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Introduction
Undoubtedly, one of the biggest discoveries of 

the XXI century is the gravitational wave detection. On 
September 14, 2015 at 09:50:45 UTC the two detectors of 
the Laser Interferometer Gravitational Wave Observatory 

(LIGO) placed in the United States simultaneously 
observed a transient gravitational wave signal [1]. A century 
after the fundamental predictions of Einstein [2, 3] and 
Schwarzschild [4], the fi rst direct detection of gravitational 
waves and the fi rst direct observation of a black hole system 
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According the non-linear paradigm, been formulated by one of the authors of this paper in the last 1980th, all processes in open, 
non-linear, dynamical systems are very complex, non-linear, ultra-wideband or fractal ones. 

As well as the transient gravitational wave signal generated by a black hole system merging to form a single black and observed 
on September 14, 2015 at 09:50:45 UTC by the two detectors of the Laser Interferometer Gravitational-Wave Observatory placed in 
Hanford and Livingston has strictly non-linear nature, the presence of fractal and multi-fractal properties in its time-domain structure 
is supposed to be quite possible. To investigate these properties, some modern methods of mono-fractal and multi-fractal analyzes are 
applied. 

The transient gravitational wave signals received in Hanford and Livingston are found to be multi-fractal ones. Being the unique 
natural ultra-wideband processes with changing mean frequency, they had complex, non-stationary multi-fractal structure. The set of 
the corresponding numerical parameters for those signals are estimated and discussed.
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У відповідності до нелінійної парадигми, сформульованої одним з авторів цієї статті наприкінці 1980-х років, всі процеси 
у відкритих, нелінійних, динамічних системах є дуже складними, нелінійними, надширокосмуговими або фрактальними. 

Оскільки короткочасний сигнал гравітаційної хвилі, що був створений системою чорних дір, які перетворилися на одну 
чорну діру, та зареєстрований 14 вересня 2015 р. о 09:50:45 UTC двома детекторами LIGO, розташованими у Хенфорді та 
Лівінгстоні, має сильно нелінійну природу, наявність фрактальних і мультифрактальних властивостей його часової структури 
видається цілком можливим. Щоб дослідити ці властивості, застосовуються декілька сучасних методів монофрактального та 
мультифрактального аналізів. 

Встановлено, що короткочасні сигнали гравітаційних хвиль, прийняті у Хенфорді та Лівінгстоні, є мультифрактальними. 
Будучи унікальними природніми надширокосмуговими процесами зі змінною середньою частотою, вони мають складну, 
нестаціонарну мультифрактальну структуру. Оцінюється набір відповідних числових параметрів цих сигналів, обговорюються 
отримані результати. 

Ключові слова: сигнал гравітаційної хвилі; монофрактальний аналіз; мультифрактальний аналіз; нелінійна парадигма; 
надширокосмуговий процес; мультифрактальна структура. 

Согласно нелинейной парадигме, сформулированной одним из авторов этой статьи в конце 1980-х годов, все процессы 
в открытых, нелинейных, динамических системах являются очень сложными, нелинейными, сверхширокополосными или 
фрактальными. 

Поскольку кратковременный сигнал гравитационной волны, сгенерированный системой черных дыр, слившихся в 
одну черную дыру, и зарегистрированный 14 сентября 2015 г. в 09:50:45 UTC двумя детекторами LIGO, расположенными 
в Хэнфорде и Ливингстоне, имеет сильно нелинейную природу, наличие фрактальных и мультифрактальных свойств его 
временной структуры представляется вполне возможным. Чтобы исследовать эти свойства, применяются несколько 
современных методов монофрактального и мультифрактального анализов. 

Установлено, что кратковременные сигналы гравитационных волн, принятые в Хэнфорде и Ливингстоне, являются 
мультифрактальными. Будучи уникальными естественными сверхширокополосными процессами с переменной средней 
частотой, они имеют сложную, нестационарную мультифрактальную структуру. Оценивается набор соответствующих 
числовых параметров этих сигналов, обсуждаются полученные результаты. 

