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Discrete singularities method in problems of seismic and impulse
Impacts on reservoirs
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A numerical method to simulate impulse and seismic effects on storages filled with a
liquid has been proposed. The liquid is supposed to be ideal, incompressible, and its
current is irrotational. The fluid pressure satisfies the Cauchy-Lagrange integral. To
determine it, a system of integral equations has been obtained. Its numerical solution is
obtained by the boundary element method. The eigenvalues and the forms of liquid
vibrations have been obtained. The proposed method has made it possible to estimate
the level of the free surface under the action of a suddenly applied force.
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IIpennokeH 4MCAEHHBIN METOA, 7SI MOJENUPOBAHUS UMITYJILCHOTO M CECMUYECKOTO
BO3JEHCTBUA Ha XpaHWIUIIA C JKuAKocTeio. Ilpenmonaraercs dYTO KUAKOCTH
nacajibHasd, HCC)KHMacMmadA, a e€ TeueHue 663BI/IXpeBOC. I[aBJ'IeHI/Ie KUIKOCTHU
yaosierBopsier uHterpany Komm-Jlarpanxka. st ero omnpeneneHus ModydeHa
CUCTEeMa HHTErpallbHbIX ypaBHeHUil. EE uucieHHoe pelleHHe MOJYy4eHO METOAOM
T'pPaHUYHBIX 3JIEMCHTOB. HOJ’[y‘{eHLI COOCTBEHHBIE 3HAYECHHUS U (bOpMI)I KoJieOaHu it
KUIKOCTH. [Ipe/yioKeHHBI METOJ] TO3BOJMJI  OIICHUTH YPOBEHb CBOOOIHOI
MMOBEPXHOCTH IIPU BHE3AITHO MPHJIOKEHHON Harpyske.

Kniouesvte cnosa. pezepsyapbvi ¢ JCUOKOCHbIO, MEMOO UHMESPANbHBIX YPAGHEHUL, C80000HbIE U

BbIHYIHCOEHHbIE KONIeOAHUSA

3anmponoHOBaHO YMCEIBHUI METOJ IS MOJICIIOBAHHS IMITYJIbCY 1 ceiicMivHOl Tl Ha
CXOBHIIA 3 pianHOIO. [IpuIyckaeTses, MO piivHA ifeanbHA, HECTHCINBA, a ii pyX €
6e3BuxpoBuM. Tuck piguHM 3anoBoibHs€ iHTerpanmy Komri-Jlarpamxka. s #oro
BU3HAYEHHS OTPHMAHA CHCTEMa iHTErpaIbHUX PiBHAHb. 1i UMCENbHUE PO3B’A30K
OTPUMAHO METOIOM TpaHUYHUX eyneMeHTiB. OTpHUMaHO BJIACHI 3HAYeHHS 1 GopMu
KOJIUBaHb PiAMHHU. 3ampOIOHOBAHUM METOI OO3BOJIMB BHU3HAYUTH PiBEHb BUIBHOL
MOBEPXHI MIPU PANTOBO MPHUKIAIEHOMY HaBaHTaKECHHI.

Kniouosi cnosa. pesepsyapwvl ¢ scuoKocmolo, Memoo UHMeZPAIbHbIX YPAGHEHUTL, C80000HbIE U
BbIHYIICOEHHbLE KONeOaHUs

1. Problem statement and its topicality

Containers and tanks for storing oil, flammable and poisonous liquids are widely
used in various fields of engineering such as power engineering and transportation, as
well as, in aircraft industry, chemical, oil and gas industry. These tanks usually
operate under increased technological loadings and they are filled with oil, flammable
or toxic agents. As a result of a sudden action of earthquakes, shockwaves or other
force majeure circumstances the liquid stored in tanks may be affected by intensive
sloshing.

Sloshing is a phenomenon observed in a number of industrial facilities: containers
for storage of liquefied gas, oil or fuel tanks, tanks of cargo tankers. It is known that
partially filled tanks are affected by especially intensive sloshing. It can lead to high
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pressure on tank walls, to destruction of structures or loosing stability, and to leakage
of dangerous contents, that in turn, can result in serious ecological consequences.

