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Experiments have been carried out on the excitation of hydrodynamic fl ows in superfl uid helium under forced vibrations of a quartz 
tuning fork immersed in a liquid. Nonlinear oscillations that arise with an increase in the driving force are investigated and are manifested 
by distortion of the shape of the resonant amplitude-frequency characteristic in comparison with Lorentz curves typical for an extremely 
small force. Nonlinear resonance curves are described using the Duffi  ng equation, the parameters of which are established by comparing 
the theoretical calculation with the experimental data. Dependence of the velocity of vibrations of the tuning fork legs on the driving force 
established with the use of the Duffi  ng equation, is close to that previously obtained for the quasi-laminar fl ow of He II and containing a 
cubic velocity contribution due to the mutual friction caused by scattering of phonons by quantized vortices in a turbulent fl ow.

Keywords: quartz tuning fork; turbulence in liquid helium; scattering of phonons by quantized vortices.

І. Гриценко, Т. Дубчак, К. Михайленко, Г. Шешин, С. Соколов
Проведено експерименти по порушенню гідродинамічних потоків у надплинному гелії при змушених коливаннях 

кварцового камертона, зануреного в рідину. Досліджено нелінійні коливання, які виникають при збільшенні сили, що змушує, 
і проявляються перекручуванням форми резонансної амплітудно-частотної характеристики в порівнянні з лоренцевими 
кривими, типовими для гранично малої сили. Нелінійні резонансні криві описані з використанням рівняння Дуффінга, 
параметри якого встановлені при порівнянні теоретичного розрахунку з експериментальними даними. Залежність швидкості 
коливань ніжок камертона від сили, що змушує, установлена з використанням рівняння Дуффінга, виявляється близької до 
залежності, раніше отриманої для квазіламінарного плину Не II і утримуючої кубічний по швидкості внесок у силу взаємного 
тертя, обумовленої розсіюванням фононів на квантованих вихрах у турбулентному потоці. 

Ключові слова: кварцовий камертон; турбулентність в рідкоу гелії; розсіювання фононів на квантованих вихорах.

И. Гриценко, Т. Дубчак, К. Михайленко, Г. Шешин, С. Соколов
Проведены эксперименты по возбуждению гидродинамических потоков в сверхтекучем гелии при вынужденных колебаниях 

кварцевого камертона, погруженного в жидкость. Исследованы нелинейные колебания, которые возникают при увеличении 
вынуждающей силы и проявляются искажением формы резонансной амплитудо-частотной характеристики по сравнению с 
лоренцевыми кривыми, типичными для предельно малой силы. Нелинейные резонансные кривые описаны с использованием 
уравнения Дуффинга, параметры которого установлены при сравнении теоретического расчета с экспериментальными данными. 
Зависимость скорости колебаний ножек камертона от вынуждающей силы. установленная с использованием уравнения 
Дуффинга, оказывается близкой к зависимости, ранее полученной для квазиламинарного течения Не II и содержащей кубический 
по скорости вклад в силу взаимного трения, обусловленной рассеянием фононов на квантованных вихрях в турбулентном потоке. 

Ключевые слова: кварцевый камертон; турбулентность в жидком гелии; рассеяние фононов на квантованных вихрях.

Introduction and task statement
One of the mostly used methods of studying the 

laminar and turbulent fl ow regimes in superfl uid helium is 
the method of a quartz tuning fork immersed in a liquid. The 
quartz tuning fork diff ers favorably from the bodies of other 
geometry, fi rst of all with high quality factor which attains 
~ 106. Also essential is the availability of quartz tuning fork 

(they are manufactured in industry), as well as their high 
durability [1].

When working with tuning forks with the prongs of 
diff erent sizes, one can change the frequency of the resonances 
and the form of the amplitude-frequency characteristic (AFC) 
[2]. Moreover, as established during an experimental study of 
the appearance and development of superfl uid turbulence in 
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the temperature range down to ~ 20 mK, under increasing the 
velocity of movement of the tuning prongs up to 0.02 m/s the 
shape of the resonant AFC starts to deform. This deformation 
is explained in [2,3] as a result of the nonlinearity of tuning fork 
oscillations. Turbulent fl ows in Не II at higher temperatures, 
140 and 150 mK, were investigated in Ref. 3 by the quartz 
tuning fork method. It was shown that the deviation from the 
linear dependence of the tuning fork velocity on the exciting 
force was observed at oscillation velocities exceeding 0.04 
m/s. The physical reason for the nonlinearity observed in 
[2,4] is, probably, the eff ect of an attached mass associated 
with quantum superfl uid fl uid vortices located in a thin layer 
of a liquid near the surface of a tuning fork, and there are the 
arguments [3] in favor of the fact that nonlinear deformations 
of AFC are connected with the appearance of an additional, 
nonlinear force of mutual friction due to the scattering of 
thermal excitations on the quantized vortices.