Ключевые слова: сигнал гравитационной волны, монофрактальный анализ, мультифрактальный анализ, нелинейная 
парадигма, сверхширокополосный процесс, мультифрактальная структура. 
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merging to form a single black hole were reported [1]. 
In our opinion, by value this discovery can be compared 
with well-known Hertz’s experimental confi rmation of 
the Maxwell’s electromagnetic wave existence prediction 
only. Other hand, the black hole merger discussed is very 
strong-fi eld and powerful, unique ultra-wideband process 
[5]. According the so called non-linear paradigm [6], 
been formulated by one of the authors of this paper in the 
last 1980th, all processes in open, non-linear, dynamical 
systems are very complex, non-linear, ultra-wideband, 
fractal ones. The black hole merger system is one of them. 
Therefore, it seems to be interesting, actual and useful to 
check the fractal property existence for the experimental 
gravitational wave signals, obtained by LIGO [1].

The purpose of the paper is to investigate the fractal 
and multi-fractal properties of the gravitational wave 
signals with usage of modern fractal and multi-fractal 
analysis methods.

Fractal Defi nition and Fractal Classifi cation
The term ‘fractal’ (from the Latin ‘fractus’, meaning 

‘broken’) has been proposed by American mathematician 
Benoit Mandelbrot in 1975 [7]. Mandelbrot defi ned a 
fractal to be a set with Hausdorff  dimension strictly greater 
than its topological dimension [7].

Nevertheless, now there are many diff erent defi nitions 
of the fractal introduced in the last forty years by diff erent 
researchers (see, for example, [8 – 11]), as well as the 
fractal concept developed rapidly in these years. But on 
our opinion, the most adequate of them is following one, 
proposed by K. J. Falconer in 1990 [8]. According to this, 
when we refer to a set F as a fractal, we will typically have 
the following in mind.

1. F has a fi ne structure, i. e. detail on arbitrarily small 
scales.

2. F  is too irregular to be described in traditional 
geometrical language, both locally and globally.

3. Often  has some form of self-similarity, perhaps 
approximate or statistical.

4. Usually, the ‘fractal dimension’  of F  (defi ned in 

some way) is greater than its topological dimension TD .

5. In most cases of interest  is defi ned in a very 

simple way, perhaps recursively.
Some later, a self-similarity requirement was 

generalized and replaced by the self-affi  nity one [12].
The fractals can be classifi ed in diff erent ways. One 

hand, all fractals can be separated on mathematical and 
real, or physical, ones. First of them are a mathematical 
idealization only, and second of them are really existing 
natural objects, such as, for example, trees, heaven, mounts 
et al. The ways of describing of these two fractals types are 
slightly diff erent [13].

All mathematical fractals can be separated on the 
deterministic (algebraic and geometric) fractals and 
stochastic fractals. The properties of self-similarity and 
self-affi  nity for the stochastic fractals are considered not in 
a literal sense, but in a statistical one. It means that fractal 
properties are shown not by the stochastic object as such, 
but by its deterministic numerical characteristics [8 – 13]. 

General diff erence between mathematical and 
physical fractals is in following. Strictly speaking, the 
physical fractals don’t satisfy the fractal defi nition listed 
above as well as the minimal scale of mathematical 
fractals vanishes by the defi nition, but the minimal scale 
of physical fractal has a fi nite, non-zero limit. As the result, 
the self-affi  ne property of physical fractal exists in limited 
range of scales only [8 – 13]. This is another real diff erence 
between the true world (physical fractals) and one of its 
models (mathematical fractals). Nevertheless, the physical 
fractals can be divided into deterministic and stochastic 
ones deter too, as well as their non-stochastic numerical 
characteristics have namely such properties.

Other hand, there are so called mono-fractals and 
multi-fractals. To describe a mathematical mono-fractal, it 

is enough to use the Hausdorff  dimension HD  as a fractal 

dimension FD  [7 – 9]. It is important to point, that only 

one value of this dimension is able to characterize a mono-
fractal as the self-similar (or self-affi  ne) structure. At the 
same time, to describe a physical mono-fractal, instead of 

the Hausdorff  dimension HD  the Minkowsky dimension 

MD  is usually applied [14]. All existing algorithms 

allowing to estimate a fractal dimension FD  of the object 

investigated, in particular, as a mathematical, as a physical 
fractal, are included in so called fractal analysis, which can 
be named more accurately as the mono-fractal analysis too. 

