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The paper researches images in point gravitational lenses by analytical methods. For research, the concept of a remote source
and a remote image is introduced. It is shown that in the Schwarzschild gravitational lens, the remote source and its remote images
do not differ much from each other. The following theorem is formulated and proved: the remote image of the source, in an N-point
gravitational lens, asymptotically tends to its remote image in the Schwarzschild lens. It is shown that the images in a single-point
gravitational lens are inversion conjugate.

Analytical expressions are obtained for the description of images of a circular source in the Schwarzschild lens. On this basis, the
proposed classification of images of a circular source of small radius in a point lens.
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C.0. bpoHsa, A.T. KoTBuubkumn

B po60Ti 10Ky FOTECS 300paskeHHS B TOYKOBUX T'PaBITAIIITHUX JTIH3aX aHATI THYHIUMHI METOAaMU. [1J1s1 TOCITiIXKEHHS BBOIATHCS
TIOHSTTS BiJTAJICHOTO JpKepena i BimmaneHoro 3o0paxenHs. [Tokasano, mo B rpasiTamiiniil minsi llIBapommnbna, B KapTHHHIN
IUTOIIUHI, I1i 1Ba 00'€KTH MaJIO BiIPi3HAIOTHCS OMUH BiJ onHOTO. [loBeeHO TeopeMy: BilaajaeHe 300pakeHHS pKeperia, B N-TOUKOBIl
rpaBiTaliiHIN JiH31, ACHMIITOTHYHE MParHe 0 HOro BijianeHoro 300paxeHHs B min3i LlBapummnbaa. [TokazaHo, mo 300pakeHHs B
OJIHOTOYKOBI TpaBiTaLliliHii JTiH31 iHBEPCIHHO CIPSDKEHI.

OTpuMaHi aHaJITUYHI BUpa3H [UIs ONUCY 300paXkeHb KPyroBoro /pkepeda B stin3i LBapmunsaa. Ha 1iif ocHOBI 3anpornoHoBaHo
knacu(ikarliro 300paKeHb KPyroBOro JHKepesia Majioro paiycy.

Korouosi cioBa: rpasiTariiini giH3n, cipspkeHi 300paskeHHs, (a3n 300pakeHsb.

C.0. bpoHnsa, A.T. KotBuukumin

B pabote nuccneayrorcst H300pakeHHsI B TOYCUHBIX I'PABUTALMOHHBIX JIMH3aX aHAJUTHYSCKUMH MeTofaMu. [IJisi ucciieioBaHus
BBOJATCS ITOHSTHE YAAJIEHHOTO HCTOYHUKA U YJaJeHHOTO n300paxeHws. [lokazaHo, 4To B rpaBUTanioHHOI nuH3e [lIBapimmnbaa, B
KapTHHHOM MIIOCKOCTH, 3T JIBa 00BEKTa MaJI0 OTIIMYAIOTCS APYT OT Apyra. Jloka3aHa TeopeMa: ylaJeHHOE H300pakeHne HCTOUHHKA,
B N-TOYEUHOH TPABUTAHOHHOHN JIMH3E, aCHMIITOTUYECKH CTPEMHTCSI K €ro yAaJeHHOMY H300pakeHuio B jmH3e llIBapmmmmsaa.
INoka3zano, 4T0 N300paXKeHNs B OAHOTOYETHON IPAaBUTALMOHHON JIMH3€ HHBEPCHOHHO COTPSKEHBI.

[Tomy4eHsl aHAMUTHYECKHUE BBIPAXKEHUS Ul OMMCAHMS M300paKCHUI KpyroBoro HCTo4HrKa B auH3e LlIBapumunsaa. Ha stoit
OCHOBE IpeUIOKEeHa KiIacCH(UKaLKs H300paKEHUH KPYroBOr0 HCTOUYHHKA MAJIOTO paunyca.

KoroueBnle ciioBa: rpaBUTallMOHHBIC JTMH3BI, CONPSDKEHHBIE H300pakeHNns, (a3bl N300paXKeHHH.

Physical formulation of the problem
Let R?_and R’ be vector spaces. It is known, [1], [2], that /V - point gravitational lens sets a unique ma
X Y P p g q p

L:(R}\A)—>R;, )

were A = {Ii | i=12,.., N} - set of radius - vectors E point masses.

