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The authors substantiate the need to create a special theory of measurement and analysis of measurement results for nonlinear 
dynamical systems. The theory should be based on the principles of the open systems theory, dynamic chaos theory and synergetics 
theory. The authors analyzed the main topological methods and tools for studying of nonlinear dynamic systems. The main characteristics 
of nonlinear dynamical systems (interval values of dynamic variables, strong dependence on initial conditions and noise, complex, 
often chaotic dynamics, evolution) were systematized. It was proposed the next topological tools for analysis of measurement results 
in nonlinear dynamical systems: measurement portrait, Shennon entropy, fractal dimension, forecasting time.
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Ю.С. Курський, Ю.П. Мачехін, О.С. Гнатенко
Авторами обґрунтовано необхідність створення спеціальної теорії вимірювання та аналізу результатів вимірювання в 

нелінійних динамічних системах. Теорія повинна ґрунтуватися на принципах теорії відкритих систем, динамічного хаосу, 
синергетики. Авторами виконано аналіз топологічних методів та інструментів дослідження нелінійних динамічних систем. 
Систематизовані основні характеристики нелінійних динамічних систем, серед яких: інтервальність значень динамічних 
змінних, сильна залежність від початкових умов і шумів, складна, часто хаотична динаміка, еволюція, Запропоновано 
інструменти аналізу результатів вимірювання: портрет вимірювання, ентропія Шеннона, фрактальна розмірність, час 
передбачуваності.

Ключові слова: нелінійна динамічна система; топологія; хаос; ентропія Шеннона; фрактальна розмірність.

Ю.С. Курской, Ю.П. Мачехин, О.С. Гнатенко
Авторами обоснована необходимость создания специальной теории измерения и анализа результатов измерения в 

нелинейных динамических системах. Теория должна основываться на принципах теории открытых систем, динамического 
хаоса, синергетики. Авторами выполнен анализ топологических методов и инструментов исследования нелинейных 
динамических систем. Систематизированы основные характеристики нелинейных динамических систем, среди которых: 
интервальность значений динамических переменных, сильная зависимость от начальных условий и шумов, сложная, часто 
хаотическая динамика, эволюция, Предложены топологические инструменты анализа результатов измерения динамических 
переменных нелинейных динамических систем: портрет измерения, энтропия Шеннона, фрактальная размерность, время 
предсказуемости. 

Ключевые слова: нелинейная динамическая система; топология; хаос; энтропия Шеннона; фрактальная размерность.

Introduction.
One of the most important scientifi c tasks today is 

a study of the self-organization processes and complex 
hierarchical systems. They talk about research, forecast 
and management of characteristics: climate, ecosystems, 
biopopulations, physical devices (such as a laser) and living 
organisms (such as a human). All of these objects are classifi ed 
as open nonlinear dynamic systems (NDS). Their general 
characteristics include: the nonlinearity of dynamics, strong 
dependence on the initial conditions and external infl uences, 
possibility of chaotic behavior and self-organization. Studies 

of nonlinear processes and systems are devoted to the works 
of A.N. Kolmogorov, E. Lorentz, S. Smale, I. Prigogine, H. 
Haken, V.L. Ginzburg et al. [1-6].

For research, forecast and management of NDS we 
must create the new methods for experimental research and 
measurement. Despite the urgency of the issue, the problem 
of measuring the NDS characteristics until recently was not 
considered. The authors pointed out the discrepancy between 
the physical and mathematical foundations of the deterministic 
classical measurement theory and the processes in NDS [10-
12]. For research and measurement in NDS we develop the 
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special measurement theory (Nonlinear Metrology) [10]. It is 
based on the principles of the next interdisciplinary theories: 
the information theory, open systems theory, dynamic chaos 
theory, synergetic theory, and a number of others.

The task of this paper is to make a classifi cation of the 
dynamical systems, to study their common characteristics, 
that are important for measurement, and to choose the 
mathematical methods and tools for analysis of measurement 
results and forecast the dynamics of complex systems.