Multi-fractal is a fractal, which is not principally 
allowed to be described with usage of one value of a fractal 

dimension FD  only. To do this, it is necessary to use a set 
of fractal dimension values. Such approach is well known 
as the multi-fractal analysis [15, 16].

Being as natural, as artifi cial origin, many real 
signals and processes in nature have fractal properties 
and, therefore, are the physical fractals [7 – 16]. Using 
fractal and multi-fractal analyses, these properties having 
statistical sense can be investigated. The gravitational 
wave signals listen above are real signals, which require 
to solve the problem: whether these signals are mono-
fractal or multi-fractal or not. If they are, it is necessary to 
estimate their characteristics. Namely these questions will 
be answered below.

Fractal Analysis Method
To apply the fractal analysis (more precisely, the 

Multi-fractal analysis of the gravitational waves



35Вісник  ХНУ,  серія «Фізика»,  вип. 26, 2017

mono-fractal analysis) to a real physical signal (or process) 
investigation, it is necessary [10]:

1) to identify the presence of the self-affi  nity (or self-
similarity) properties of this signal;

2) if they are, to defi ne the scale range (or multiple 
ranges), in which this happens;

3) using the Minkowski dimension MD , to estimate 

the fractal dimension FD  value (or some fractal dimension 

values, if multiple ranges were found) of the signal 
investigated.

Oddly enough, but there are many diff erent 

approximations of the Minkowski dimension MD , which 

are usually estimated for the real physical fractal analysis 
in practice. In particular, there are the cluster dimension 

KD  [17], the capacity (or box, or fractional) dimension 

CD  [14], the pointwise dimension PD  and the averaged 

the pointwise dimension PD  [18, 19], the correlation 

dimension GD  [19], the information dimension ID  

[19], the internal (or hidden) dimension DD  [9], the mass 

dimension mD  [18] and other. 

In this paper, we use direct calculation of the capacity 

dimension CD  and apply another well-known method of 

the fractal dimension FD  estimation (more precisely, of 

course, of the Minkowski dimension MD  estimation), 

which is based on the Hurst exponent H  calculation. 

Following the Generalized Brownian Motion Model, the 

Hurst exponent  and fractal dimension FD  are 

connected with the relation 2FD H= -  [9]. 

To estimate the Hurst exponent of the signal ( )X t , 
two diff erent ways can be used. Being proposed by H. 

Hurst in 1951 [20], the fi rst way is the oldest, is known as 
the Rescaled Range Method or RS-method [9] and is 
considered as the ‘classical’ way. The second way is based 
on the wavelet analysis, namely on the investigation of rate 
of increasing of mean values of the wavelet coeffi  cient 
module squares [21].

Then if these dependences obtained in both cases and 
plotted in the double logarithmic coordinates can be 
successfully approximated in some scale range with a 
linear function (for example, with usage of the least square 
method), the Hurst exponent H  in this scale range can 

obtained. For fractals the Hurst exponent value H  should 

be limited in the range 0 1.H< <  Otherwise the 

signal analyzed is appeared to be not self-affi  ne and, 
therefore, is not fractal [9]. If the condition 0 1H< <  
was successfully satisfi ed, then we can believe that the 
signal investigated has mono-fractal properties in this 
range. It is quite possible that for the same signal some 
diff erent scale ranges with diff erent Hurst exponent values 
will be obtained [9].

Meanwhile, the real physical processes, special being 
in open, non-linear, dynamical systems [6], are appeared to 
be non-stationary ones. Moreover, their fractal properties 
can vary with time too. So, the Hurst exponent H  should 

be estimated for some limited, slide time window ( )W t , 

but not for all signal ( )X t  at once. In this case, the Hurst 

exponent becomes a function of the time ( )H H t=  

[22]. In our opinion, it is convenient to connect these Hurst 
exponent values with corresponding time locations of the 

center of the slide time window ( )W t  used. Namely such 
way is applied in this paper.