The mapping L is uniquely definitely a vector equation

S -1,
y=X-2m——7, 2)

X -1,

where, for dimensionless point masses m, the ratio Z m; =1 is valid.
i
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We add the vector spaces R’, and R’, to affine ones.We will define orthonormal bases in them. For the unit of
rationing, we take the Einstein - Chvolson radius. The resulting affine spaces R’ and R’ are called the lens plane and the
source plane, respectively. For some researches, they are combined and called the picture plane [9,10].

The mapping L~ inverse to (1), in general, is multivalued.

L":R - (RV\A). (3)

It can, naturally, be continued from (Rf( \A) to all R’, (we will leave the same notation behind the continued
mapping), i.e.
L'":R; >R;. 4)
Some authors call mapping (4) as a lens mapping, see, for example, [3].
The mapping L can be written in the coordinate form :

=X _Zm‘ le—a[ B
! ! pary P (w—a) +(xy=h;)

, )

N
V=% = ) m s
2 2 pary ! (xl_ai)ZJr(xZ_bi)z

were X=(x,%), ¥=(y1,¥2). T = (a bj ), and m, normalized, dimensionless point masses satisfying the relation Zmi =1.
A special case of the N — point gravitational lens is the Schwarzschild lens [3], [4], which is determined by the
condition N=1, a,=0, b, =0, and m=1.

xl
V=X~ 2
X, +X
1 2 . (6)
_ Xy
Vo =X 73 2
xl +x2

The Asymptotic behaviour of the map L
One of the main tasks of the theory of gravitational lensing is the problem of constructing images from a given source
(direct problem).
In this paper, we assume that the S source is uniform and flat.
In topological terms, the source is:
- connected area;
- of course - connected area;
- the region boundary consists of a finite number of arcs of smooth curves [5, 6].
The source image, in topological terms, is also an area. In general, a source image consists of several connected components.
The diameter of the S source is called the diameter of the minimum circle to which it belongs, and the center of the source
S'is the center O, of this circle. We say that the source of S is small, if its diameter d_ is significantly less than the unit dg <<1
, and deleted (located far away) if the module |(35| of the radius-vector O is significantly greater than one, i.e. |(55| >>1.
Similarly, we define the concept: the diameter and canter of the connected components of the image, and the remote image.
Occurs
Theorem 1. Let the source S and its images be viewed in the picture plane. If the source is small and deleted, then
its image has:
- remote component of connectivity S, such that |OSl | >[0g] 5
- each point §,, with |OS| —> 0, tends to its image in S;
- restriction of the mapping L to §, is a bijection of S, to S.
First we prove the lemma
Lemma 2. The remote image of a remote point source in N-point gravitational lens tends to its remote image in the
Schwarzschild lens.
Proof. Let points (&;,b) e Ry and 6 =4/X’ +X; . Let 5 — 0. Where we have:
N o \a _ X,
(x-a) +o-b)

X —
=1
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A similar relation holds for the right side of the second equation of system (5).
For system (5), with & — o, we have:

N

X,
X —a; _ 1
=X, — m ————— =X, T 55—
N b4 " (=) +(x, )’ N ! 2 + 2
i=1 XX, (10)
N
X.
X,—b, 2
y :.?C—En’l.—2 Vo =X ———
2T G ma) +(mh) X+ X2

Thus, when the image is removed from the origin of coordinates in an N-point lens, it differs little from the images
in the Schwarzschild lens. But for the Schwarzschild lens, it is known that the points of the remote source are close to the
points of the remote component of the image.

Indeed, if y; +Yy; —> o, then:

2 Wty
thus, the abscissa S, tends to abscissa S. The same is true for ordinates.
The proof is complete.

x:l[yliyl 1+ 4 J—)xlz{)g, (11)

Proof of Theorem 1
We show that the points of the S, (the remote component of the image of the source of the S in the Schwarzschild
lens) tend to their images, if |OS| — . For the Schwarzschild lens we have: \/(X1 -V, )2 +(X, -, )2 =1/yx +x. =1/5 . In
addition, from |OS| — o = — o, and therefore \/(xl ~y ) (% -y,) =1/6 0.
The restriction of the mapping L to S, is a bijection of S, to S. Indeed, a point from S has two pre-images, one of

which belongs to the remote image S, and the second is in the unit circle. Considering the lemma, we have: the assertions
of Theorem 1 are true.