1. Classifi cation of the dynamical systems.
A dynamical system is any object (a set of objects) or 

process (a set of processes). For them the concept of a state 
is unambiguously defi ned as a set of the quantities values    

1[ ( ) ... ( )]nX t , , X t  at any time t and the law of evolution 
( ,  )iF X t  of the initial state 1 0 0[ ( ) ... ( )]nX t , , X t  is given:

 1 0 0 1[ ( ) ... ( )] [ ( ) ... ( )]n nF X t , , X t X t , , X t� . (1)

A dynamical system can be described by a diff erential 
equation of the next form:

 
1

( )
[ ( ) ... ( )]i

n
dX t = F X t , , X t

dt
. (2)

The space of all possible states of the system described 
by expression (1) forms a phase space. The dimension 
of phase space, as well as of the system dimension, is 
determined by number of the dynamic variables Xi(t) (DV).

The dynamic systems include the systems of any 
nature: physical, chemical and biological objects, societies 
and populations, ecosystems and fi nancial markets, 
computing processes and information transformation 
processes [13]. Classifi cation of dynamic systems can be 
made based on the nature of origin and the basic properties 
of the systems.

By the nature of origin, the dynamical systems can be 
classifi ed as: physical, chemical, biological, information and 
other systems. By the basic properties, their classifi cation 
can be performed on the following grounds:

- by nature of dynamics - deterministic, stochastic and 
chaotic, linear and nonlinear systems;

- by interaction with an external environment - open 
and closed systems:

- by possibility to converse an energy into a heat - 
dissipative and conservative systems;

- by the nature of a state change - continuous and 
discrete systems;

- by possibility of self-organization - evolving and 
not-evolving systems;

- by structure - single-level and multi-level, complex 
hierarchical systems.

Let’s consider the main features of these systems. 
Deterministic systems are the systems whose DPs change 
over time according to a strictly defi ned law ( ,  )iF X t . 
Stochastic systems are characterized by the random DVs 
behavior, the values of which can be described by the 
mathematical apparatus of probability theory. Chaotic 
systems are the systems with a chaotic dynamics. Linear 
systems are the systems with a linear or linearized law 
of evolution ( ,  )iF X t . Nonlinear dynamical systems are 
the systems whose evolutionary law can’t be described 
by a linear or linearized equation. The values of NDS 
DVs change in a nonlinear way. Moreover, the evolution 
law ( ,  )iF X t  of real NDS can be described analytically 
extremely rarely.  Therefore, as a rule, we can’t to make 
a long-term predication of the NDS state. We should to 
note that a linear system is also deterministic system, but 
a nonlinear system, because of complex dynamic, can’t be 
referred to either deterministic or stochastic systems. It can 
be classifi ed as a partially deterministic system.

Open systems, according to I. Prigogine, are the 
systems through which the fl ows of energy and entropy 
can fl ow [4]. In case of the large fl ows, the nonlinear 
self-organization (evolution) processes can take place in 
such systems. They are characterized by the spontaneous 
appearance of a complex, often chaotic, structure. Closed 
systems, respectively, have properties that are opposite to 
open ones.

Dissipative systems are the open systems that 
operate far from the thermodynamic equilibrium and are 
characterized by the possibility of dissipation (dissipation) 
of energy coming from outside. Conservative systems are 
the systems with conservation of energy.

Continuous and discrete systems are characterized by 
a continuous or discrete, respectively, character of the DVs 
values change. But in the case of discrete measurement 
even the continuous systems are considered as the discrete 
ones.

Evolutionary systems are the systems with the 
evolution and self-organization functions, which are 
expressed in decreasing of entropy and increasing of order. 
A distinctive feature of a hierarchical, complex system is 
a multilevel structure, each level of which includes the 
interconnected subsystems.

This classifi cation is incomplete. In a number 
of publications we can fi nd such types of systems as 
concentrated and distributed, autonomous and non-
autonomous; self-oscillatory and other systems.

If the object of research can be classifi ed as a linear, 
closed, conservative and deterministic system that for 
measurement and evaluate their results we can use the 
methods and tools of the classical measurement theory.  
The cornerstones of it are: the principle of the existence of 
the single value of the measured quantity, the satisfaction of 
the measurement results with the central limit theorem and 
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correctness of the ergodic hypothesis [14]. The nonlinear, 
dissipative, chaotic, evolutionary systems require a 
fundamentally diff erent approach to the measurement [15].

