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This paper presents an analysis of low-frequency liquid vibrations in rigid partially
filled spherical containers with baffles. The liquid is supposed to be an ideal and
incompressible one and its flow is irrotational. A shell of revolution is considered as
the container model. For evaluating a velocity potential, the system of singular
boundary integral equations has been obtained. The method of discrete singularities as
well as the multi-domain boundary element method are used for its numerical
simulation.
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B po6oTi HajaHo aHA3 HU3HKOYACTOTHUX KOJIMBAHb PIMHH B )KOPCTKOMY YaCTKOBO
3alIOBHEHOMY DiJMHOIO chepHIHOMY KOHTEHHepi 3 meperopojkoro. [Ipumyckaerscs,
0 piIWHA € iIeajbHOI0 HECTUCIMBOIO, a ii pyX € Oe3BUXpoBUM. Sk Monenb
KOHTeitHepa 06paHo 00070HKY 00epTaHHs. [ 004YHCIeHHS MOTEHIaTy IBUAKOCTEH
OTPUMAHO CHCTEMY CHHTYJSIPHUX IHTerpadbHUX piBHAHb. [ma ii dyncenpHOTO
PO3B’SI3aHHS 3aCTOCOBaHI METOI AMCKPETHHX OCOONHBOCTEH Ta METOJ TPaHWYHHX
cymep-eJIeMeHTiB.

Knrouosi cnosa: ioeanvna necmuciuea piouna, nieckanus, cgepuuna 06010HKA, nNepecopooKxa,

CUH2YNIAPHT IHMESPATbHI PIGHSHHS, MEMOO PAHUYHUX eeMeHMI

B pabGore mpoBeneH aHanM3 HU3KOYACTOTHBIX KOJEOAHHMH JXMIKOCTH B JKECTKOM
YAaCTUYHO 3aIOJIHEHHOM >XHJKOCTBIO C(EpHUUECKOM KOHTEHHepe ¢ IeperopoiKoi.
Tpenmnonaraercsi, YTO XUIKOCTb MACaIbHAsl, HECKUMAEMasi, a €€ JIBIKCHHE SBIISCTCS
Oe3BUXpeBBIM. B kadecTBe Mozaenu KoHTeHHepa BbIOpaHa 000J0YKa BpameHus. Jlis
BBIYHCIICHHUS OTCHIMAa CKOPOCTEH TTOJyYeHa CHCTEMa CHHTYJIIPHBIX HHTETPaIbHbIX
ypaBHeHu#l. s ee YHCICHHOTO pEIICHHS MNPHUMEHEHBI METOJ JAMCKETHBIX
0COOCHHOCTEH M METOJ TPAaHIYHBIX CYIIePIJICMEHTOB.

Knrwouegvie cnosa: udeanvras necocumaemas HuoKocms, niecKanus, cepudeckas 060104Kd,
CUH2YTADHbIE UHMESPANbHbIE YPAGHEHUS, MEMOO SPDAHUYHBIX I1€MEHIMOB.

1. Problem statement and basic relations

The intensive movement of liquid in reservoirs has been a scientific research
subject for several decades. The problem is of great interest because of the extreme
importance of sloshing control in fuel tanks of launch vehicles. The proximity of the
frequency of fluid vibrations to the frequencies of regulating mechanisms leads
repeatedly to stability losses, immediate deorbits, destructions of aircrafts [1]. Liquid
spattering and sloshing in spherical tanks was studied in the papers [2,3]. A
characteristic feature of spherical tanks is the change in radius of a free surface
according to changes in a filling level. There exist known analytical solutions for
almost completely filled tanks with small radii of the free surface, the so-called "ice
fishing problems” formulation. The effect of baffles on sloshing frequencies was
studied by Biswal et al. [4]. The numerical method using a finite element formulation
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was developed by Kumar and Sinhamahapatra [5]. Sloshing in spherical tanks for
liquefied natural gas carriers was studied by Faltinsen and Timokha [6] and for water
supply towers by Curadelli et al. [7]. Various approximate methods for solving the
natural sloshing problem, starting with the famous works by Budiansky [8] and
Mclver [9] and, recently, by Patkas & Karamanos [10] have been proposed.