Some experienced authors (see, for example, [10, 
21]) believe, that fractal analysis is closely connected with 
wavelet analysis, in particular, with continuous wavelet 
transform (CWT). Therefore, investigations of CWT 
spectral density function (SDF) of the signal analyzed and 
of its skeleton are a part of fractal analysis. In our opinion, 
this is really appeared to be very important and useful 

Fig. 1. Multi-fractal spectra ( )f a  of the gravitational wave signals registered in Hanford (a) and in Livingston (b).
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addition to usual fractal analysis tools.

Multi-Fractal Analysis Method
If the process analyzed is appeared to be multi-

fractal, the abilities of the mono-fractal analysis will be 
quite insuffi  cient. Of course, the application of mono-
fractal analysis to the multi-fractal signal investigations 
can not be completely forbidden, but the results, which 
would be obtained, will relate to the so called multi-fractal 
support only [16]. The multi-fractal support is considered 
as a mono-fractal, which makes the greatest contribution 
in the multi-fractal considered [16]. May be, it seems to be 
interesting for the researcher too, but to describe the multi-
fractal much more complete, another approach named as 
the multi-fractal analysis must be used. 

There are two basic multi-fractal analysis methods, 
which are usually applied to the signal analysis. First of 
them is called as the Wavelet Transform Module Maxima 
(WTMM) method and is based on the CWT [21]. Being the 
basic informational characteristics of the multi-fractal 

analysis, the multi-fractal spectrum ( )f a  of the signal 

investigated is connected with the CWT SDF of the signal. 
Traditional shapes of the multi-fractal spectrum ( )f a  of 

the signal are shown on the fi g. 1, where two experiment 
registrations of the gravitational waves discussed above 
were presented. The a  value is known as the Holder 
exponent (see, for example, [15, 16]). 

Suddenly, WTMM method has one signifi cant 
disadvantage. It doesn’t allow to consider the non-
stationarity of the signal investigated as well as in this 
method the signal is investigated at once. At the same time, 
it is reasonable to predict that all multi-fractal characteristics 
of a non-stationary signal can signifi cantly vary with time. 
Thus, it is necessary to apply another method, which is free 
from this disadvantage.

Appearing relatively recently, the second basic 
multi-fractal analysis method known as the Multi-Fractal 
Detrended Fluctuation Analysis (MF DFA) is appeared to 
be convenient to the non-stationary signal investigations in 
slide time window [23]. As well as the gravitational wave 
signals are expected to be non-stationary ones, namely MF 
DFA was chosen in this paper as the main investigation 
tool.

Let’s consider the basic idea of the MF DFA method 

[23]. Basing on the signal multi-fractal spectrum ( )F a  
analysis (the multi-fractal spectrum of the whole signal was 

denoted above as ( )f a ) and the slide time window 

( )W t  application, the time dependences of location 

(minimal min( )ta  and maximal max( )ta  values of 

a ) and of width ( ( )tDa , max minDa = a -a
) of the multi-fractal spectrum can be obtained. Special 

attention should be paid to the location *a  of the multi-
fractal spectrum maximum, given by the requirement 

*( ) max ( )F F
a

a = a . The *a  value is called as 

the generalized Hurst exponent as well as for mono-fractal 

signal we have 0Da =  and * Ha = . The 

generalized Hurst exponent *a  describes a multi-fractal 
support of the signal analyzed. It’s fractal dimension is 

given by relation *2FD a= -  [24].

Analysis Results
Let’s start with results of mono-fractal analysis of the 

gravitational wave signals discussed above. At the fi g. 2 
these signal registrations obtained in Hanford (fi g. 2, a) and 

Fig. 2. CWT SDF skeleton analysis results. Signals 
in time domain: a – Hanford, c – Livingston, CWT 
skeletons: b – Hanford, d – Livingston.
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in Livingston (fi g. 2, c) are shown. One count on the 
dimensionless time axis corresponds to 21 ms, thus, the 
whole registration duration is 210 ms. One count on the 

strain axis is equal to 225 10-⋅ . All calculations 
described below were performed with usage of the FracLab 
Toolbox [26] and some original software been developed 
by authors of this paper.