Images of a circular source in the Schwarzschild lens
It is known that each point source located not at the origin of coordinates has two points (further conjugate) images
in the Schwarzschild lens, one of which is in the unit circle and the other outside it.
Occurs
Theorem 2. If g, g, is the coordinates of one of the conjugate images in the Schwarzschild lens, then the coordinates
of the second image are —g, (g12+ el )71 -2, (g12+ o2 )71 )
Proof. Because

X
_ _ 1
N =n(x,x) =X 2, 2
xl +x2
b
X
_ _ 2
yZ_yZ(xl’xZ)_xz 2 2
xl +x2

we directly verify that:

X X
y1(x1>x2)5y1[_ l 2 J

2 2° 2 2
X1+x2 xl+x2

X, X.
yz(xl’xz)Eyz(_ ! 2 j

2 2° 2 2
Xl +x2 XI +X2

, (12)

From (12) it follows: both images have the same prototype (source).
The theorem is proved.

Corollary of Theorem 2
Any small one connected source that does not contain the origin has two images in the Schwarzschild lens.
The points of these two images are conjugate and their coordinates satisfy Theorem 2.
We will call such images conjugated.

Let the source bea D, = D, (@) disk of radius & with canter at point (a, 0) and its boundary 0D, is determined by
a parametric equation:
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=t
N . (13)
Y = i\/‘("Z - (1 —a)’
We substitute (13) into the system of equations (6), we have:
f=x ——
—MT T2 2
X, +X, (14)
X
el —(t—a) = X, —%
X, + x5
We exclude ¢ from system (14) we get:
2
(xl2 +x5 —1) —2ax, (xl2 +x5 —1)+(Cl2 -&)(x} +x7)=0. (15)
Let's move in the plane of the lens from the Cartesian x,, x, coordinates to the polar coordinates of the I',¢:
X, =rcos¢ (16)
X, =rsing
we have: s
(r2—1) —2a(r2—1)rcos¢+(a2—52)r2:0. (17)
We research the equation (15) and (17), for this we consider some special cases:
a)a=0;b) |a|=g;c) |a|<g;d) |a|>g.
Case a). From equation (18) (17) we get two solutions that have a physical meaning:
te+e’+4
H,=— (18)
' 2
From (17) we have: the image of the disk D_ under the mapping L is the ring & .
The ring is formed by circles:
\j82+4+8 82+4—8 (19)
=5 > hE—F—
2 2
The radii of the circles are reciprocal, i.e. r,=1/r,. 1ok i
The unit circle divides the ring into two rings. Rings
are conjugated. (see Fig.1.).
The ring has a thickness of d = ¢, really:
05t .
Vel +d+e Net+d-c¢
d=r—n= - =¢.(20)
2 2
The middle line of a k, ring is a circle of radius ;
Vet +4
r=——. i
2
The area of the ring k_is equal to:
S =reNe +4. Q1)
Case b). _1ol 4
If |a| =& = a=x¢ . Consider the case of a = ¢. . n

We substitute a = ¢ into (15). We have: the equation is
divided into two:
1

(xl2 +x; —l—2gx1)[1——2
X, + X5

jzo. (22)

42

-1.0 0.5 ol 0.5 1.0

Fig.1. The boundary of the ring £, is defined by circles
with radii of 7, ,. The ring k_is an image of the D_ disk.
The radius ¢ of the D_disk is equal to 0,2 from the radius
of Einstein - Chvolson.
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From equation (22) we get two solutions: ' ! T ' "
X +x =1, (23) Lop 1
2, .2 2 .
(x,—&) +x; =1+¢&", (24) o5t ik g i
i
Equations (23) and (24) are equations of circles. i
Therefore, the image of the D, disk, when displaying o .
L, will be two circular wells 7 and 1.
The wells are formed by circles (23,24), are conjugate. ]
Circles intersect at points 4, (0,1) and 4, (0,-1). s 4
. . 3
The thickness of the left well is h=1+&- J1+e?. ]
The thickness of the right well is h, =& ++1+ g —1.
10 _
1
T ' 2 2 L L 1 1
Sl :E+ J.({;‘— Ire —h )dx2 - 25) -1 -0.3 0.0 0.3 1.0
-1 .
T 5 Fig.2. Thesourceradiusis e=0,2 ofthe Einstein-Chvolson
_E+g_(1+g Jarecige radius. The area of the left well is S, =S, =S, the
The area of the left well is: area of the right well S, =S, \y =S =Sy -

