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A comparative discussion is given of the deformation properties of three-dimensional (3D) and two-dimensional (2D) solids, 

which are considered in the approximation of continuum mechanics as elastic continua with three and two spatial dimensions. 

Attention is drawn to the effectiveness of attracting concepts and methods of geometry to establish the general patterns of 

deformation of such systems without taking into account the physicochemical properties of atoms and the interatomic forces. In a 

geometric description, these continua are elastic spaces with different topological properties, which leads to significant differences in 

the relationships between the characteristics of their elasticity: Young's moduli, shear, bulk moduli, and Poisson's ratio. Deformation 

characteristics that can be considered as unique topological invariants of 3D and 2D elastic continua are established. 

Keywords: topology, Young's moduli, shear, bulk moduli, and Poisson's ratio. 

 

Проведено порівняльне обговорення деформаційних властивостей тривимірних (3D) і двовимірних (2D) твердих тіл, 

які розглядаються в наближенні механіки суцільного середовища як пружні континуум з трьома і двома просторовими 

вимірами. Звернуто увагу на ефективність застосування понять і методів геометрії для встановлення загальних 

закономірностей деформування таких систем без урахування фізико-хімічних властивостей атомів і сил міжатомної 

взаємодії в них. При геометричному описі ці континууми уявляються як пружні простори з різними топологічними 

властивостями, що призводить до істотних відмінностей співвідношень, що пов’язують між собою характеристики 

пружності: модулі Юнга, зсуву, всебічного стискання і коефіцієнти Пуассона. Встановлено деформаційні характеристики, 

які можна розглядати як своєрідні топологічні інваріанти 3D і 2D пружних континуумів. 

Ключові слова: топологія, модуль Юнга, модуль зсуву, коефіцієнт Пуассона, модуль всебічного стиску. 

 

Dedicating present article to memory of Yakov Evseevich Geguzin we recall one of the remarkable personality namely his 

gift of teacher and popularization of Physics. At his lectures and popular books scientific severity and accuracy are wonderfully and 

in proportion combined with the original nonstandard and often unexpected point of view about discussion subject. At proposed 

methodical notes we try as far as possible to follow this stylistic approach at discussion of a certain problem of modern linear 

elasticity theory. 

 

Introduction 

The mechanics of reversible deformation of solid 

states, regarded as an elastic continuous medium 

(continuum) draws up the content of the linear elasticity 

theory. Its basic equations and relations were established 

by Cauchy and Poisson in the second decade of XIX 

century [1]. 

Their research at that time played a very significant 

role in creating the prerequisites for the development and 

deepening of several areas and sections of fundamental 

mathematics, including geometry. The modern historian 

of mathematics notes that "in the future many outstanding 

mathematicians were constantly interested in the theory of 

elasticity with its clearly expressed geometric character" 

[2]. 

At present a large number of crystalline and vitreous 

(glassy) systems where the centers of microscopic 

structural elements (atoms or molecules) are located in the 

plane are intensively studied in solid state physics. The 

most general rules for geometric classification of 

mathematical and physical objects are developed in one of 

the sections of geometry - topology [3, 4]. In the frame of 

topological representations (Appendix), a plane may be 

considered as a continuously filled space with two 

dimensions: in it the positions of the centers of 

elementary structural units of a solid state are determined 

by specifying two coordinates. Therefore, the above-

mentioned physical systems have been called two-

dimensional (2D) crystals or glasses: they have different 

translationally symmetric (crystals) or chaotic (glass) 

arrangement of elementary structural units. The study of 
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two-dimensional systems has a rather prolonged history 

[5-7], but over the last decade interest in this problem has 

increased significantly due to discover and initiation of an 

intensive investigation of 2D graphene crystals - a plane 

translationally ordered system of carbon atoms [8]. 