The most diffi  cult objects for the research, correct 
measurement and mathematical description are the open, 
dissipative, hierarchical NDS with the chaotic dynamic and 
self-organization possess. Such systems include the laser, 
human, ocean and other complex systems. At the same time, 
the study of chaotic processes in dissipative NDS is one 
of the fundamental tasks of modern natural science. DVs 
of such systems are characterized by interval values, the 
central limit theorem is not satisfi ed, the ergodic hypothesis 
is not always confi rmed. Dynamic variables must be 
correctly measured using the measurement models and 
approaches that are maximum appropriate to the properties 
and processes in NDS. A correct measurement of the NDS 
DVs is an obligatory condition for the estimation of current 
status but allow us to forecast and manage the real systems.

2. Methods and tools for NDS research.
For NDS research it was created a number of 

interdisciplinary theories. The brightest of they are: the 
theory of dynamic chaos [13], synergetics [5], theory of 
dynamical systems [12]. They solve problems of research, 
modeling and forecasting of the NDS dynamics. Their 
methods are widely used in applied problems of the broadest 
direction - from laser engineering to arrhythmology and 
neurodynamics [16, 17]. The analysis of the main provisions 
and tools of these theories will allow us to construct a new 
theory for measurement of the NDS DVs.

The researchers apply two methods for NDS study, 
that are diff ered in the type of mathematical model [12]. 
The fi rst method is based on the mathematical modeling of 
a system and searching of the evolution function ( ,  )iF X t  
(2). The state of the system at the time   is a point in the 
phase space, given by the DVs values 1[ ( ) ... ( )]nX t , , X t  
and evolution function ( ,  )iF X t . The system state change 
corresponds with the movement of the "depicting" point, 
which describes the phase trajectory. A set of phase 
trajectories forms a phase portrait of a system. The phase 
portrait and evolution function make up the mathematical 
model of a system. The phase portrait serves as an object 
for studying the dynamics. The evolution function allows 
us to predict the DVs values. The problem of the described 
method is a complex mathematical problem of searching of 
the evolution function ( ,  )iF X t .

The second method focuses on the functional side of 
a system. It does not allow us to study all features of the 
internal structure of a system. The system is interpreted 
as a "black box" with input 1 0 0[ ( ) ... ( )]nX t , , X t  and output   

1[ ( ) ... ( )]nX t , , X t  the DVs values. In this case, the "black 
box" plays the role of the evolution function, transforming 
the inputs into the outputs, and the mathematical model is 
determined by the spaces of the inputs and outputs.

The fi rst method has comprehensive information 
about a system, but in a practice it can be implemented 
only in rare cases. The second method does not allow us 
to investigate all the features of a system, but it allow us 
to determine the DVs values at the time intervals and to 
construct an incomplete, discrete phase portrait. We think 
that the second method is most suitable for constructing the 
models for measurement in the real NDSs.

2.1. Phase portrait.
A phase portrait is the most popular tool of the 

qualitative theory of dynamical systems [18]. The 
researching of it allows us to know: the type of system 
dynamics (deterministic, stochastic or chaotic), Lyapunov 
exponents, forecast time et al [13]. The values of the system 
states can be represented by a matrix of dimension n×m  
(here n is the number of DVs and m is the number of DVs 
measurements) in the next form:

 
 

1 0 0

1

( ) ... ( )

          ...

( ) ... ( )

n

m n m

X t X t

X t X t

. (3)

A phase portrait can be limited and unlimited in 
space, can increase or decrease. The phase volume of the 
conservative systems is conserved but the phase volume of 
the dissipative systems is not.

A special kind of a phase portrait is an attractor. It 
is the state of the dynamical system to which a system 
aspires in the time during their development. The presence 
of an attractor indicates a "special" dynamics of a system. 
There is a strange attractor witch often is a testament of 
the chaotic dynamics of NDS. Its distinguishing feature 
is the exponential instability, which is expressed in the 
exponential discrepancy of the phase portrait trajectories 
and the fractal dimension [13].

The analysis of a phase portrait is often used in 
the applied researches of NDS [17]. In the framework 
of the nonlinear metrology the authors propose to use 
the "measurement portrait" instead of the classical 
measurement equation (model equation). It is a graphical 
and numerical display of the DVs measurement results 
DV. The measurement portrait is a phase portrait of the 
NDS trajectory, constructed with the uncertainties or 
measurement errors [20]. This approach allows us don’t 
fi nd the evolution function.