1
S, :7[(1+€2)+J‘(8—«/1+82—x22 )dx2—7—2z
-1 .

(26)
T 2 2
=5+7rg +e—(1+¢&)arcctge
The area of the right hole is equal to:
S=8+8,=n+ne’ +2¢-2(1+&%)-arctge - 27

Similarly, we consider the case of a = -¢.

Due to the obvious symmetry, the sum of the S - areas of the wells and in this case can be calculated by the formula
(27).

Casec) |a|<¢.

The value of the polar radius r 2 0.

From equation (17) we get:

r =%((acos¢i\/£2 —a’sin’ ¢)+\/(acos¢i\/€2 —a’sin’ ¢)2 +4J- (28)

If a < &, then the curve (28):

- consists of two ovals (closed Jordan curves) that are not circles;

- ovals are one in another;

- ovals are the boundary of a doubly connected domain homeomorphic to a ring.
Inner oval:

2
r :%(acosqo—\/f:z —a’sin’ @ +\/(ac05(p—1/(92 -a’ sinzgo) +4J. (29)

Outside oval:

1 : 7 _asinia)
r2=E(acos¢)+\/82—a251n2§0+\/(GCOS(ZH‘ Ez—azsmzf/’) +4]- (0)
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The area of a two connected region homeomorphic to a ring is:

127[ 5 127r 5 1271' , 5 1271
S=8,-5, =5£rz dco—glfa d(p=5£(rz -7 )d¢=5£(f’z—n)(f2+n)d¢, G1)

where
(r,—1)(r, +1,)=2acos gy &’ —a’ sin® @ +
+%(«/82 —a’sin’ @ +acosgo)\/a2 cos20+&" +2acospy e’ —a’sin’ o +4 + . (32)

+%(\/52 —a’sin’ ¢ —acos go)\/a2 cos20+¢&" —2acospye’ —a’sin’ ¢ +4

The two connected regions are symmetric about the polar axis. The function under the integral sign is even and 2z is
periodic. For the area of the area we have:

VA

S =[(r, ), +1)dp-

0

The integral (31) is an elliptic integral.

Comment. Expression (31) with a value of ¢ = 0 reduces to equation (21).
Case d). \a\ >¢.1f a> ¢, then the curve:

- consists of two ovals (closed Jordan curves) that are not circles;

- ovals are one outside the other;

- each oval is the boundary of one connected region of a homeomorphic disk.
The functions 1, = (@) and 1, =1,(¢) are defined if £* —a’sin* @ 2 0.
Where do we get:

—arcsin > < o< aresin = and 7 — arcsin->- < p<m+ arcsin > - (33)
g g g g

The ovals in the right and left half-planes are determined by equation (28) under condition (33).
If a>0, we have.

. & . &
The far arc of the right oval is determined by expression (30) and the condition ~ arcsmg <¢< arcsmg'

. & . &
The near arc of the right oval is determined by expression (29) and the condition —&r¢S1n— < ¢ <arcsin—
The far arc of the left oval (the arc is conjugated with the far arc of the right oval) is determined by expression (30)

» . & . &
and the condition 77 —arcsin— < ¢ < 77 +arcsin— -
a a

The near arc of the left oval (the arc is conjugated with the near arc of the right oval) is determined by expression

.. . & . &
(29) and the condition 7 —arcsin — < ¢ < 7 + arcsin—.
a a

The right oval limits one connected area. The square of this area is equal to:

7+aresine 7+aresine z+aresin® 7+aresine
1 “ 1 “ 1 “ 1 “
2 2 2 2
S=S,=S=0 | ndp-— [ rdp=_ [ -rddp=2 [ -n)oz+n)dp.
. € . € . € . €
—arcsin— m—arcsin— —arcsin— —arcsin—
a a a a

where the integrand is defined by equation (32).
Similarly, we can calculate the area of a region that is bounded by the left oval.
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Classification of circular source images in 1-point gravitational lens