Mathematical description and theoretical analysis of 

the properties of such 2D structures require a significant 

modification of models and methods which were 

developed before for 3D solid bodies: in topology, they 

are associated with a three-dimensional space in which 

the position of the elementary structural units is 

determined by specifying three coordinates. In particular 

at description the mechanical properties of 2D structures 

in the continuum approximation by methods of linear 

elasticity theory, it is necessary to formulate statements 

and equations of 2D elasticity theory [9, 10]: because the 

theory has specific special features and differences in 

comparison with the well-known elasticity theory for 3D 

solids [1]. However, some of these features are not 

directly related to the physics of interatomic interactions 

in 3D or 2D systems, but are caused by significant 

differences in concepts, theorems, equations and analysis 

methods in those sections of mathematics, in particular at 

geometry, which are attracted for comparative description 

of both clearly mathematical and physical objects with a 

different number of space dimensions.  

The main intention of this publication is to attract the 

attention of teachers and students who specialize in solid-

state physics and crystal physics to the effectiveness of 

attracting concepts and methods of geometry to describe 

the general laws of deformation of elastic solid-state 

systems without taking into account the physicochemical 

properties of atoms and the interatomic forces. It is also 

important to emphasize the specific topological features 

and differences resulting in the comparative description of 

the elastic deformations of three-dimensional and two-

dimensional solids. These remarks explain the expediency 

of using the terms "topological aspects of the linear 

elasticity theory".  

The object of analysis and description in the article 

will be small deformations of isotropic solids, considered 

in the continuum approximation (as continuous media). It 

allows to use the concepts, relationships and equations of 

the linear elasticity theory of three-dimensional [1] or 

two-dimensional [9] continua. 

Physical space in the linear elasticity theory 

A brief description of the algorithm for 

"geometrization" of physical systems is given in the 

Appendix. Here we will consider a concrete example of 

such a system – solids whose atomic structure has a short 

(chemical) order: they consist of a large (in the limit – 

infinite) number of basic (chemically identical) atomic 

groups, and the centers of the groups are located in 

empirical 3D space (in terms of mathematics this 3G  

space with zero curvature). The translationally symmetric 

or chaotic arrangement of the centers, the distribution of 

sizes and orientations of these groups when placed in 

space corresponds to a crystalline or vitreous structure of 

solids. Neglecting the dimensions but preserving the 

physical properties of such groups turns them into 

physical points, and the continuous filling of these points 

with a 3D space or 2D space ( 2G  space with zero 

curvature) leads to the concepts of 3D or 2D material 

continua. 

Let us note some of the most important physical 

properties of these continua: 

 the presence in them of the force interaction 

between the points, which in the continuum limit 

corresponds to the interaction between the atoms of 

the basic groups, it can be divided into a contact 

interaction between the nearest groups (short-range 

interaction) and interaction at distances exceeding the 

interatomic (long-range) interaction; 

 the ability of continuum to deform without 

disruption of continuity, in which individual elements 

of the continuum under the action of neighboring 

elements or external force fields can change their 

shape and dimensions but the continuity of point 

distribution is not disrupted; 

 3D volume and 2D plane solids can be detected 

from an infinitely extended continuum as fragments. 

They have sharply outlined outer boundaries that are 

continuously filled with points inside the boundaries 

and with complete absence of points outside them; 

 an infinitely extended continuum, its individual 

regions or bodies in the initial state (before 

deformation) are in a state of thermodynamic 

equilibrium at some given temperature and keep 

stability with respect to arbitrary deformations. 

To avoid misunderstandings it is necessary to note that 

the physical continuum with the abovementioned 

properties is the ultimate ideal model of solids, this model 

is applicable for describing the mechanical properties of 

real materials at sufficiently low values of relative 

deformations, until the elasticity or fracture limits are 

reached [1, 9]. 