2.2. Topology and other characteristics of NDS.
S. Smale linked the topology of a phase space and 

the dynamics of a system [3]. He abandoned the idea of 
observation an individual trajectory that requires the 
solution of the equation (2), and proposed to investigate 
the integral phase space and its geometric structure. Studies 
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have shown that topological transformations of a phase 
space are a refl ection of the physical processes. Thus, the 
scattering and loss of energy by a system are expressed in 
the compression of the phase portrait. Approximately the 
same phase portraits indicate a similar dynamics of the 
systems. If the shape of the phase portrait is accessible to 
the visual representation, the system can be solved.

The geometric study of the phase portraits allows 
obtaining such data about NDS as: the nature of the 
dynamics, time horizon for the DVs values prediction, 
intervals of the DVs values. We can determine: the 
attractor volume, Lyapunov exponents, Shannon entropy 
and Kolmogorov entropy, attractor dimension, and other 
quantities. We suggest use some of these characteristics for 
analysis of the measurement results in the case of NDS.

2.2.1. Lyapunov exponents are used for study 
the dynamics of a system in the vicinity of an arbitrary 
trajectory. They characterize the degree of stretching and 
contraction of the phase portrait along the selected phase 
trajectories. If the two close trajectories ( )ix t  and 1( )ix t  
are chosen so that 1( ) ( ) ( )i ix t x t t    , (0) 0     that 
the next function:

 � � 1 ( )
(0) lim ln

(0)t

t
t��

� ��
	 � 
 � ��
 �

 (4)

takes a fi nite series of the Lyapunov exponents 
  = 1,2,...,i i n  , the totality of which forms the Lyapunov 
spectrum [13]. The number of Lyapunov exponents 
corresponds with the attractor dimension DA, which can be 
fractional:

 
1 1

j
i

A
i i

D j

 �

�

 �

�� , (5)

here j is the Lyapunov dimension, it is determined from the 
expressions:

 1 2 ... 0,j        1 2 1... 0j       . 
The total Lyapunov exponent   can be considered 

as an indicator of a stability of a system dynamics. When 
0   it is Hamiltonian system. It has a stable dynamics, 

the processes occurring in it can be regarded as deterministic 
processes, the volume of the phase portrait is unchanged 

AV const  . When 0   the phase portrait volume is 
growing AV  , the NDS dynamics is chaotic. If 0   
the phase portrait volume decreases , that typical for the 
dissipative systems.

2.2.2. Entropy. For topological analysis of the 
NDS phase portrait the Shannon (H-entropy( and the 
Kolmogorov-Sinay (K-entropy) are used. H-entropy 
(or information entropy) is one of the key concepts of 
the information theory [21]. For a system that can be in 

the states Xi with probability distribution density ( )ip X , 
Shannon entropy is given by the next formula:

 
1

( ) ln ( )
N

i i
i

H p X p X




 �� . (6)

Entropy is a measure of the order or disorder of the 
system. According to (6), The Shannon entropy assumes 
large values when the distribution density ( )ip = p X  has 
the values small. If a number of values N is bounded, then 
the entropy is maximal for the uniform distribution law 

lnH N  for ( ) 1/ip X N . The entropy is minimal   
0H   for the normal distribution law when ( ) 1ip X  . 

The entropy of a strange attractor is higher than the entropy 
of a regular attractor. The entropy of chaotic and random 
dynamics is higher than the entropy of an ordered motion. 
The change of the H-entropy values indicates a change in 
the NDS dynamics.

The using the Kolmogorov entropy allowed us to 
introduce a rigorous criterion of chaotic, as an unstable by 
Lyapunov motion with positive metric entropy 0K >  [13]. 
Analyzing the phase portrait of a system, the K-entropy is 
defi ned as:

 
(0) 0

ln[ ( ) / (0)]
lim

d
t

d t dK
t�

��


 , (7)

here d(0), d(t) are the distances between two nearby 
trajectories at the initial and current time, respectively: 

2 1( ) ( ) ( )d t x t x t  .
According (7) the K-entropy characterizes the degree 

of the trajectories divergence, and the degree of randomness 
of the system dynamics. It is related to the Lyapunov 
exponents (4) by the expression:

 
0

( )d
i

iK x
� �


 � ��� . (8)

So when the system has chaotic dinamycs its entropy 
0K > .
The Shannon entropy, S-theorem by Yu. Klimontovich 

[21], entropy scales, we consider as a tool for estimating 
of the deviation of a system from an equilibrium state. 
The entropy analysis was used before in the human health 
measurement model [23] and for  estimating the temperature 
during the laser cooling of particles [24].