Assume without loss of generality, that the circular source center is on abscissa and source radius is small. For
images of circular source in 1-point gravitational lens, we have classification

Theorem 3. Images of circular source in 1-point gravitational lens belong to only one of the following sets (we call
set as phase, we show circular source and images of circular source on the picture plane)

- phase «-7» of intersection with image on the left (center of circular image is on abscissa far left of the origin of the
coordinate system, circular image intersects with its left image);

- phase «-6» of touching with image on the left (center of circular source is on abscissa far left of the origin, circular
source touches its left image);

- phase «-5» of 1-connected convex images (center of circular source is on abscissa on the left of the origin of the
coordinate system, circular source has two 1-connected images, source is located between them and does not intersect
them, each image is convex)

- phase «-4» of 1-connected special transition images (center of circular source is left of the origin on abscissa,
circular source has two 1-connected images, source is located between them and does not intersect them, each image
become nonconvex);

- phase «-3» of 1-connected nonconvex images (center of circular source is left of the origin on abscissa, circular
source has two 1-connected images, source is located between them and does not intersect them, each image is nonconvex);

- phase «-2» circular alveolus (center of circular source is left of the origin on abscissa, touches origin, circular source
has two 1-connected images, that is circular alveolus, that is formed by two circles, source is located inside circles);

- phase «-1» «left Einstein ring» (center of circular source is left of the origin on abscissa, the origin belongs to the
circular source, image of circular source is 2-connected region, region boundary is disjoint closed Jordan arc, source is
located inside 2-connected region);

- phase «0» «Einstein ring» (center of circular source is at the origin, image of circular source is a circle that is
formed by two coaxial circles with centers at the origin);

- phase «1» «right Einstein ring» (symmetrical image of phase «-1» relative to ordinate axes );

- phase «2» (symmetrical image of phase «-2» relative to ordinate axes );

- phase «3» (symmetrical image of phase «-3» relative to ordinate axes );

- phase «4» (symmetrical image of phase «-4» relative to ordinate axes );

- phase «5» (symmetrical image of phase «-5» relative to ordinate axes );

- phase «6» (symmetrical image of phase «-6» relative to ordinate axes );

- phase «7» (symmetrical image of phase «-7» relative to ordinate axes );

We illustrate Theorem 3 in Fig.3 in appendix.

Remark. Each phase is totally defined by values of two parameters: coordinates of circular source center (,0) and
its radius ¢.

Parameters defines phases as follows: phase «7»: g« g_L Fig.3.n; phase «-6»: g = g—L Fig.3.I; phase

1 2¢ 2¢e
«S5»: € —2— <a<-l+¢& Fig.3,j; phase «-4»: @=—1+¢ Fig.3.h; phase «-3»: —1+¢& <a<—¢& Fig.3.f; phase «-2»:
&

a=-—¢ Fig.3.d; phase «-1»: —€ <a<0 Fig.3.b; phase «0»: a=0 Fig.3.a; phase «I»: 0<a<e& Fig3.c; phase

«2»: & =¢& Fig3.e; phase «3»: € <a<l—¢ Fig3.g; phase «d»: a=1—¢ Fig3.i; phase «5» l—g<a< 2L -
&

1 1
Fig.3.k; phase «6»: & = — — & Fig.3.m; phase «7»: @ > —— & Fig.3.o0.
2¢e 2¢

Corollary. The phase classification in Theorem 3 is linear; it contains 15 phases including 7 point and 8 interval
phases. Classification is symmetrical relative central phase — Einstein ring. Each phase is totally defined by values of two

parameters: coordinates of circular source center (a,0) and its radius ¢, they are invariants.
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Appendix

Fig.3.d. Phase «-2» a=—¢. Fig.3.e. Phase 2» a=¢.
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1 1
Fig.3.j. Phase «-5» & — b <a<-l+eg. Fig.3.k. Phase «5» 1 —g<a< Py g,
& &
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1
Fig.3.1. Phase «-6» &d =& ——.
2¢

1 . 1
Fig.3.n. Phase «-7» a<g——. Fig.3.0. Phase «7» a>——¢.
2¢& 2¢

The source is presented in the form of a yellow disc. Images are presented as white areas. The dashed circle is the
Einstein ring.
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