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Determination of probabilistic type intervals for constructing
antagonistic game kernel defined on a hyperparallelepiped enclosed
within the unit hypercube

V. V. Romanuke
Khmelnitskiy National University, Ukraine

A method of constructing a definitional domain for the kernel of an antagonistic game
is suggested. The domain is a hyperparallelepiped enclosed within the unit hypercube.
The game is intended for reducing interval uncertainties, where a pure strategy
component is between 0 and 1, but the sum of the components is always equal to 1.
Such normalization allows to distribute capacities among “rooms” optimally, whose
needs are uncertain and enclosed within intervals. In a special case, when the available
capacity is not sufficient, an additional capacity that a room may need is found.
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IIpononyetbess Meron moOymoBH 0OMAcTi BU3HAYEHHS SApa aHTAarOHICTHYHOI TPH.
Lliero obmacTio € rimepmapalienemines ycepeauHi OAMHHYHOTO Tinmepkyba. ['pa
NpHU3HAYCHA U YCYHCHHs IHTEPBaJIbHUX HEBH3HAYECHOCTEH, 116 KOMIIOHEHTa YHCTOL
cTparerii 3HaxoauThes Mk 0 Ta 1, ame cyma ycix KOMIOHEHT 3aBXIU AOPIBHIOE 1.
Taka HOpMami3aiiss J03BOJIIE ONTHMAIBLHO PO3MOAUIATH MOTYXHOCTI — MiX
“BimmineHHAMHU”’, 4YHi TOTpeOM HEBU3HAUYCHI Ta BKIAaJCHI B IHTepBAIH. Y
CIEI[iaIbHOMY BHIQJKy, KOJIM HAasBHOI IOTY)XHOCTI HEZOCTaTHbO, BH3HAYAETHCS
JIOaTKOBA IOTYXKHICTb, SIKY MOXE II0Tpe0yBaTH BiIiICHHS.

Kniouosi cnosa: inmepeaivHa HeGUHAUEHICIb, AHMAZOHICMUYHA 2pa, NOOYO06A 0pa.
IIpemnaraercst MeTox TMOCTPOEHHsT OOJIACTH OIpENACNICHUs spa aHTarOHUCTHYECKON
urpel. OToif 06JIACTBIO SBJIAETCS THIEpHIapaUleNenune]l BHYTPH CAUHHYHOTO
runepky6a. Wrpa npeqHa3sHaueHa JJisi CHUKCHHSI MHTEPBAJIBHBIX HEONpPEIeIEHHOCTEH,
re KOMIIOHEHTa YHCTOW cTparermd Haxomurcs Mexay 0 m 1, a cymma Beex
KOMIIOHEHT paBHa 1. Takas HOpMajM3aLys MO3BOJSACT ONTHMAIBHO PACIpPENCNsiTh
MOIIHOCTH MEXAY “OTIETICHHSIMH’, YbH ITOTPEOHOCTH HEONPEIeTICHHbEl ¥ BIOKCHBI B
HHTEepBaJbl. B crermansHOM ciydae, KOTAa MMEIOIIeicss MOIIHOCTH HEIOCTAaTOYHO,
OIIpEeeIIeTCS JOTIOJTHUTEIbHAST MOIITHOCTh, B KOTOPOH MOXKET HY)KIAThCsl OTIEIICHHE.

Knrouegvie cnosa: unmepsanvhas Heonpeoenrénnocmy, aHmazoHUCMu4eckds uepd, nocmpoeHue
s0pa.

Construction of game kernels

The kernel of a game is a function, which is the core of modeling interaction
among players. Construction of a game kernel is the crucial point in building the game
model. Values of the kernel reflect consequences of applying the strategies chosen by
players. Those values may be very susceptible to changes in strategies [1]. Therefore,
the kernel must be constructed carefully. It is done quite well for finite games, where
every player has a finite number of strategies [2]. Such games have a finite number of
situations, which can be evaluated easily. Infinite games, more complicated ones, have
infinite number of situations, so it is impossible to survey all the situations without an
algorithmic approach. However, such an approach is not always available [3, 4].