To formulate the foundations of the linear elasticity 

theory for description the deformation properties of the 

3D continuum [1], we first of all consider the simplest 

forms of deformation – homogeneous tension (or 

compression) and pure homogeneous shearing in an 

isotropic continuum. The study of several simple 

problems of this type makes it possible to introduce the 

concepts of moduli or coefficients of elasticity which 



V.D. Natsyk, I.M. Pakhomova 

Вісник ХНУ, серія «Фізика», вип. 28, 2018  27 

serve as the physical characteristics of the continuum, 

establish the relationships between them and find 

intervals of possible change of their significances, which 

are compatible with the assumption of the thermodynamic 

stability of the continuum at the initial (not deformational) 

state. The same approach has been also realized in the 

formulation of the foundations of the linear elasticity 

theory for the 2D continuum [9, 10]. The comparison of 

the deformation properties and the elasticity 

characteristics of 3D and 2D continua was carried out at 

[10] and showed significant differences that are not 

related to the nature of the force interaction between 

physical points (between atoms in real bodies) but caused 

by differences in topological properties of these continua. 

In the following sections of the article, the differences in 

the deformation properties of elastic bodies with three-

dimensional and two-dimensional geometry will be 

discussed in more detail. 

Homogeneous deformations and elastic moduli of an 

isotropic 3D continuum [1] 

Let us consider a homogeneous isotropic and 

infinitely extended elastic medium (continuum), which at 

the initial state is a thermodynamic equilibrium physical 

system with 3G (or 3D) geometric properties of the space. 

The position of every point in such a space is determined 

by the three-component radius vector )(),,( 321 ixxxxr 


 

as regards to )3,2,1( iOxi  rectangular coordinate system 

with origin at an arbitrary point O. The configuration of 

the points of medium under deformation can be described 

by a three-component vector displacement field 

)()( iuru 


, components )(rui


 and their first derivatives 

)()( ru
x

ru i
k

ik






  are considered as continuous 

functions of )( ixr 


. In the linear theory of elasticity, the 

local deformations of the continuum can also be described 

by the tensor field of relative deformations )()( rr kiik


  : 

),(
2

1
ikkiik uu 

  

 

3,2,1,, 



 ki

xi
i   (1) 

This tensor has nine components, six of them are 

independent )(rq


  ( 6,...,2,1q ): 

,111     222   ,  ,333    

(2) 

,32234    ,31135    .21126     

The diagonal components of the strain tensor ,11  ,22  

,33  determine the relative change in the length of a small 

rectilinear segment in a continuum oriented before a 

deformation along one of the coordinate axes iOx  

(stretching-compression deformation), and the sum 

332211  nn     (3) 

describes the relative change of the volume of a small 

element of the continuum (dilatation). The rule of 

summation over repeated coordinate indexes is used for 

writing of the vector and tensor relations. 

Nondiagonal components of the tensor ik  at ki   

determine the change of angle between two mutually 

perpendicular segments along the axes iOx  and kOx  

(shear deformation). 

Any local deformation of the continuum can be 

represented by the sum of the dilatation (the spherical 

component) nn  and pure shear 
ik

~
, if the identity is used 

,~

3

1
ikiknnik         ,

3

1~
iknnikik     (4) 

where ik  – Kronecker symbol ( 1332211   , 

0322331132112   ), at 3nn . Tensor 

ik~  is called the deviator of the strain tensor, of its off-

diagonal components ki   only three remain independent 

4 , 5  and 6  but 0~ nn . 

In the linear elasticity theory the bulk density of the 

free energy of the deformed continuum is considered as a 

function of temperature T and six independent 

components of the strain tensor )( qik   . The 

deformation component of the free energy of an isotropic 

continuum can be represented in the form of two 

equivalent quadratic forms: 

ikiknn

ikiknn

TTK

TTTFTF





~~)()(
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1
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1
)(),...,(

2

2
0621





 (5) 

Here )(0 TF  – is equilibrium value of the free energy 

density of an undeformed continuum, аnd )(T , )(T  and 

)(TK  – are equilibrium isothermal parameters that 

characterize the continuum's ability to accumulate elastic 

energy under deformations. 

