‘paHPI‘{aHIeﬁ C BaKyyMmoM (BO3IIyXOM) B T€parepuoBoOM Juaria3oHe MJIMH BOJIH. HO.Hy‘{eHHLIe PEe3ybTaThl AOITYCKAOT HpOCTOﬁ
TNIEPEHOC Ha cnyqaﬁ TE TMOJISIPU30BAHHBIX BOJIH. ,Z[J'ISI 9TOTro HeO6XOZ[I/IMO PacCMOTPETh NpUIICTrarone CPEaAbl C BBICOKUM KOHTPACTOM
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MarHuTHBIX CBOfICTB, KOorJa oiHa U3 Cpe€a MMCCT BBICOKYIO MAarHUTHYIO IIPOHUIAEMOCTb, (U,

,u‘ >1. DT0T cily4yail mpeacTaBisieT

3HAYUTENILHBIN HHTEpEC IS COBPEMEHHBIX IIPHIIOKEHNIT B HAHO(OTOHHUKE, a TaKKe [P CO3IaHIN METaMaTepPHAJIOB.

B ommmune ot npyrux anomanmii, GA 00ycioBieHa pe30HaHCHBIM XapaKTepoM IOBEICHNS IIOTOKa YHEPTHH, a He aMILTHTY bl
COOTBETCTBYIIEH BONHBL B okpecTHocTH GA aMIUIMTYIbl BOJH W3MEHSACTCS MOHOTOHHO, B HPOTHUBOIIOJOKHOCTH TOMY, YTO B
OKpPECTHOCTSIX PaneeBckoil W pe30HaHCHON aHOMAalNWi aMIUIMTyJa COOTBETCTBYIOIIEH BOJHBI MEHSETCS OBICTPO MU HEMOHOTOHHO C

HU3MEHCHUEM YIJla MMaACHUs WU JJIUHBI BOJHBI.

KiroueBble ciioBa: qupakiOHHAs PEIIETKa, aHOMAJIUS TIOTOKA SHEPIHH, PE30HAHC.

Introduction. Classification of anomalies.

The pioneering work on anomalies in light diffraction
on metal gratings was performed by R. Wood in 1902 [1],
while the first physical interpretation of some of the
observed peculiarities was presented in1907 by Lord
Rayleigh [2]. The latter associated them with the
transition from the outgoing wave to the evanescent
(decaying) one and vice versa in different diffracted
orders. However, such explanation was insufficient and
other possibility was proposed by U. Fano [3] who
attributed some of Wood anomalies to the resonance
excitation of the surface electromagnetic waves (surface
plasmon polaritons, SPP, [4].) at the metal-air interface.
Also, Wood discovered one more anomaly related to the
unexpectedly high intensity of the grazing outgoing wave
[5]. Below the anomalies attributed to the grazing
propagating waves are referred to as GA (Grazing
Anomaly), see [6-8]. Up to now, Wood anomalies are
widely discussed due to their perspective role in
nanophysics and, particularly, nanophotonics.

Existing for an arbitrary interface and light
polarization, the Rayleigh anomaly is much more
pronounced for the high-dielectric contrast interface, for
TM (transverse magnetic) polarization and nonmagnetic
media. Below, we restrict the consideration to the
nonmagnetic case only. The results for the magnetic case
can be obtained by replacing the dielectric permittivity,
&, with the magnetic permeability, x, and the TM

polarization by the TE one and vice versa. It worth
mentioning that the resonance anomaly can exist only for
such interfaces that support surface electromagnetic
waves (SEW) and that GA anomaly is rather universal
and is well expressed for high contrast interfaces for TM
polarization [6].

Consider briefly the main properties of these
anomalies. The branch (Rayleigh) point anomaly is of
general type, its position can be easily obtained from the
Bragg diffraction conditions and it exists for arbitrary
polarization and interfaces. However, it is more
pronounced for metals under TM polarization. At the
Rayleigh point the derivative of the diffracted wave
intensity with respect to the wavelength or angle of
incidence turns infinity. The resonance anomaly is less
general because it is caused by existence of well-defined
eigenmodes of the interface. For isotropic and
nonmagnetic  dissipation-free  media such surface-
localized electromagnetic waves do exist under the

conditions £<0, & >0, g +&<0, where ¢ and ¢,

denote dielectric permittivity of the metal and the adjacent
dielectric, respectively. The SPP in-plane wavenumber,