Background of building game models

Sets of the players’ pure strategies are defined at the start of building the game
model. Strategies that are equal/equivalent in the Helly metric are defined as a single
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strategy (see, €. g., [2]). The game kernel is defined on the Cartesian product of the
strategy sets [2]. Then values of the kernel are obtained either analytically or
empirically. In addition, a lot of games model distribution of resources/capacity [1, 3,
5, 6]. So it is convenient to normalize all data, having components of a pure strategy
between 0 and 1, where the sum of the components is always equal to 1. In this way,
each component belongs to an interval whose values resemble probabilities [2, 4, 7].
But when demands for resources are fluent, normalization of their grand total to 1
calls for a tricky approach.

The goal of the article and the tasks to be accomplished

Given the initial data, the goal is to determine probabilistic type intervals. They
will constitute a hyperparallelepiped, on which the game kernel is defined for
modeling distribution of a capacity. This hyperparallelepiped will be enclosed within
the unit hypercube of the nonnegative orthant in Euclidean space of the corresponding
dimensionality. For reaching the goal, the following tasks are to be accomplished:

1. To describe and set conventions of the initial data (related to the capacity units).

2. To state a method of mapping them into probabilistic type intervals.

3. Based on the game model, to give formulae for optimally distributing a capacity.

Eventually, a few examples are to be given. They shall illustrate how to use the
mapping method in various cases for distributing a capacity.

Mapping the initial data into probabilistic type intervals

Let V be a capacity of some object (energy, water, gas, funds, heat, oil, etc.). This
capacity is to be distributed among N “rooms” or to be divided into N parts, where
N e N. The i-th room needs its part of the capacity within a segment

|:Vi<min>; Vi<max>:|
by
Vi<max> >\/i<min> > O .
So its capacity to be delivered is

Vi EI:Vi<min>;Vi<max>:|, i=11 N .

Also the i -th room has its nominally required capacity r, (see, e. g., [8]).
As the capacities {Vi}:i , are fluent, there are three cases of treating themto V . If

V< in‘“i” 1)
i=1

then it is divided among N rooms proportionally to their nominal demands {lr,}lN:1

N
Vi* _ r.iVi<min>/Z:Vk<min> Vi ZL_N- (2)
k=1
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Otherwise, there are another two cases, which are not as naive as (1) and solution (2):

Sy ey <3y o
i=1 i=1

N

Zl/;qna)o <V (4)

i=l
The case of inequality (4) is easier. Instead of the initial segments with endpoints
V,"™" and V"™, we get them as
[V ™™ NV N =[a; b ] < (0;1) by i=1,N. (5)

Denote a demand of the i-th room by x and its supply by y,. Here X=(x),

Y=(Y)., bY X €[a;h] and y,e[a;h]. Let n(z) be a function that maps a
positive z into a positive. Then the kernel of a game model for the distribution is

K(X, Y)=max{{n(xk)/n(yk)}s=l, n[l—ZN:an/n(l—ZN:yn} (6)

This kernel (6) is defined on a hyperparallelepiped
N N 2N 2N )
[X[a,(; bk]Jx [X[an; bn]] - X(O; e X[O; 1cR*. ©)
k=1 n=l =l =1

It is solved easily for the function n(z) =z, where the game becomes strictly convex
[2, 7]. The solution Y*:(yi*)lxN is a pure strategy [2] of the second player
(distributor). Then [7]

y :b/ [1+ZN:bm—ZN:amJ @

by

N

b{/[Hibm—Zam};ai Vi=1N. 9)

m=l1 n=1

If a condition in (9) is violated, the solution has special forms [7]. Anyway, here
N
v =yV and V= [1—2y?}v (10)
i=1
are the optimal capacity delivered to the i-th room and capacity that is drawn off (or

ignored/rejected), respectively. Particularly, when N =1 goes into (6), we simply have
the kernel [2]
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K(x, y)=max{x/y, (1-x)/(1-y)} by x=x, y=y, (11)

which is an example of the simplest model for reducing interval uncertainty [2, 6, 7].
The optimal strategy of the distributor in the game with kernel (11) is

y =b/(1+b-a).