In the elasticity theory, the important role is played by 

the concept of internal mechanical stresses, which 

characterize the changes in the forces of short-range 

interaction between neighboring elements of the 

continuum under its deformations. To describe these 

forces, we introduce the tensor field of internal stresses 

),()( rr kiik


   which under isothermal reversible 

deformations is determined by the relations 

Tik
ik

F




















    (6) 
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A separate component of the stress tensor has a physical 

dimension ik  








area

force
. It means the force that is 

directed along the axis iOx  and acts on a unit area with 

the normal along kOx  on the interface between adjacent 

elements of the continuum. 

Using (6) and quadratic forms (5) we obtain two types 

of relations between the components of the stress tensor 

)(rik


  and the strain tensor )(rik


 : 

,2 ikiknnik      (7) 

.~2 ikiknnik K      (8) 

These are two forms of recording the Hooke's law, which 

determines the linear relationship of local internal stresses 

in the continuum with its local deformations, and the 

parameters ,  and К have been called isothermal elastic 

moduli. These moduli are considered as equilibrium 

characteristics of the deformation properties of the 

continuum. Since according to (4) any deformation can be 

represented by the sum of the dilation nn  and pure shear 

ik~ , it is sufficient to specify only two parameters for a 

complete characterization of the deformation properties of 

an isotropic elastic continuum, for example К and  or  

and . Physical dimension of the elasticity moduli of the 

3D continuum , , К 








area

force
 coincides with the 

dimension of the components of the tensor ik . 

Symmetric stress tensor ik , and tensor ik , can be 

represented by the sum of the spherical nn  and 

deviatoric ik~  components according to the identity: 

,~

3

1
ikiknnik        ,

3

1~
iknnikik     (9) 

Then the following relations hold: 

,3 nnnn K      ,~2~
ikik      .ki    (10) 

The first one determines the change in the relative volume 

of the small element of the continuum nn  under the 

action of the forces of hydrostatic compression nn . 

Therefore the parameter К is called the bulk modulus. The 

second one relates the pure shear strains ik~  and the shear 

forces ik~ , and parameter  is called shear modulus. 

These moduli are used when writing Hooke's law in the 

form of relation (8). If Hooke's law is represented by the 

relation (7) then the parameters  and  are called Lame 

coefficients. The comparison (7) and (8) gives the relation 

.
3

2
 K     (11) 

At the applied parts of the elasticity theory such as 

engineering and construction mechanics along with the 

shear modulus and bulk modulus, two other 

characteristics of the elastic properties of materials are 

used Young's modulus and Poisson's ratio. They are 

convenient for description of the elastic bodies 

deformation of limited dimensions, for example, tension 

(or compression) of a rod like a fragment of an elastic 

continuum of cylinder shape. A homogeneous 

deformation under the action of forces is considered. The 

force are applied to the ends of the rod and directed along 

its longitudinal axis with a free lateral surface. In a system 

of rectangular coordinates with an axis 3Ox  along the 

longitudinal axis of the rod, the deforming stress in its 

volume has one component constPr )(33


 , created by 

the stress P at the ends. It follows from the relations (7) 

(8) and (10) that under such a load a uniform deformed 

state appears in the rod constrik )(


  with three non-zero 

diagonal components of the strain tensor 11 , 22  и 33 . 

All of them are proportional to the load P, and their 

relationship to each other can be represented in the form: 

3333  E ,       332211     (12) 

Here the role of the elasticity characteristics of a solid 

body instead of moduli  and K is played by the 

parameters Е – Young's modulus and  – Poisson's ratio: 








K

K
E

2

9
,       

)3(2

23











K

K
.  (13) 

Thus, the deformation properties of any isotropic 3D 

continuum can be characterized by a set of five 

parameters , , , К and Е. But since they are related by 

(11) and (13), only two of them should be regarded as 

independent and the choice of such a pair is determined 

by the specific conditions of the problem under 

consideration. 