2.2.3. Fractal dimension. Many of the NDS processes 
have the property of self-similarity or scaling - invariance 
under multiplicative scale changes. Self-similarity can 
be strict or approximate. A self-similar object or process 
looks unchanged when you zoom in or out the scale. 
Such objects and processes include the Brownian particle 
motion, turbulent fl ows, strange attractors, time series of 
the measurement results [25].
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The most striking feature of the objects self-similarity 
is their unusually fi ne structure. Such objects B. Mandelbrot 
called the fractals [26]. The importance of fractals lies 
in the fact that they are able to model a huge number of 
objects, phenomena and real-world processes, real NDSs.

The fractals are characterized by Hausdorff  (or fractal) 
dimension DH, It takes fractional values in the interval 
0 3HD  . For a fractal curve 1 < DH < 2, for a surface
2 <  DH < 3, a point has dimension DH = 0, for a continuous 
line DH = 1.

Fractal dimension is used in various practical 
applications to identify the objects and processes. The 
special interest is its use for analysis of NDS phase 
portraits and the measurement results time series 

1( ),..., ( )nx t x t  [27]. For determination of the time series 
fractal dimension   DH we use the statistical method of the 
normalized range (R/σ - analysis), derived empirically by 
P. Hurst [25]. The indicator HR is associated with DH by 
next expression:

  2H RD H
 �  (9)

The Hurst index HR is determined using the value R/σ, 
here R is the range between the maximum and minimum 
values of the increment function ( )x i, n , the value σ is the 
standard deviation:

 

11
( ) max ( ) min ( ), 

i тi т
R t x i, n x i, n

� �� �

 �

1

( ) ( )
n

i
i

x i, n x x




 �� , (10)

here ix  is the arithmetic mean of the values 1( ),..., ( )nx t x t .
The correlation R/σ is related with parameter HR by 

formula:

 � �= 2 RHR n� . (11) 

In [27] the fractal analysis (9)-(11) was used for 
analyze the dynamics of the laser radiation frequency. The 
author proposed a fractal scale for evaluating the results 
of measurements with reference points DH = 1, DH = 1,5 ,
DH = 2, separating diff erent dynamics characters. If
DH = 1 it means that the dynamics of the system is strictly 
deterministic. If DH = 2 the system behaves in a regular 
way, but the spread of the measured results is very large, 
that doesn’t allow us to use the methods for processing of 
the measurement results. If DH = 1,5 the process is random. 
The dynamics corresponds with Brownian motion with 
independent (Markov) increments. For analyze of such 
systems characteristics we can use the statistical methods. 
In the case when 1 < DH < 1,5 or 1,5 < DH < 2 the process 

is non-Markov, chaotic, persistent and antipersistent, 
respectively.

The fractal dimension allows us to estimate the trend 
of the DV dynamics of NDS and can be used to predict its 
values.

2.2.4. Forecasting time. One of the main and 
oldest tasks of analyzing systems and time series of DV 
measurement results has been the task of forecasting their 
dynamics. In some cases, the purpose of the forecasting 
is not the value of an individual DV, but forecasting of 
dynamics and its trend. For this, the fractal analysis (9)-
(11) and the fractal scales [27] are applied.

The time interval when we can do the correct forecasting 
of the system dynamics is called the forecasting time or the 
forecasting horizon. The forecasting time depends on the 
degree of determinism of the NDS dynamics (the maximal 
for a deterministic system and minimal for random and 
chaotic systems) and metrological possibilities [29].