For solving the case of inequality (3), we take a fictional capacity V, and intervals:

V+ _ Zvi<max> , [Vi<min>/v+ : Vi<max>/v+] — [al, bi ] C (0; 1) by i =1,_N . (12)

When vy is found in the game with kernel (6) on (7), then we check whether
v () vl (13)
If (13) is true, then the optimal capacity delivered to the i-th roomis V" =yV, . If
(13) is false, then
V= (V)N V= = (VN R =y -y VL (14)

where V=% is an additional capacity that this room needs.

Examples of using the mapping method in various cases
Considering a few examples, we should not forget that the solution depends on

kernel (6). Firstly, let V, e[20; 30] for a single room. Then, using normalization (5)
and solution (8) by (9),

[a; b ]=[20/V;30/V], y, =30/(V +10),
Ve =(V —20)V/(V +10) forany »>30.

If 20<V <30, then we use (12), (13), (14):
v =30/(V +10)< (30/)/30° =//30

by
V2410V =900 0,

whence these inequalities are true by 7 > 5437 —5. This implies that
y; =30/(V +10) by V e|537-5,30]
and
. =V/30 by V e(zo; 5@-5}.

Suppose that V, €[20;30] and V, €[25;40] for N=2, V>70. We have
hyperparallelepiped (7) as
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[a; b ]x[a,; b, ] =[20/V ; 30/V |x[25/V; 40/V ].
Here we get just strategies
y; =30/(V +25)
and
y, =40/(V +25),
inasmuch as
v =30/(V +25) = 20/V
is followed with 7 >50, and
vy =40/(V +25) > 25/V
is followed with ¥ >125/3. If 45<V <70, then the fictional capacity V, =70,
hyperparallelepiped (7) is
[ by ]x[a,: b, ] =[2/7; 3/7]x[5/14; 4/7],
whereupon points y; =6/19 and y, =8/19 are checked whether (13) is true:
6/19<(301)/707 =317/490
is followed with 7 >980/19, and 8/19<4V/490 is followed with ¥ >980/19.
Hence,
y, =6/19, y,=8/19 by V €[980/19; 70)

and
y, =3V/490, y, =4Vv/490 by V e(45;980/19],
where
V2 £ 22.11-0.43V, V,%" ~29.47-0.57V
by (14).

Surely, it is much easier when interval data are identical. Let V; €[30; 40] for
i=13. The case ¥ =120 is trivial:

y, =40/(V +30) Vi=1N.
If 90<V <120, then y" =4/15 and 4/15<¥/360 is followed with ¥ > 96 , whence
y; =4/15 by V €[96; 120)
and
y; =V/360 by V (90; 96].
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An additional capacity that these rooms need is
V< =32-v/3, i=1,3.

The considered examples do not cover all the peculiarities in using the method of
probabilistic type intervals, but they give a simple illustration of how to solve cases of
inequalities (3) and (4). Cases with a larger amount of intervals are solved similarly.

Conclusion

The suggested approach allows determining probabilistic type intervals that
constitute hyperparallelepiped (7). This is done either with (5) by (4) or with (12) by
(3). Once the game with kernel (6) on hyperparallelepiped (7) is given, the second
player’s optimal strategy in this game’s solution can be used for distributing a capacity
among “rooms”. This is executed either with (10) or with (14) by when inequality (13)
fails. Moreover, in the case of inequality (4), superfluous capacity is ignored. If (3) is
true and (13) is false, we know what capacity is needed for the i-th room. The easiest
case (1), standing apart from the game model solutions, is nonetheless very important
giving us capacities (2). However, if nominal demands are unknown, the capacity
should be divided into equal parts. Thus, further study can be focused on violations of
inequalities in (9). Such violations generate “cyclic” solutions given in a few steps [7].
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