Homogeneous deformations and elastic moduli of the 

2D continuum [9, 10] 

Two-dimensional system of rectangular coordinates 

21 O xx  will be used at the description of deformation of 

thermodynamical equilibrium homogeneous continuum 

with the geometrical properties of 2G  space (or 2D). The 

position of an individual point is defined by a two-

dimensional radius vector )(),( 21 ixxxr 


, where 

2,1i , and the configuration of the deformed continuum 

will be described by a two-dimensional displacement field 

of points in its plane )(),()( 21 iuuuru 


 or four-

component tensor field of deformations )()( rr kiik


  : 

),(
2

1
ikkiik uu   

  2,1,, 



 ki

xi
i         (14) 
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Here the components of the displacement fields )(rui


 and 

the strain tensor )(rik


  are considered as continuous 

functions of the space variables )( ixr 


 in the plane of 

the continuum. 

It should be noted that such a continuum has the 

property of an infinitely thin elastic film and its small 

elements can also experience a displacement )(rw


 in the 

third spatial dimension, perpendicular to the plane 21 O xx . 

In the case of an inhomogeneous distribution of 

displacements )(rw


 the bending deformations of the 

continuum are arised This is a deformation mode specific 

only for the 2D continuum, it is absent in the 3D 

continuum. We do not discuss the mode here since the 

main task of the article is a comparative description of the 

deformation properties of 3D and 2D solids. We also note 

that in this section we store the symbols of the previous 

section to denote the deformation properties and 

characteristics of the continuum. We emphasize only the 

differences in the values of the coordinate indices: here 

2,1,, nki  instead of 3,2,1,, nki  at the preceding part. 

This makes it possible to display more clearly the 

differences of the deformation properties of solids with 

three-dimensional and two-dimensional geometries 

discussed in the article. 

The four-component symmetric tensor ik  (14) has 

three independent components q , 3,2,1q : 

111   ,      222   ,      21123      (15) 

The diagonal components 11  и 22  determine the 

relative tensile-compression strain along two coordinate 

axes iOx . The sum 

2211  nn    (16) 

describes the relative change in the area of a small 

element in the continuum (two-dimensional dilatation). 

Nondiagonal components ik  at ki   determine the shear 

strain in the 2D continuum 

Any local deformation in the 2D continuum can be 

represented as the sum of a two-dimensional dilatation 

(circular component) nn  and pure shear ik~ : 

,~

2

1
ikiknnik          ,

2

1~
iknnikik     (17) 

where ik  – two-dimensional Kronecker symbol (

12211  , 02112  ), where 2nn . The deviator 

of the strain tensor ik~  at ki   has only one independent 

component 21123   , а .0ˆ nn  We should pay 

attention to the difference in the numerical coefficients in 

formulas (4) and (17) (accordingly 
3

1
 and 

2

1
). Exactly this 

difference after all will be associated with a significant 

difference in the relationship between the characteristics 

of the elasticity of 3D and 2D continua. 

In the approximations of the linear elasticity theory 

the two-dimensional free energy density of an isotropic 

deformed 2D continuum is a function of temperature T 

and three independent components of the strain tensor q  

and can be represented as two equivalent quadratic forms: 

ikiknn

ikiknn

TTK

TTTFTF





~~)()(
2

1

)()(
2

1
)(),,,(

2

2
0321





  (18) 

Here )(0 TF  – equilibrium value of the two-dimensional 

free energy density and , , К – two-dimensional 

analogs of elastic moduli. 

The short range interaction between the points of the 

2D continuum is characterized by a symmetric internal 

stress tensor )()( rr kiik


  . Each individual component 

of this tensor has dimension ik  








lenght

force
, here force is 

directed along iOx  axis and acts on the unit element of 

the dividing line between next regions of the continuum, 

which has a normal in the direction of the axis kOx . 