w .
=2 0, wh th |
Q - ey [(e+e,)>0, where o is the (angular)

frequency of the incident wave, exceeds the wavenumber
of the adjacent dielectric volume wave with the same

frequency, k= [, /c, Q> k. The square root symbol
stays for the main branch, so that ﬁz\/]ﬂexp(wﬂ)

for Z=|Z|exp(i¢) with ¢e[0,27). The SPP is
orthogonally H polarized, i.e., if it propagates along the
interface z=0 in Ox direction then its magnetic field,
H, is directed along Oy direction, H=(0,H,0), and
the electric field, E, lies in the xOz plane,
E=(E,,0,E,). The space dependence of the SPP fields
in the dielectric halfspace, z<0, is given by the ansatz
exp[iQx —ip(Q)z], where the function p(q) is defined

for arbitrary two-dimensional vector ¢ =(g,,q, ) so that,

p(q):«sz—qz, k:\Ew/c, Re, Imp(q)>0. (1)

In the specific case of SPP, the quantity p(Q) is z-

component of the wavevector in the dielectric and for
dissipation-free media it is pure imaginary under the

condition £+, <0, p(Q)=i|p(Q)|, so that the field

amplitude decays exponentially with increasing distance
from the interface z=0.

Recall, if the plane monochromatic electromagnetic
wave with space dependence,

E.Hocexp[i(g-r)+ip(a)z], a=(g,.q,), (2

(here and further the time dependence is supposed to be of
the form exp(—iwt) and is omitted) is incident on the
interface from the dielectric medium located at negative
z values, —0<z<¢(x), where the surface profile,
z=¢(x), presents periodic function with period d,

¢(x+d)=¢(x), then the electromagnetic field within

the dielectric medium is the sum of spatial harmonics of
the form,
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E,. H, «exp[i(q, r)-ip(d,)z], 3)
q,=q+ng, g=e, 2z/d, n=0+1+2,...

where e, is the unit vector directed along the Ox axis. In

other words, the diffracted field is given by the Floquet-
Fourier expansion, [9, 11]. In (3) the sign minus before

p(a,) stays to satisfy the radiation boundary conditions

at z=-oo. Restriction of the outgoing waves (and
evanescent decaying ones) within the whole halfspace

2<{(x) corresponds to use of the Rayleigh hypothesis,

[2], and is not restrictive even for rather deep gratings, see
recent discussion in [9, 11, 12].

If for some specific integer n the condition |q,|=Q

holds true, then for the appropriate polarization of this
diffracted wave the resonance excitation of SPP takes
place. SPP is an evanescent wave so the magnitude of the
corresponding diffracted order can exceed that of the
incident wave. Specifically, in the simplest geometry,
when q is orthogonal to the grating grooves, only TM

component of the incident wave can excite the SPP.

We would like to underline that the Rayleigh and the
resonance anomalies are related to the specific and rather
sharp dependence of the field amplitudes on the
wavelength and angle of incidence. They can be
considered on the basis of simple qualitative treatment.
The treatment of the third mentioned Wood anomaly
cannot be accomplished without a thorough theoretical
investigation. This obstacle is caused by the fact that the
field amplitude changes monotonically within the
anomaly. It can be shown that the corresponding
quasiresonance behavior is characteristic for the intensity,
not for the field amplitude. The method for considering
this and other diffraction anomalies analytically was
presented in [8], see also a more detailed consideration in
[13-15].

2. Grazing incidence anomaly.
Consider the case of the simplest geometry for TM
polarized waves with magnetic field orthogonal to the

plane of incidence, so that for the incident wave, H', and
for the Fourier-Floquet expansion of the diffracted field,

HP , we have,

H' =e H exp[igx+ip(q)z],

o 4
H® =e, > H, exp[ig,x—ip(a,)z], z<<(x), @
where g, =q+ng . Note, the diffracted field in (4) and

below in (5) includes only outgoing (and evanescent)
waves, i.e., here we use the Rayleigh hypothesis, [2],
restricting the expansion to the terms with z -dependence

of the form exp[ —ip(q, )z | only, and omitting those with

z -dependence of the alternative form, exp[ip(qn)z].

This guarantees fulfillment of the boundary (radiation)
conditionsat z=—o.