Capacity dimension CD  of the whole fi rst signal 

(Hanford) is appeared to be 1,45 0,10CD »   in 

range of the dimensionless time 0,156 5t = - . The 
result for second signal (Livingston) is appeared to be 

1,44 0,10CD »   in the same range. 

Corresponding bounds for Hurst exponent H  are 

0,55 0,10H »   and 0,56 0,10H »  . 

Indirect indication on possibility of the fractal 

property existence for the signals analyzed is given by the 
CWT skeletons, which have characteristics fork-like looks 
(fi g. 2, b, d) (for CWT SDF calculation the Morlet wavelet 
was applied). Moreover, on the fi g. 2, b, d the fork-like 
looks of skeletons are excellent seen in the range 

0,1 2T » - , where T  is dimensionless period of 
the signal, which is used in CWT. This results match well 

with ones obtained during capacity dimension CD  
estimation.

Let’s consider the results of the multi-fractal analysis. 
First, WTMM method application should be described. To 
obtain the CWT SDF of the signals analyzed, the 
Daubechie’s wavelet of fours order (db4) was used. The 
multi-fractal spectra ( )f a  of the signal investigated are 

at the fi g. 1. It was found that for the signal registered in 
Hanford the minimal value of the Holder exponent is 

min 0.38a = , its maximal value is max 1.03a =

, the multi-fractal spectrum width is 0.65aD =  and 

the generalized Hurst exponent is * 0.65a = . For the 

signal obtained in Livingston we have min 0.36a = , 

Fig. 4. The same as previous fi gure for gravitational 
wave signal registered in Livingston.

Fig. 3. MF DFA results for gravitational wave signal 
obtained in Hanford: a – signal in time domain, b – 

min min( )ta a= , c – max max( )ta a= , d – 

( )ta aD = D , e – * *( )ta a= , f – 

( ).H H t=  Dashed lines denote results of the 

WTMM method, dotted lines indicate upper bound of 
the value for fractals.
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max 1.01a = , 0.65aD =  and * 0.66a =  

correspondently. These two value sets almost don’t diff er 
from each other. 

Now let’s discuss the results of MF DFA application. 
All time-dependent values in MF DFA (fi g. 3, fi g. 4) and 

additionally the Hurst exponent ( )H t , which is a part of 

the fractal analysis method, were calculated with usage of 

the slide window ( )W t  with dimensionless width 

3,67tD = . It is important to point, that each specifi c 

value obtained for given window location in time domain 
was assigned to the position of the window center. The 
existence of the empty spaces to the right and left of the 
graphs (fi g. 3, b – f, fi g. 4, b – f) is explained namely by this 
reason. 

It was found the following. In both cases (as for 
Hanford, as for Livingston) there are steady tendencies to 
increase with time for all four multi-fractal functions (

min( )ta , max( )ta , ( )taD  and *( )ta ), which 

result in a rather sharp decrease. For the Hurst (fi g. 3, f, fi g. 
4, f) exponent there is a weak tendency to increase only. In 
both cases, the fractality condition for the generalized 

Hurst exponent ( *0 ( ) 1ta< < ) is well satisfi ed 

only for 4,5t £ . For the Hurst exponent this condition 

(0 ( ) 1H t< < ) is satisfi ed sometimes in bounds 

2 6t£ £ .

Discussion
In one of the previous works of authors [5], it was 

found that gravitational waves generated by a binary black 
hole merger were appeared to be a unique natural ultra-
wideband (UWB) process with changing mean frequency. 

The fi rst gravitational wave registration (Hanford) 
contains the UWB process with changing mean frequency, 
which has the duration approximately 130t »  ms, the 

period band 4 30T » -  ms, the dynamic frequency 

bandwidth changing from 0.4 to 0.9, the signal mean 
frequency rising with hyperbolic law, and the signal energy 

distribution with maximum at 0 20T »  ms. 

The second gravitational wave registration 
(Livingston) contains the UWB process with changing 
mean frequency, which has the duration approximately 

120t »  ms, the period band 4 30T » -  ms, 

the dynamic frequency bandwidth changing from 0.5 to 
0.8, the signal mean frequency rising with hyperbolic law, 
and the signal energy distribution with maximum at 

0 20T »  ms. 