The observation of nonlinear eff ects at the excitation of 
the motion of Не II by a quartz tuning fork calls an attention 
to the adequate description of the fork nonlinear resonance. 
The possibility of such a description appears when one uses 
the equation of a nonlinear oscillator [4,5] in the presence of 
an excitatory force. A separate case of the equation proposed 
in [4] is the Duffi  ng equation [5], in which, unlike [4], the 
coeffi  cient is set to zero with a quadratic displacement of the х 
term in the left-hand side and only the cubic term is available:

 
 

m
tFxtx

dt
tdx

dt
txd )(

)(
)()( 32

02

2

���� ��� ; (1)

here х – deviation of the tuning fork leg from 
equilibrium position in presence of the excitatory force

0( ) cosF t F t , ω0 is resonance frequency of the tuning 
fork, γ = 2πΔf is attenuation and Δf is the width of the 
resonance line. Here m being eff ective mass of tuning 
prongs and  μx3 accounts the nonlinear behavior of the 
oscillator with μ being the coeffi  cient of nonlinearity. 
This term leads to a resonant frequency shift compared to 
ω0. Moreover, depending on the sign of μ, the resonance 
frequency of the oscillations is shifted toward higher or 
lower frequencies.

In this paper, for the analysis and adjusting of 
experimental data we apply the Eq. (1), which provides 
almost the same results as the more general equation [5], 
but at the same time is more convenient in calculations. The 
aim of the analysis is fi nding out the connection between 
the nonlinear mode of oscillation of the tuning fork prongs 
and the change in the dependence of the velocity of 
oscillation on the excitatory force. The aim of actual work 
is the establishment and research of such a connection, as 
well as the clarifi cation of the possible infl uence of the 
nonlinear force of mutual friction in the superfl uid fl uid on 
the nonlinear behavior of the resonator - quartz tuning fork.

Measurement procedure and experimental results
We used a miniature quartz tuning fork, kindly provided 

to us by the laboratory of Lancaster University, with a 
resonant frequency in the vacuum of 24983.72 Hz, length 
of the leg is 1,8•10-3 m, thickness and width of the legs are 
75 and 90 mkm, respectively. The cell and the measurement 
procedure were previously described in detail [3,6,7]. The 
studies were made with the solution fridge working at two 
operating regimes. In one of them we pumped out 4Не from a 
one-Kelvin bath whereas a working solution was condensed 
in the solution refrigerator. This mode was used to determine 
the constant of the tuning fork in the experimental cell cooled 
down to Т = 1.4 К. In other measuring mode the solution 
fridge worked providing the temperature of the cell and the 
test fl uid of 140 ± 1 mК.

The resistance thermometers of RuO2 were used to 
determine the temperature. They were placed on the plate of 
the dissolution chamber and directly in the fl uid under study. 
The thermometers were calibrated using a crystallization 
thermometer based on the pressure measurement along the 
3Не melting curve. The accuracy of the measurement and 
temperature stabilization was ±1 mК being provided by the 
heater connected by the feedback with the resistance sensor 
CryoBridge S72A.

In the beginning of the experiment, we measured the 
quartz tuning fork frequency in a vacuum under diff erent 
excitatory forces and Т = 1.4 К. Sine-wave constant 
amplitude U, which is fed from the generator to one of 
the electrodes of the tuning legs, set the magnitude of the 
excitatory force, which was determined as F0 = aU/2. 
On the other electrode, the frequency dependence of the 
amplitude of the ac current I was measured. This quantity 
is connected with the oscillation velocity of the tuning legs 
υ as υ = I/a. The piezoelectric constant of the tuning fork 
was determined from the AFC measured in a vacuum [6].

In Fig. 1 we show typical AFC for a tuning fork in a 
vacuum obtained with diff erent excitatory forces. 

Fig. 1. Velocity of the oscillation of tuning legs in 
vacuum at diff erent excitatory forces, bottom-up: 
1,51•10-11, 1,51•10-10; 6,05•10-10; 1,21•10-9 N. [6].
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It is clearly seen in Fig. 1 that at high excitatory 
forces and, consequently, high voltage amplitudes U one 
observes a nonlinear oscillation regime that manifests 
itself in the deformation of the form of the frequency 
response. Also the resonance frequency decreases with an 
increase in the excitatory force. Maximum excitatory force 
in Fig. 1 is 1,29•10-9 N, while the oscillation velocity in 
the resonance maximum was 0.4 m/s, and the resonance 
frequency was decreased by 0.048 Hz comparing with the 
value at the minimum excitory force. After measuring in 
vacuum, the solution refrigerator was cooled down to Т < 
1 К, to study the fl ows in 4Не. Passing through the nitrogen 
trap, helium traps and fi lling capillary, helium attained the 
experimental cell and condensed there.