The electric field, E=(E,,0,E,), and can be easily

obtained from (3) and Maxwell equation. Specifically, the
electric component of the diffracted field can be presented

in the series of the form coinciding with that of H®,

ED — i E, exp[iqnx—ip(qn)z], z2<4(x). (5)

n=-o

At the interface the total fields, H=H'+H",
E=E +EP, are to satisfy the impedance boundary
conditions, [16],

E, =&[nxH] for z=¢(x), (6)

where the subindex t denotes tangential to the interface
component of the corresponding vector, ¢ denotes the

surface impedance, and n stays for the unit vector normal
to the interface directed into the dielectric. We use Gauss
units so that the surface impedance ¢ is dimensionless,

and for nonmagnetic media & = a/gd /€.
The profile Fourier series expansion is

£(x)= Z ¢, exp(ingx), g=27/d >0,

é/—n:é’:’ §0:0

()

The condition ¢, =0 corresponds to the specific
choice of Oz axis origin. The Fourier series coefficients
of the interface normal, n=n(x), can be expressed in
terms of ¢, .

Substituting into Eq. (6) the fields representations
given in Eqgs. (4), (5), expressing the electric field Fourier
amplitudes, E,, in terms of the magnetic ones, H, and

equating terms with equal space dependence, we arrive at
the infinite system of linear algebraic equations for the
transformation coefficients (TCs), h, =H,/H,

3 D, h, =V, n=02142,..., ®)

where the matrix of the system, D =D, ,|, and the right-

hand side column vector, V =col{V,}, represent

functionals depending on the problem parameters,
specifically, the interface profile ¢'(x). The coefficients
of the system allow infinite series expansions with respect
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to ¢, . Itis essential that strong diffraction anomalies take
place for rather shallow gratings such that
k||, [d¢/dx| <1, see [11-13] and below, so the
expansions are very useful. For shallow gratings under

discussion, we can restrict the series expansions of the
coefficients to the main (linear) terms only, so that

Dnm =(ﬁn +§)5nm _i(l_anam)/un—m’

, 9

nm=0,£1+2,... B

Vn :(ﬂn _5)5n0 +i(1_ana0):un’ (10)
n=0,+1+2,...

Here &, ,, stays for the Kronecker delta-symbol, and

u,=ké,, a,=a+nk, k=g/k,

B, =\1-a?, Re,Imp, >0, ,

n=0,+1,+2,..., neZ

(11)

where a =sin@, 6 denotes the incidence angle, Z stays
for the set of integers.

Consider here the simplest (but of high interest) case
of the grazing incidence, 0 < S <«1 (0<1l-a <«1). That

is the specular reflected wave with necessity is the
grazing one. The simplest geometry of the problem is
such, when only one of the diffracted waves except the
specular wave is outgoing from the interface, all other
diffraction orders correspond to evanescent waves. This
geometry is presented in Fig. 1.

Fig. 1. Grazing incidence diffraction. The grating spacing,
d, is supposed to be such that except the specular wave only
the minus first diffraction order presents propagating wave,
other diffraction orders correspond to evanescent ones, i.e.,
at q=k, q,=q+9g>k, |q,/=|g—g|<k, and |q,|>k

forall n=-1,0.

It should be emphasized, that among diffracted waves
only the specular reflected one is close to the
corresponding Rayleigh point, g =/, <1, and all other

waves are far enough from their branch points. That is,

the only one diagonal element of the matrix D =|

Dnm | '
where N and M are nonzero iterger numbers (N,M =0

).The submatrix D is diagonally dominat due to the fact
that all nondiagonal elements are small as compared with
unity and all diagonal ones are of order unity or greater.
Thus, it can be easily inversed by means of the regular
series expansion. So, one can obtain the solution in the
form

ﬂ_geff
_ , 12
ho ﬂ+§eff ( )
w= 2Py, M=t (13)
ﬂ—"_é:eff
where
Ey=E4T, 14)

= 20[5711\/”_ (l_aoaM )(l_aLao)/”LILAM ., (15)

M, L=
Uy =3B (-aa)u, M=+1:2... (16)

It is essential that the coefficients U,, experience only

slow dependence on the parameters of interest in the
vicinity of the point g =0, as well as the functions T

and & .

In what follows we are dealing with rather smooth and
shallow gratings. Under this condition we can restrict the
U,, series expansion by the two first terms only,

Uy =by[(1-aya,) uy +

+iZ:b[1 (I-a o) (1- e ),uL,uML}, .

L=0

(17

M=+142,...