The analysis of research devoted to the problems of liquid sloshing in tanks is
given in R. A. Ibrahim's works [1, 2]. The works [3-5] also deal with liquid sloshing in
cylindrical tanks under seismic loadings.

In this paper the problem concerning liquid vibrations in a shell of revolution is
considered. We designate a moistened shell surface by S;, and a free surface by S,.
Suppose the Cartesian coordinate system 0xyz is connected with the shell, the liquid

free surface S, coincides with the xOy plane at the state of rest (fig. 1)
A

z
z

R

Fig.1. Fluid-filled cylindrical shell and its sketch

Suppose that the liquid is an ideal and incompressible one and its movement starts
from the state of rest and is irrotational. Then there exists a liquid velocity potential ®
szag;v yzég;vzzag’
OX oy 0z
which satisfies the Laplace's equation.
We determine the pressure p on shell walls from the linearized Cauchy-Lagrange's
integral by the following formula

oD
p =—pl[5+ 92)+ p, +a,(t)x,

Here @ is the velocity potential, g is the acceleration of gravity, z is a point vertical
coordinate in the liquid, py is the liquid density, p, is an atmospheric pressure, ag(t) is
a function which characterizes the external influence (a horizontal seism or an
impulse).

On the free surface of liquid the following conditions are to be satisfied:

oD oc .
onls, ot P=Pols, =0.
where the function € describes the form and location of the free surface.
Thus, for the potential we have the following boundary problem
ob| oD o,

2 oD
Vd=0;, —| =0;,— —=; p- =0; —+9C+a,lt)xy =0.
ol el Tar P Pols, =0 el

So
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Having determined the velocity potential @ and the functionf, we establish the
height of raising the free surface and determine the liquid pressure on shell walls.

2. The mode superposition method
Consider the potential @ in the next form

M
@ = dyoi - 1)
k=1
For the functions ¢ consider the following boundary problems:
2 0Pk
Vo =0, —| =0, 2
Pk on s, 2)
0 og. O
Wkl 5. Bk g0, 3)
onlg ot ot

Let us differentiate the second relation in (3) and substitute it for the received

equality% from the first relation. Further we present the functionsgy in the following

forme, (t,x,y,z)=e"o,(x, y,z). We come to the eigenvalue

op, _ Xi
on g (4)
As the equation for the free surface we obtain the expression
o a(Pk
C= Z K ®)
In cylindrical coordinates system we have the following expression
ok (r,2,0)= @i (r, z)cosad (6)

Here o is a harmonica number. Thus, frequencies and modes of free vibrations are
considered separately for different a.
We present ¢ as potentials of simple and double layers [5]

2n(P, ) Ha oy P| —J;jcp%ﬁds. ©)

Here S = S; U Sy; points P and P, belong to the surface S. By | P — Po| we denote
the Cartesian distance between points P and P,.

With the boundary conditions (2), (3) we come to the system of the integral
equations in the form [6, 7]:

2
2n1 + [[ o1 %(%)dsl - %_U(Po %dso +[[ @0 %(%}dso =0,
Sl S0 ) SO
0(1 1
_J;{(p]'%[FJdSl - 27'C(|)O +%£{(po FdSO =0.

Here for convenience we denote values of potential on the free surface by ¢, and
by @1 on the shell walls.