Experimental dependences of the oscillation velocity 
of the tuning fork legs in presence of the excitatory force at 
temperature of 140 mK, obtained in various experiments, 
are shown in Fig. 2. As is seen in Fig. 2, at oscillation 
velocities υ ≥ 0.046 m/s one observes a noticeable 
deviation from the linear dependence υ(F0 ) shown by the 
solid line. As was suggested in Ref. 6, this deviation may 
be explained by the appearance of an additional frictional 
force that arises due to an increase of the density of 
quantum vortices and the scattering of thermal excitations 
- phonons - on their cores (mutual friction) [8]. The fl ow 
of helium characterized by the deviation the dependence 
υ(F0 ) from the linear one was called a quasi-laminar in 
the work [6]. This fl ow is characterized by the above-
mentioned new dissipative mechanism [8].

The force of mutual friction is proportional to the 
cube of the velocity of the legs: F0 ~ υ3, which is typical 
for a turbulent fl ow (dotted line in Fig. 2). As a result, the 
total friction force has the form F0 = λqυ + nυ3 (solid and 

dotted lines) [3, 6] where λq=1.32•10-9 kg/s and n = 4,62•10-8 
kg·s/m2, and well describes the experimental data. At the 
experimental temperature of 140 mK, the fi rst term, as 
shown in Ref. 3, is completely determined by the force of 
friction in the quartz tuning fork material and is due to the 
bending oscillations of its prongs. 

All the amplitudes of the oscillation velocity were 
measured at the maximum of the resonance curves. At 
the same time, the resonance curves, at increase in the 
excitatory force, are deformed due to a nonlinear additional 
frictional force. In this connection, in [3, 6], we were to 
analyze the types of AFC curves in the quasi-laminar 
fl ow regime. It was shown that the dependence υ(F0 ) 
of Fig. 2 may be conveniently divided into fi ve ranges 
characterized by a specifi c type of AFC (characteristic 
AFCs for each range are given in the works [3, 6]): (I) 
– region of laminar potential fl ow He II. Characteristic 
AFC of this region is shown in Fig. 1 of Ref. 3 and is 
approximated by Lorentzian. AFC for region II is shown in 
Fig. 2a of Ref. 3. As was noted, this region is characterized 
by spontaneous jumps between laminar potential and 
turbulent currents. Region III was previously depicted 
in Ref. 6 in Fig. 3 and is characterized by the fact that 
the AFC starts to be asymmetric relatively the maximum 
of the resonance curve, and there is a "collapse" towards 
the lower frequencies. The asymmetry of the AFC curve 
increases with increasing applied excitatory force until 
the instability does appear on the resonance curve, being 
the characteristic feature of the nonlinear behavior of 
the oscillating body. It should be emphasized that in the 
region III, regardless of the measurement conditions, one 
observes both quasi-laminar and turbulent fl ows. Fig. 3 of 
present paper and work [6] shows the AFC, measured at a 
stable quasi-laminar fl ow regime without the transition to 
turbulence.

Fig. 2. Dependence of the oscillation velocity of the 
tuning fork legs on the excitatory force at Т = 140 мК. 
Solid line is linear dependence υ ~ F0. Dotted line is for 
turbulent fl ow mode (υ3 ~ F0), dot-dash line is calculation 
accounting the force of mutual friction [3]. Bar-dashed 
dotted line is the calculation based on the solution of the 
non-linear Duffi  ng equation, described below in the text.
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Fig. 3. Amplitude-frequency characteristic of tuning fork 
for region III with excitatory force F0 = 2,5•10-10 N. Solid 
curve - calculation using non-linear Duffi  ng equation. 
1 and 2 are the points of the beginning and end of the 
instability on the resonance curve.
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In the regions IV and V, the shapes of the resonance 
curves are qualitatively identical, and in these regions the 
breakdown in the turbulent fl ow was observed, in each of 
the experiments carried out, in the form of a sharp decrease 
- a jump from the quasi-laminar to turbulent fl ow. For 
region IV the curve is shown in Fig. 2b of Ref. 3 and for 
area V - in Fig. 4 of Ref. 6. As can be seen in Fig. 4 of 
Ref. 6, in the region V the shape of the resonance curve 
is strongly deformed in comparison with Lorentzian, and 
in Fig. 2 it is evident that at the maximum of AFC, the 
velocity of oscillation of the tuning legs ceases to depend 
on the applied force.