Noteworthy, here the second-order terms are essential
if the corresponding Fourier amplitude of the grating, z,,
, vanishes or is anomalously small. Under this condition,
the anomalous effects in M-th diffraction order are small
and thus of low interest. Therefore, below we restrict our
consideration to the linear term of U,, expansion.

The main term of the quantity T" expansion is the
square one,

r=> by, (1-aa, ) |t -

M =0

(18)

Emphasize here that the results obtained are actually
valid for the arbitrary angle of incidence for which all
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nonspecular reflected waves are far from their Rayleigh
and resonance points, i.e., the inequality |3, —&|>>|¢]
holds for the integers n=+1,+2,43,.... Only the specular

reflected wave can be arbitrary close to the grazing
propagation.

3. Energy flux extremes. Brewster angle analogy.

Expressions (14), (18) describe the fast dependence of
the TCs on the angle of incidence through the quantity
p=cosd for p<1. Other functions entering the

solution, U, , &, , etc., under the condition g <1 are
slow ones and thereby can be approximated by constant
values related to the point g =0. This fact allows
performing a thorough analytical investigation of the
problem. Starting with the specular reflectivity, p(/),

; _(B-&h) +éx (19)

,0(,3) = |h0 VP

(ﬁ+ ‘feﬁ ) +§eff

one can see that it possesses specific minimal value at the
point, g = p.,, . such that,

ﬁextr = ) (20)

Se

Here and below the prime (double prime) denotes the
real (imaginary) part of the corresponding quantity. In
Fig. 2 the specular reflectivity dependence on f is

presented for harmonic gratings in the vicinity of the
point S =0.

At the extreme point, =4, , p exceeds its
minimal value,

ge - ge'ff
min = ﬂextr =1, 1 . (21)
p p( ) geff + ge,ﬁ

The specular TC field at this point is as follows,

hO (ﬂextr ) = ﬁ ' (22)

geff + eff

The p dependence on the angle of incidence in terms
of the variable g is illustrated in Fig. 2. As it strictly

follows from Egs. (18), (20), (14), and is easy to see from
Fig. 2 and Fig. 3, the point of the p minimum shifts

toward greater S values with the grating depth increase,
while the minimum widens and deepens.

0.02 0.04 0.06
B

Fig. 2. The specular intensity p dependence on the
B =cosd is presented for three Cu harmonic gratings of
equal period d =200 mkm and different depths a
indicated near the curves, and for the plane interface (dash-
and-dot curve). The calculations were performed for the
wavelength 2 =300 mkm (<& =0.0009-0.001i, [17]) so
that the characteristic grating dimensionless parameters are
x=15 and a, =0.037. The points D,, correspond to the
p minimal values for gratings of height a=a,=n-a,,
n=12,3, where a, =0.037 is the characteristic value of
the dimensionless grating height, and are as follows:
D, =(0.005, 0.063), D, =(0.016, 0.041),

D, =(0.035, 0.037).

0.02 0.04 0.06

Fig. 3. The p dependence on the grating depth and £ for
Cu grating at A=300 mkm, &=(0.0009-0.001i),
a, =0.037. The dotted line corresponds to p minimal
values; p contour curves are shown by solid lines. The
points D,, n=1,2,3, are indicated the-same-as in Fig. 2
caption.
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Note that reflectivity minimum is of rather general
character and exists even for TM polarized wave
incidence on unmodulated interfaces, T'=0, &, =&

(when h; coincides with the corresponding Fresnel
reflection coefficient R=(8-¢)/(8+¢&)), cf. [16].

These properties present strict analogy to the reflectivity
minimum from dielectric media existing under Brewster

angle incidence [16]. In view of the fact that for || >>1

(which is typical for good metals up to the frequencies of
the visible range), the normal to the interface component
of the wavevector in the metal half-space prevails
essentially the tangential one, so the wave in the metal
region can be formally considered as orthogonal to the
interface. Consequently, under grazing incidence the
reflected from the metal wave is approximately
orthogonal to the “transmitted” one as it holds under
Brewster angle incidence.

The specular reflectivity minimum, Eq. (21), becomes
deep for relatively high effective losses, i.e., for &

el

comparable to | &, | (see Fig. 2). On the contrary, it
e —0.

€l

approaches unity for vanishing losses,

Therefore, the effect of the specular reflection suppression
under consideration is attributed to the cumulative (both
active and radiative) losses maximum, cf. [8, 18].
However, as it is shown below, the point f=p4,,

corresponds not only to the specular reflection minimum
but results in well expressed maximal nonspecular
efficiencies along with the active losses maximum.
Evidently, if the only propagating diffracted wave is the
specular one, then the grazing minimum is with necessity
accompanied by maximal absorption.