(8)
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We look for the solution of the system (8) in form (9).
Previously, having integrated the equation (8) by the variable 6, we have obtained

the following system of one-dimensional singular equations.
R
2n(zo)+ [ 9(2)Q(z, 2o )r(2)dr - [ a(p)¥ (P, P, Jpdp = [w(z)¥(P, B, Jr(z)dr; P, €S, (9)
r 0 r

R

J(P(Z)Q(Z' 2y )r(z)dr —J.q(p)‘P(P, P Jodp = J.W(Z)\P(P! Py )r(z)dry; Py €S,
Here

~Ja+b 2r a-b

o) i E P e - m o 2 o

/2

¥(P,P))= ﬁﬁ(k)? E,(k)=(-2) (1— 4a2)jc0520uyw/1— k2sin?ydy ;

s cos2oydy 2b
()= (1) [ 2V a2 p2i(z -2, f; b=2ppy; k2=
o y1-k“sin“y a+b
To define potentials ¢ we use representation (9) and introduce the following
integral operators:

Ay, =21y, +g\vla—an r(Pl,PO) dS;; By, =gwo%d80; Cy, = gwo %(%jdso ;

o 1 ) 3 1
Dy, :_J;J'“Il%mdslv Fy, —‘!JA\VO Fdso- (10)
1 0
Then the boundary value problem (2)-(5) takes the form
K2 K2
A\Vl:EB\I’o_C\I’O; Fo €Sy D\ul=2nE\vo—EFwo: P €S-

After excluding function y; from these relations we obtain the following
eigenvalue problem

2

(DA'C + E)y, ~AMDA'B+F)y, =0, r=%
g

Its solution gives natural modes and frequencies of liquid sloshing in a rigid tank.
The evaluation of integral operators in (10) is carried out by the method proposed
in [8-10].

3. Reducing the dynamic problem to the differential equation system

Having defined the basic functions ¢y, let us substitute them in expressions for
velocity potential (1) and for the free surface elevation (5). Then substitute the
received relations for the boundary condition on the free surface.
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oD
@ x| =0.
~ +06 +a,(t)x

So

As in a cylindrical system of coordinates there is x = rcos6, we are only interested
in the first harmonica, i.e. in the formula (6) we only consider a=1. We come to the
following equation on the surface Sy

M. M o0
>do, +9>d —~+a(t)r=0."
k=1 o on

Due to validity of the relation (4) on the surface S, the equality given above takes
the form

Mo M
> dey + D xid @, +a(t)r=0. (11)
k=1 k=1

Accomplishing the dot product of equality (11) by o, (I =1,_M) and having used

orthogonality of its own modes, we receive the system of ordinary differential
equations of the second order

d +yXd, +a(t)F =0; F = (r""k); k=1LM. (12)
((ka(Pk)

Suppose that before applying the horizontal impulse the tank has been at the state
of rest. Then we are to solve (12) under zero initial conditions. The operational
method is applied here for solving the system (12).

The following values for the coefficients d, (t), k=1M are obtained:

iz—izcos(xkt) 0<t<T
k k

dk(t):
1 1 1 1
— ——C0s(y,t)——+—cosy, (t-T) t>T
Xk Xk Xk Ak

Substituting these coefficients in the relation (5), one can obtain the time-history of
the free surface elevation.

4. Analysis of the numerical results

Let us consider the cylindrical shell with a flat bottom partially filled with the
liquid. The tank parameters are following: radius is R = 1 m, thickness is h= 0.01m,
length is L =2 m, filling level is H =0.8m.

For carrying out the calculations we accepted different numbers of the basic
functions.

Fig. 2 shows the time-history of the free surface elevation in the point B with r=1.5
(see fig. 1). Here the only one (M=1) basic function is used in (5).
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Fig.2. Time —history of the free surface under impulse loading, M=1.
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On fig. 3 the free surface elevation in the point B with r=1.5 point, depending on
time is shown. Here we use three basic functions (M = 3 in (5)).
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Fig.3. Time —history of the free surface under impulse loading, M=3

Further increasing in number of basic functions has not lead to the essential
change of the results.
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Conclusion
The developed method allows us to estimate the level of the free surface elevation

under suddenly enclosed loadings. This approach can be easy generalized for elastic
tanks with elastic baffles. The tank geometry can be changed easily, therefore the
results could be obtained for conical, spherical and compound shells. It can allow us

to

make recommendations about installation of protective elements (covers,

partitions).

10.
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