The fact that the nonlinearity of the oscillation of the 
tuning fork legs in the regions II-V arises, probably, because 
of the appearance of an additional nonlinear force of mutual 
friction in Не II, is supported by the measurements made 
in vacuum. When measured in a vacuum, the amplitude 
of the velocity was almost three times higher than that at 
the maximum amplitude of oscillation in Не II (see Fig. 
1), but there was no markedly expressed nonlinearities of 
oscillations (deformation of the form of AFC). Thus, it can 
be argued that the nonlinearity of the oscillations of the 
tuning fork legs observed in Не II, is due to the nonlinear 
friction force in the liquid, in which the tuning fork is 
immersed. A similar conclusion was made in the work [2].

Results and discussion
As was noted above and as was shown in Fig. 2 of 

Ref. 3, as well as in Figs. 3 and 4 of this work, an increase 
in the excitatory force causing the oscillation of the legs 
of the tuning fork, leads to the nonlinearity of oscillations, 
which manifests itself in the deformation of the shape of the 
AFC until the appearance of instability of the oscillations 
and reduction of their resonance frequency. To describe 
these eff ects, we solve the equation (1) with respect to the 
modulus of amplitude of the oscillation velocity υ. The 
result is
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where ωV and ω are the resonance frequency of the tuning 
fork in the vacuum and the current frequency, respectively, 
bυ2 is the factor which, according to [5], is proportional 
to the square of the amplitude of the oscillation velocity 
and the coeffi  cient b is connected with the coeffi  cient of 
nonlinearity in Eq. (1) by the relation b303

2  .
The dependence of the velocity on the frequency 

of nonlinear oscillations calculated by Eq. (2), is shown 
in Fig. 4 using a constant value b = 40 s/cm2, which, as 
will be shown later, is close to the average value in all the 
experiments carried out. It can be seen that even for low 
excitatory forces the frequency dependence of velocity 

demonstrates a slight asymmetry caused by the nonlinearity 
of oscillations (dashed line, F0 = 1,5•10-10 N). With the 
increase in the excitatory force, the velocity also increases, 
and the nonlinearity of oscillations is expressed more and 
more (a dashed-and dotted curve for F0 = 3•10-10 N), which 
leads to a decrease in the resonance frequency and the 
appearance of instability (points 1 and 3). Instability appears 
at point 1 if one moves from the left to the right towards to 
point 1, further movement in frequency continues to the 
right from the point 2. When moving in frequency in the 
opposite direction, i. e. from the right to the left, instability, 
as one might expect, should appear at point 3, with further 
motion towards lower frequencies from point 4 (hysteresis). 
However as it was shown in Ref. 2, the measurement of 
AFC when moving from high frequencies to lower ones 
and back, give practically identical result. The reason for 
this is unclear and additional research is needed to clarify 
the problem. It can be assumed that the nonlinear behavior 
of the system tuning fork - superfl uid is described by the 
nonlinear term in (2), which origin is mainly connected 
with the fl uid and processes in it. If the nonlinear behavior 
is related with the properties of the tuning fork itself, then 
instability at point 3 of Fig. 4 with decreasing frequency 
would be observed.

It should also be noted that the value of b in Eq. (2) 
strongly aff ects the form of the frequency response of 
velocity, which is determined by this equation. Value of b  
was estimated by comparing the calculated dependence with 
the experimental data for the AFC, measured at diff erent 
excitatory forces for the corresponding experimental 
data ωV, ω, γ, m and F0. The b is the only adjustable 
parameter. Thus, selecting the value of the coeffi  cient b 
one can attach the agreement with experimentally obtained 
resonance curves. Solid lines in Fig. 3 is the result of such 
calculations.

Fig. 4. Amplitude-frequency characteristics, calculated 
using Eq. (2): dashed line - calculation for F0 = 1,5•10-10 
N and b = 40 s/cm2; dashed-and-dotted line - for F0 = 
3•10-10 N and b = 40 s/sm2. Arrows show the jumps of 
the amplitude of oscillations in the event of instability.
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Note also that at excitatory forces corresponding to 
the regions II, III, and IV, the resonance curves are well 
described completely, and for the excitatory forces of the 
region V, the coeffi  cient b was determined from the part 
of the curve to the left of point 1. In this frequency range, 
when the instability fi nished at point 1 of Fig. 4 of Ref. 6, 
the velocity value was always below than that at point 2 of 
Fig. 4 and did not coincide with the values corresponding to 
the right side of the calculated resonance curve. One should 
remember that, as it follows from the Fig. 2, the velocity at 
point 2 of region V is practically constant being and does 
not depending on the force.