Taking into account that results and comparing them 
with present ones, one can assert the following. Both 
signals analyzed have really fractal structure. This is well 
confi rmed by the results of application as of the mono-
fractal analysis, as of the multi-fractal analysis. There is no 
too signifi cant diff erence between the results obtained for 
two signals registered in Hanford and in Livingston. 
Analyzing the whole both signals, it is important to point, 
that the value of the generalized Hurst exponent (
* 0,65a » ) is in well agreement with the estimations 

of the ( 0,55 0,10H »  ) obtained with mono-

fractal analysis. But the signals analyzed were appeared to 
be multi-fractal. This is good shown at the fi g. 1. Therefore, 
the values of the Hurst exponent and of the generalized 
Hurst exponent describe the multi-fractal support only. 
Based on the estimation of H , one can assume, that multi-
fractal support may be partially related to additive white 

Gaussian noise, which has 0,5H = . 
But these were the results of whole signal analysis. 

Meanwhile, as it was pointed above, the signals are 
appeared to be signifi cantly non-stationary and this fact 
should be taken into account. The answer was obtained in 
bounds of the MF DFA application.

Based on the time dependences, it was found that 
both signals analyzed can be considered as fractal ones 
approximately in the range of dimensionless time 

[0;6]t Î , where the condition *0 ( ) 1ta< <  is 

well satisfi ed. It is important to point, that on the fi g. 4, e, 

seems, the narrower range [2;4]t Î  is observed. But 

this range should be extended to the one described above, 
as well as the width of the slide window applied for these 

calculation is appeared to be no less than 4tD = . This 
limitation is caused by the MF DFA method peculiarities 
and by the size of the experimental data vectors used by the 

authors of the paper. In the range [0;6]t Î  there is 
approximately a half of the UWB process with changing 
mean frequency. Second half of them is appeared to be 
non-fractal. But whether this fractal component is a part of 
the gravitational wave signal or is a noise having quite 
diff erent physical origin, suddenly, this question remains 
unanswered now.

Thus, the results obtained in the paper is good 
consistent with non-linear paradigm. Been generated by 
extremely powerful, open, non-linear, dynamical system, 
the gravitational waves were appeared to be a unique UWB 
process with signifi cant complex, non-stationary multi-
fractal structure. Suddenly, it remains unknown whether 
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they are a true fractal UWB (FUWB) processes or a UWB 
processes registered on pretense of the additive multi-
fractal noise, which had quite another physical origin. To 
solve this problem in the future, new observations and 
investigations are needed.

Conclusions
1. The transient gravitational wave signals generated 

by a black hole system merging to form a single black and 
received in Hanford and Livingston were appeared to be 
multi-fractal ones.

2. Being the unique natural UWB processes with 
changing mean frequency, they had complex, non-
stationary multi-fractal structure.

3. Mono-fractal analysis shows, that capacity 

dimension CD  of the multi-fractal support of the signals 

analyzed was appeared to be 1,45 0,10CD »   in 

range of the dimensionless time 0,156 5t = -  

(Hanford) and  1,44 0,10CD »   in the same 

range (Livingston).
4. Using the classic multi-fractal analysis (WTMM 

method), it was obtained, that min 0.36 0.38= -

, max 1.01 1.03a = - , 0.65aD =  and 

* 0.65 0.66a = -  for both signals investigated. 
Therefore, both signals are multi-fractal ones as whole.

5. With MF DFA application, the signals investigated 
were shown to be strongly non-stationary ones, including 
their multi-fractal numerical characteristics. It was found, 
that in both cases the fractality condition for the generalized 
Hurst exponent ( *0 ( ) 1ta< < ) is well satisfi ed 

only for 4,5t £ . For the Hurst exponent this condition 

(0 ( ) 1H t< < ) is satisfi ed sometimes in bounds 

2 6t£ £ .
6. To solve the problem whether the signals 

investigated are a true FUWB processes or a UWB 
processes registered on pretense of the additive multi-
fractal noise, which had quite another physical origin, the 
new observations and investigations are needed.
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