It is of interest that normalized intensities of the
propagating diffraction orders,

2 Re(By)

Py =] T:4W|UN|2 Re(Ay), (23)

present strongly nonmonotonic B functions in

accordance with the fast dependence of the subsidiary
function, W =W (),

B
W(IB): 2 2" (24)
(B+&) +(&h)

It is easy to see that W (/) achieves its maximal

value, W

max !

strictly at the point =4, .

W, :W(,Bm):—»l. (25)

2(|&.

Respectively, intensities of all propagating waves
(except the specular one) simultaneously achieve their
maximal values at the point g = 4,,,

2uf
,0 ,max:p ﬂexr = B Re ﬂ ’
" N( t) geff—i_eff ( N). (26)
N=1142,...

This property is illustrated in Fig. 4, where the
incident angle dependence of the minus first diffraction
order intensity, p,, is shown for the geometry of Fig. 1.

0.02 0.04 0.06

B

Fig. 4. The p, plot versus g for three harmonic gratings

differing by depth with parameters indicated in Fig. 2. The

points U, correspond to the maxima related to gratings
with a=n-a,,

U, =(0.005, 0.749), U, =(0.016, 0.902),
U, =(0.035, 0.937).

n=1,2,3, respectively, and are as follows:

In Fig.5 the p_, dependence on S and the grating

height is demonstrated for the conditions coinciding with
those of Fig. 3. It illustrates not only the anomaly shift to
greater £ and widening with the grating height increase,

but also the p, value in a wide range of the crucial
parameters.
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0.06

Fig. 5. The p_, dependence on the grating depth and g for
A=300 mkm,  &=(0.0009-0.001i),

a, =0.037. The dotted line corresponds to maximal values,

Cu gratings at
solid lines depict p_, contour curves with levels attached.

One can see from Fig. 6 as well as from Fig. 2 and Fig. 4
that the positions of the p, maxima coincide with high

accuracy with those of p minima. In addition, this point
corresponds to the maximum of the absorption A
discussed in detail below.

The total energy flux outgoing with the propagating
waves does not exceed that of the incident wave, i.e.,

Doy <1,
N

(@7)

where p, stays for p. The difference between the sum

and unity, A=l—ZpN , is the active losses per unit area.
N

The inequality for the solution presented is to be true
under rather general conditions, specifically for such g

and « values that are far from anomalies related to all
diffraction orders except the specular one. If the active
losses are absent, then the inequality transforms into the
equality. In the specific case of short-period gratings, such
that x> 2, all diffracted orders except zeroth one with
necessity correspond to evanescent waves. Under such
conditions the strong specular reflectivity suppression is
accompanied by maximal absorption. The energy
redistribution between outgoing waves and the dissipation
strongly depends on the parameters of the problem, as one
can see from the explicit solution.

Here abovementioned is illustrated for the simplest
case when, in addition to the specular wave, only one
diffracted order corresponds to the propagating (outgoing)
wave. It can be realized if 1+« >« >1, when the minus
first order presents propagating wave, £, >0, and g,
with n=-1,0 are pure imaginary. Specifically, under
such condition, illustraterd in Fig. 1, the absorption,
A=1—(p+p.,) for harmonic grating can be presented

explicitly as

A28 (28)
(ﬂ+§e,ﬂ) + &t

It can be easily checked that A possesses single
maximum. Neglecting slow &, dependence on S one

el

can make sure that the maximum is at the point =4, ,
and is

2&
=T (29)
A" é:eff +§e'ff

cf. point L in Fig. 6. Evidently, the absorption vanishes if
the medium is dissipation free, &'=0. Under rather

specific conditions A__ can be of order unity, that does
not describe general case contrary to the statement in [18].