The obtained values of b are shown in Fig. 5 for 
AFCs which are the result of all measurements. Interval 
of the excitatory force in Fig. 6 corresponds to the range of 
values of the excitatory forces in Fig. 2. The fi gure clearly 
shows that there is a huge scatter of the values of b. The 
solid line corresponds to the root-mean-squared value 
in the studied range, the mean value of the coeffi  cient of 
nonlinearity coeffi  cient μ is 9.2•1016 s-2m-2. At the same 
time the measurement accuracy of the frequency strongly 
aff ects the value of b. The nonlinearity coeffi  cient can 
also be determined from the data of Ref. 3 presented as 

 mn 3
0  . In this case μ = 2,5•1016 s-2m-2 which is more 

than three times less than the above value obtained in the 
actual article. Such a noticeable diff erence between our 
values of μ and those of Ref. 3 may be attributed to the 
fact that the dependence of the damping coeffi  cient γ on 
the geometry of the problem was not taken into account in 
Ref. 6.

To determine the eff ect of the excitatory force on 
the amplitude of the velocity of the tuning fork prongs 
in the nonlinear regime, using the Eq. (2), the frequency 
dependences of velocity were calculated for diff erent 

excitatory stresses and forces. The value of the velocity 
corresponding to the end of the instability was determined 
- point 2 in Figs. 3 and 4, corresponding to the maximum 
velocity. For low excitatory forces, if the instability was 
absent (regions I and II), the velocity was taken at the 
maximum at the resonance frequency of the frequency 
dependence of velocity. Thus, the dependence υ(F0 ) was 
obtained allowing comparison with experimental data. The 
best agreement between the estimated and experimental 
data was achieved at b = 50 s/m2, calculation is shown 
in Fig. 2 by bar-dashed-and-dotted line. Dot-dash line on 
Fig. 2 shows the dependence accounting the contribution 
of mutual friction force, cubic in velocity, in addition to 
the linear contribution [3], the dotted line corresponds 
to the turbulent fl ow when F0 ~ υ3. As is seen from the 
fi gure, when considering the nonlinearity of oscillations 
(deformation of the shape of the resonance curve), the 
amplitude of the velocity is a nonlinear function of the 
applied force. One observes also a rather good agreement 
between experimental data and the calculation made using 
the Duffi  ng equation (bar-dashed dotted line in Fig. 2). 
Note that mean value is within the scatter of the values of 
b. Thus, one concludes that the experimental data in Fig. 
2 can be described both with the solution of the Duffi  ng 
equation (1), and with the consideration of the cubic term 
in the expression for the force of mutual friction. 

Experimental data indicate that the velocity does 
not depend on the excitatory force in the region V with 
relatively high these forces (see Fig. 2). The frequency 
dependence using the Duffi  ng equation can be described 
only to the left from the point 1 of the beginning of 
instability (see Fig. 4).

Conclusions
In present paper, the study is carried out of nonlinear 

phenomena accompanying the oscillations of a quartz tuning 
fork, submerged in superfl uid helium. The nonlinearity 
of the oscillations of the tuning fork legs is manifested 
by the deformation of the shape of the resonance curve 
for the amplitude-frequency characteristic of the tuning 
fork. It is shown that the nonlinear frequency response is 
well described using the Duffi  ng equation for a nonlinear 
oscillator, by which the dependence of the oscillation 
velocity of the legs on the excitatory force is treated. It 
is shown that the same dependence can be obtained by 
adding a term, cubic in velocity, to the expression for the 
mutual friction force in the quasi-laminar fl ow regime. 
This term is due to the scattering of phonons by quantized 
vortices of He II, whose density increases with increasing 
velocity of oscillations. In addition, such a behavior may 
also indicate an increase in the attached mass or a decrease 
in the plasticity of the tuning fork due to the appearance of 
quantum vortices fi xed to the surface of the quartz tuning 
fork.

Fig. 5. The values of b, determined from the experimental 
data on the dependence of the velocity of oscillations 
on the excitatory force using the non-linear Duffi  ng 
equation. The solid line is the average value throughout 
the range of exciting forces. The dotted line is done for 
b = 50 s/m2.
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Thus, the results of our research indicate that the 
nonlinearity of the tuning fork oscillations is mainly due 
to the dissipative processes in the superfl uid fl uid, in which 
the tuning fork oscillated, which is accompanied by the 
appearance of a nonlinear term in the dependence of the 
velocity of oscillations on the excitatory force. 
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