In the case of chaotic NDS, a weak impact of the initial 
conditions or a small change in the system parameters cause 
to unpredictability of the resulting motion in fi nite time, 
which J. Lighthill [30] called the "forecasting horizon" (or 
forecasting time). The forecasting time forT  is related to the 
Lyapunov exponent λ (7) as:

 
max

1 1
( ) logforT �

� �

 , (12)

here λmax is the maximum Lyapunov exponent.
In practice, the forecasting time (12) is often calculated 

using the next simplifi ed formulas:

 
max

1 1
( ) , ( ) .for forT K T

K
�

�
= =  (13)

The term "forecasting time" is important for the 
formulation of the measurement equation (model equation) 
of DVs. We suggest use this value as the correctness time 
of the measurement equation for NDS case.

3. Measurement principles for NDS case.
The measurement of the NDS DVs is a multi-factor 

experiment. The processing of the measurement results 
in a multifactorial experiment is aimed at obtaining the 
basic scientifi c data in the new form of mathematical 
models and their interpretation. We shouldn’t only to 
calculate the average value of the measured quantity or its 
dispersion [14]. The theory of nonlinear measurements, 
measurement and analysis models should correspond 
with the properties of such systems. Let’s consider 
the important for measurement procedures real NDS 
properties.
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The dynamics of NDS has a complex, non-linear, 
including chaotic, character. NDS exchanges energy and 
information with the environment and other systems, it is 
infl uenced by external factors. The infl uence of some factors 
(and noises) is critical for the system, it is can  changes the 
dynamics from random to regular, chaotic, and vice versa.

The state of the NDS at a time moment t is characterized 
by the n-dimensional state vector  1( ),..., ( )nX X t X t . The 
DV ( )iX t  value changes in time, but stays in the interval 

min max
i i iX X X  . This interval is due to the functionality 

of the system. If the DV value outputs of the interval it 
means that the system destroys.

The phase portrait of NDS in a chaos state is a 
strange attractor. The exponential dispersal of the phase 
trajectories leads to the fact that the measured quantities 
can take any values in the frame of the attractor. If at the 
moment of measurement t0 the DV value Xi is in the interval 

0 0 0 0[ ( ) ( ), ( ) ( )]i i i iy t u t y t u t    (here 0 0( ) ( )i iy t ,u t  are the 
estimation and uncertainty of the Xi measurement result at 
the time t0) that in tine the DV value will located in attractor 
frame min min max max[ , ]y u y u    (here min max min max, ,y ,y u u  are 
the estimates and uncertainties of the measurement of the 
Xi minimum and maximum values):

 0 0 0 0[ ( ) ( ), ( ) ( )]i i i iy t u t y t u t� � � �

min min max max[ , ].y u y u� � � �
 (14)

The next, after t0 time DV values become predictable 
within the attractor frame (14).

Systems can evolve, some of them have the self-
organization function.

Based on the described properties, the authors off er 
the next topological tools for analyzing the measurement 
results for NDS case:

1. the time series of the DVs measurement results 
(3);

2. a measurement portrait (a phase portrait with 
the measurement uncertainties), constructed on the 
measurement results (3);

3. the Lyapunov exponents (4);
4. the Shannon (6) and Kolmogorov entropies (8);
5. a fractal dimension (9)-(11) of the measurement 

time series (3);
6. a forecasting time (13).
In this case, the all quantities values must contain an 

error (or uncertainty of the measurement results).
The application the physical approaches, topological 

mathematical methods and tools of nonlinear metrology 
makes it possible to provide studies of systems with 
complex, nonlinear dynamics. The topological methods 
and tools for measurement result analysis help to evaluate 
the reliability of the measurement data and give a 
possibility to predict the NDS dynamics.

Conclusions
1. The classifi cation of dynamic systems by origin and 

properties is performed. It is shown that the dissipative, 
nonlinear dynamical systems are the most diffi  cult for 
research, measurement and forecast.

2. The necessity of creating a special theory of 
measurement and measurement results analysis for 
nonlinear dynamical systems is substantiated.

3. The analysis of the main topological methods and 
tools (including topological methods and tools) for the 
study of nonlinear dynamical systems is performed:

4. The main characteristics of non-linear dynamical 
systems are systematized, among them: interval values 
of the dynamical variables, strong dependence on initial 
conditions and noises, complex, often chaotic dynamics, 
evolution,

5. In accordance with the main characteristics of 
nonlinear dynamical systems, the next topological tools 
for analyzing the measurement results are proposed: 
measurement portrait, entropy, fractal dimension, 
forecasting time.
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