1
0.8
_ 0.6}
ST
<L
0.4F
0.2
0
0.1 0.2
B
Fig. 6. The dependencies of the absorption,

A=1-(p+p,), and the intensities p, p_, on g for Cu
grating at A=300 mkm, £ =0.0009-0.001i, and the grating
depth a=3a,, a,=0037, «-15. The D; and U,
values are the same as indicated in Fig. 2 and Fig. 4. The
absorption maximum, L, is very low, L=(0.04,0.02),
approximately all energy of the incident wave is outgoimg
with the minus first diffraction order.
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4. Harmonic grating
For the case shown in Fig.1 only two diffraction
orders correspond to the propagating waves — the specular
and the minus first ones. Consider this specific subcase in
more detail. Suppose additionally that the grating is
harmonic one, i.e.,

u(x)=2acos(gx); 44 =p,=a>0,

30
#, =0 for |n|>2 (30)

Then, approximating b,, by f, , and taking into

account that 8 = —«” 2« at the point B =0, we find

L 1
F:Kabx(z_K)_'JK(zm)]' (3D

Since specular reflectivity possesses rather expressed
minimum, for relatively low active losses the incoming
energy is redirected into other propagating waves. The
most interesting case that allows obtaining rather strong
grazing anomalies presents such one that,

[T >4, (32)

but || <1, i.e., the case when the effective impedance is

mostly caused by the diffraction rather than by the
medium properties. It is of the essence that the
supposition presented in Eq. (32) does not contradict the
shallow character of the grating, |I'| ~a* <1, in view of

|&|<1.  The
characteristic value of the dimensionless grating height,
a,, defined so that for a=a, |I|~|&, is small,
a, :\/H«l. Under Eg. (32) condition (equivalent to

1>a>a,) p,m. and p,, can be rewritten as

the surface impedance smallness,

cr?

2r' Ir|-T"
=—, L= y 33
p—l,max ﬂi (|1_,|+l_,,) pmln |F|+I-,, ( )
or, in view of Eqg. (33),
_ 22+ x _
p—l,max 2 N m - p—l,“m ' (34)
2—-2+x

min = 7~ —— = P_1lim" _1iim T im:]'
P 2+ﬁ P Paim T P

So, for rather deep gratings, such that a>a_ (but
still a <1), the energy redistribution does not depend on

the grating height, the quantities p_, . and p achieve
their asymptotic values depending on the geometrical
parameters and the wavelength through the dimensionless
combination « = A4/d only.

5.Anomalous diffraction points.

We illustrate position of other points corresponding to
diffraction anomalies related to the interface of metal and
isotropic lossless dielectric (vacuum, for simplicity). It is
convenient to consider them in terms of the dimensionless
normal component £ of the corresponding diffraction
order. The point g =-&, inthe B plane, Fig. 2, shows
corresponding diffraction order pole caused by the surface
plasmon polariton (SPP) mode. Note, the specific value of
£y for a given grating depends on the “resonance”
diffraction order, see Egs. (14), (15). In Fig. 7, only the
vicinity of the corresponding Rayleigh point (that is of
main interest in view of the diffraction anomalies),
| B <1, is shown. With the change of the parameters of
the problem, the g value for each diffraction order can

be either pure real positive (propagating wave) or pure
imaginary (evanescent wave). The exception here
presents the case when S corresponds to the incident

wave, so that g is pure real, 0< #<1. These cases are
separated by the Rayleigh (branch) point, R, g =0. Other

Ceff
related to the SPP resonance and to the grazing anomaly
(GA), respectively, are shown by circles. If f
corresponds to the incident wave, then it is pure real and
only GA point is actually of interest.

characteristic points, Sy, =—-ilm(&,) and g, =

A
complex 3 plane

SPP pole

aff

.

Fig. 7. Beta plane for some diffraction order.

GA point
|

&l Il

Conclusion
1. The detailed analytical approach to the
theoretical analysis of the diffraction anomalies is
presented.
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2. It is shown that the diffraction of TM polarized
wave at the high reflecting gratings under grazing
incidence can result in deep suppression of the specular
reflection accompanied by considerable redirection of the
incoming energy to other propagating diffracted waves.

3. It is proved that the suppression of the specular
reflection for TM polarization at grazing incidence is
analogous to that at the Brewster angle.

4. In the case of arbitrary polarized incident wave,
only TM component can experience the anomalous
properties discussed. Due to the grating shallownes the
TE radiation is not affected by the grating and thereby is
nearly totally reflected. Thus, strong polarization
transformation of specular reflection can occur.

5. Itis worth noticing that essential enhancement of
the grazing wave for nongrazing incidence is related to
the problem under consideration by the reciprocity
theorem, [19, 20]. For instance, reversing the propagation
direction of the minus first order diffracted wave in Fig. 1
we arrive at the reciprocal diffraction problem. In the
latter the corresponding minus first order is related to the
grazing wave propagating in the opposite direction to the
incident wave in the primordial problem.
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