In the symmetrical stress tensor, we distinguish ik  the 

circular nn  and deviatoric ik


 components: 

ikiknnik  ~

2

1
 , iknnikik 

2

1~    (19) 

Then, according to formulas (6) and (18), Hooke's law for 

a 2D continuum can be represented in the form of 

relations: 

ikiknnikiknnik K  ~22  ;      (20) 

nnnn K 2 ,      ikik  ~2~  , .ki    (21) 

The physical dimension of the moduli of elasticity of the 

2D continuum , , К 








lenght

force
 coincides with the 

dimension of the components of the tensor ik . It can be 

seen from the relations (21) that the relative change in the 

area of a small element of the 2D continuum nn  is 

determined by the action of the forces of all-round 

tension-compression nn . Therefore, the parameter K 

should be regarded as a two-dimensional analog of the 

bulk modulus. Accordingly, the parameter  has the 

meaning of a two-dimensional analog of the shear 

modulus, since it determines the relationship of pure shear 

ik~  and shear forces ik~  within the 2D continuum. 

Comparison of (20) and (21) leads to a relation between 

the moduli ,  and К: 

 K     (22) 

At description of the deformation of plane elastic bodies 

of limited dimensions, it is also expedient to use two-
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dimensional analogues of the Young's modulus E and 

Poisson's ratio . Let us consider, for example, the 

elongation (or compression) of the 2D continuum strip 

along its longitudinal axis under the action of a two-

dimensional stress P at its ends and in the absence of load 

on the side boundaries. Such a band is a two-dimensional 

analogue of the rod considered in the previous section. At 

rectangular coordinates system with an axis 2Ox  along the 

longitudinal axis of the band, the deforming stress in it 

has only one nonzero component constPr )(22


 , 

created by the stress P at the ends. It follows from (20) 

and (21) that under such a load a uniform deformed state 

appears in the band constrik )(


  with two nonzero 

components of the strain tensor 11  and 22 . Each of 

them is proportional to the load P, and their relationship 

can be represented in the form of relationships in which 

the role of the elasticity parameters is played by two-

dimensional analogues of the Young's modulus E and 

Poisson's ratio  : 

2222  E ,    2211   .   (23) 

The relationship between Е and   with elasticity moduli 

К and   is defined by: 








K

K
E

4
,    











K

K
.     (24) 

To characterize the deformation properties of an elastic 

2D continuum, five parameters can be used  ,  ,  , K 

and Е, but since they are related by (22) and (24) only two 

of them should be regarded as independent. 

Topological differences in the deformation properties 

of 3D and 2D elastic solids 

If we carefully compare the basic relationships 

between the linear elasticity theory of 3D and 2D 

continuum, we can note the presence of both their 

similarity (at least visual), and quite significant 

differences. For example formulas (5) ‒ (8) and (18) - 

(20), visually coincide, but this similarity is conditional, it 

is a consequence of the use in both sections of the same 

symbols for marking radius-vector of physical points 

)( ixr 


, of strain tensors ik  and stress tensors ik , 

elasticity moduli  ,  , K, Е and Poisson’s ratio  . 

Strictly speaking, there is no such similarity: first, the 

coordinate indices assume the values 3,2,1i  or 2,1i ; 

secondly, the components of the stress tensor ik  and the 

elastic moduli  ,  , K, Е change their physical 

dimensions when the spatial dimension of the continuum 

changes. 

Very significant differences, directly related to the 

general geometry (topology) of the continua. There are 

also clearly seen when comparing the relationships 

between the elasticity parameters in Section 3 and in 

Section 4. In order to more clearly show these differences, 

it is advisable to give here several relationships between 

the elasticity parameters of 3D and 2D solids, which are 

most often used when considering various specific 

problems of the applied elasticity theory. For elastic 3D 

solids the parameters  ,  , K, Е and   are related by the 

relations: 

)1(2)21(3
3

9








 K

K

K
E , (25) 

K

EKE

K

K

6

3

2

2

)3(2

23 

















 ,  (26) 

Analogues of these relations for elastic 2D solids have the 

form: 

)1(2)1(2
4








 K

K

K
E ,  (27) 

K

EK

E

E

K

K

2

22 















 ,    (28). 

Comparison of formulas (25) - (26) with formulas (27) - 

(28) leads to the conclusion that there are significant 

differences in the deformation properties of elastic 

continua with different numbers of spatial measurements. 

Separately, we should also discuss topological 

differences in the allowed intervals for the change in the 

numerical values of the elasticity parameters. The 

equilibrium values of the elastic moduli  ,  , K, Е and 

  for a particular solid are determined by the physico-

chemical characteristics of the interatomic interaction and 

by the intensity of the thermal motion of the atoms. At the 

same time, these values should be compatible with the 

condition of thermodynamic stability common to all 

solids with respect to arbitrary elastic deformations. A 

formal mathematical criterion of stability is the positive 

definiteness of the quadratic forms (5) and (18), which 

describe the dependence of the free energy of elastic 

bodies on six (2) or three (15) independent components 

q  of the strain tensor. This criterion imposes certain 

restrictions on the admissible values of the moduli  ,  , 

and K as the coefficients of quadratic forms. For example, 

such restrictions can be obtained if in the formulas (5) and 

(18) we consider separately two types of homogeneous 

deformations: 

 pure dilation, when ikik   , where const  

and 0~  , and 2
2

0
2

 K
s

FF , ;3,2s  

 pure shear when 0nn , and 

ikikikikFF   ~~
0 . 

From this it is clear that the condition of positive 

definiteness of the deformation component of the free 

energy 0)(),( 0  TFTF q  is the positive values of the 
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moduli 0K  and 0 . It follows from (25) and (27) 

that this restriction also leads to the condition 0E  for 

both the three-dimensional ( 3s ) and two-dimensional (

2s ) continua.  

However, the ranges of values of the Poisson's ratio , 

that satisfy the condition of thermodynamic stability for 

3D and 2D continua are significantly different. If we take 

the limiting values 0K  and 0  for the 3D continuum 

according to (26), we obtain condition 

1    
2

1
 .   (29) 

and for the 2D continuum, according to (28), condition 

1    1 .   (30) 

Thus, the range of admissible equilibrium values of the 

Poisson's ratio of elastic solids can be regarded as a kind 

of topological invariant that varies abruptly from (29) to 

(30) upon transition from three-dimensional to two-

dimensional solid systems. 

The above discussion and the conclusions drawn on its 

basis confirm the advisability of using geometric concepts 

and methods in the theory of elasticity. They allow a 

deeper and more comprehensive description of the laws of 

deformation of elastic solids and reveal additional 

features of deformation properties. 

Appendix [3, 4, 11] 

For a reader who does not have a fundamental 

mathematical education, it is useful to explain the 

meaning of a number of terms and concepts of geometry 

that are used in the article, without excessive 

mathematical rigor of formulations. 

Geometry, as a branch of mathematics, is based on the 

concepts of "point" and "space": a point is an elementary 

structural unit of a mathematical space SG , that is the 

result of continuous and infinitely extended repetition of a 

point in s dimensions (or conditional "directions"): 

positive integer values 1s , 2… give the number of 

measurements space. It is assumed that any of the points 

can be considered as the origin, and the position with 

respect to it of any other point in space is given by a set of 

real numbers )(),...,( 21 iS xxxx   – the coordinates of the 

point (the symbol ...2,1i s denotes a coordinate index). 

In the geometric description of deformations of solids 

within the framework of the linear elasticity theory it 

suffices to consider one of the simplest types of a 

mathematical space – the Euclidean metric space with 

zero curvature. In this space we introduce the notion of 

the distance  ,l  between two points )( 
ix  and )(


ix , 

which is defined by 

22
22

2
11

, )(...)()(

SS xxxxxxl  . 

In this case, a single point (for example, the origin) can be 

interpreted as a zero-dimensional space and assume that 

the distance of any point )( 
ix  from itself is equal to zero 

( 0, l ). 

In the early stages of the development of geometry, it 

was a mathematical "tool" for analyzing spatial 

relationships in the surrounding and intuitively perceived 

three-dimensional empirical space 3G  (or 3D) of the 

physical world. In this geometry, the topology was called 

its section, which dealt with a general analysis of the 

structure of space itself-the presence or absence of 

continuity discontinuities (holes or point punctures-

singularity points) in it, as well as the systematization and 

general characteristics of the lines and surfaces defined in 

it with different curvatures, closed or open with the 

presence or absence of self-intersections etc. Later, the 

concepts of abstract mathematical spaces described at the 

beginning of this section as multi-dimensional continua of 

mathematical points (multidimensional numerical or even 

functional continua) arose and became established. By 

analogy with 3D geometry in such spaces, SG  for 1s  

you can specify different geometric figures by a 

continuous repetition of points, infinitely extended in one 

dimension and finite in others: conditional segments, 

lines, surfaces, volumetric figures. The number, variety 

and geometric meaning of such figures are different for 

different values of the number of measurements s. In 

modern geometry, topology is the most general and 

abstract part of it, in which only properties of space and 

geometric objects (figures) defined in it are studied that 

are not related to quantitative characteristics and are 

preserved for all continuous space deformations and one-

to-one transformations of points, invariants with respect 

to such transformations are systematized [3, 4, 11]. The 

theorem [3] is formulated and proved, according to which 

the main topological invariant of the space SG  is the 

number of dimensions s; in other words, changing the 

dimension of space changes its topology. 

Topological analysis of the most common geometric 

properties of spaces and geometric objects defined in 

them widely and effectively use various branches of 

mathematics [11]: symmetry analysis, vector and tensor 

algebra, analytic and differential geometry, mathematical 

field theory, theory of partial differential equations. These 

same branches of mathematics serve in modern physics as 

the basis for theoretical analysis and description of 

various physical systems. Moreover, for their 

comprehensive characterization, it also proved expedient 

to use geometric concepts of space and its topology [4, 

12, 13]. Examples include: classification of 1D, 2D and 

3D structures in solid state physics; 4D space-time 
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continuum in the theory of relativity; phase space in the 

classical mechanics of material points; functional spaces 

in quantum mechanics. 

The use of the geometric approach and topology 

methods in theoretical physics helps to describe not the 

details of the structure and properties of physical systems, 

but to establish or interpret the most general laws and 

relationships obtained in various concrete experiments in 

the study of systems of different physical nature [4, 12, 

13]. An important role is played by the development of 

representations about the relationships and mutual 

correspondences between abstract spaces in mathematics 

and their physical analogs - different types of material 

continuum or physical vacuum [4]. It is possible to 

separate various real physical systems into extremely 

small subsystems (regions) and consider them as physical 

points. They are compared to the points of the abstract 

mathematical space, but they preserve and bear upon 

themselves a set of physical characteristics: mass, 

momentum, potential and kinetic energies, electric 

charge, and so on. Continuous and infinitely extended 

repetition of such points creates a physical space that is 

regarded as an analog of a mathematical space with its 

geometric and topological properties. Thus, there are 

prerequisites for the effective use of geometry as a 

mathematical "tool" in theoretical physics. 

The authors are sincerely grateful to S.N. Smirnov for 

a meaningful and useful discussion of the article, and also 

want to express gratitude to T.I. Vainblat for help in 

translating the article. 

The article is offered as an addition to the course of 

lectures for the masters of the Physics Faculty: Prof. 

Natsyk V.D. "Fundamentals of the elasticity and plasticity 

theory of solids", kfk.biz.ht – Educational materials. 
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