In this paper we consider the problem of fluid vibrations in the spherical shell. To
reduce the sloshing in the shell, an internal baffle is installed, Fig. 1.

j

Fig. 1. A spherical fuel tank with an internal baffle

We denote a wetted surface of the shell as S,,, and a free surface as S,. Let h be the
filling level, hpy be a height where the baffle is located. We also denote the baffle
surface as Spar., and as Siy; an interface surface [11]. It is assumed here that a liquid is
an ideal and incompressible one, and its motion, beginning from the state of rest, is
irrotational. For these conditions, there exists a fluid velocity potential ®
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that satisfies the Laplace equation. A liquid pressure p upon the shell walls is
determined from the linearized Cauchy-Lagrange integral by the formula

p=-— M gzl+
=P ot g Po

where @ is the velocity potential, g is the acceleration of gravity, z is the vertical fluid
point coordinate, p; is a fluid density, po is an atmospheric pressure. On the wetted
surfaces of the shell and baffle the non-penetration boundary condition is set, on the
free surface the following dynamic and kinematic boundaries are given
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where the function ¢ describes the shape and position of the free surface. Thus for the
velocity potential we have the following boundary-value problem
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To calculate the liquid vibrations in the presence of the baffle we use the multi-domain
method (boundary super-element method). In doing so, we introduce an "artificial"
interface surface S, [12], then divide the region filled with the liquid into two parts
X;Z,, bounded by the surfaces S, Sear, Sint @nd Sw, Spar, Sint, So. On the interface
surface, the following boundary conditions are set:
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The boundary value problem (1), (2) is reduced to a system of singular integral
equations in the form [5]
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Here we introduce the following notations
A = A(si,s.) B, =B(S,.S,) i,j=14;
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where S, =S,US,;; S,=S..; S;=S,,US.: S,=S,, S,.S,, are wetted shell
surfaces in the subregions X,; %, .

The numerical solution of the system of integral equations (6) is carried out by the
method of discrete singularities (MDS) [13]. The transformation to one-dimensional

boundary integral equations is preliminary carried out by transition to cylindrical
coordinates and representation of unknown functions in the form

o (r,2,0)= @y (r,z)cosod, (4)
where o isa harmonic number.

2. Analysis of numerical results

2.1. Low-frequency oscillations of a spherical shell without baffles

Consider the spherical shell of radius R = 1 m, partially filled with the ideal
incompressible fluid, with the filling level h. The numerical analysis is carried out for
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(0.2<h/R <1.99) and various o (o=0,3). The MDS and the multi-domain method of
boundary elements (MDBE) are used [12, 13].

Both MDS and MDBE are applied here. The boundary elements with constant
approximation of unknowns inside the elements are used. In MDS there are 200
elements along the spherical surface and 150 elements along the free surface. In
MBEM we divide the computational domain into two parts by the artificial interface
surface at h;,=0.5h using 100 boundary elements in each sub-domain along the
spherical surface and 150 elements along the free surface. We use practically the same
mesh to find a numerical approximation of low eigenvalues for the so called “ice-
fishing problem”. In this problem, formally, we should consider an infinitely wide and
deep ocean covered with ice, with a small round fishing hole. Sloshing in such
“containers” was studied by Mclver [9]. We approximate this infinite case using the
spherical tank with the small round hole on its top. It allows us to compare our
numerical results with those obtained in the papers [3],[9].

In Tables 1-2 we compare results obtained by using MDS and MBEM with those
obtained in [3],[9] for axisymmetric (a=0) and non-axisymmetric (a=1) modes. Four
first frequencies (n=1,4) are evaluated for each a. Here we consider different filling
levels h;. The value hi/R;=1.99 corresponds to the ice-fishing problem.

Table 1: Frequency of axisymmetric oscillations of the fluid-filled spherical shell.

n Metho Filling level h, m
d h1:0.2 h1:0.6 h1:1.0 h1:1.8 h1:199
1 [3] 3.8261 3.6501 3.7451 6.7641 29.0500
[9] 3.8261 3.6501 3.7451 6.7641 29.2151
MDBE 3.4034 3.5455 3.7294 6.6098 30.7081
MDS 3.8314 3.6510 3.7456 6.7665 29.1811
2 [3] 9.2561 7.2659 6.9763 12.1139 51.8122
[9] 9.2561 7.2659 6.9763 12.1139 52.0467
MDBE 9.2636 7.2893 6.9796 12.0008 52.9393
MDS 9.2686 7.2684 6.9780 12.1205 52.0255

Table 2: Non-axisymmetric slosh frequencies of the fluid-filled spherical shell, Hz.

n method Filling level h;, m
h1=0.2 h1=0.6 h1=1.0 h1:1.8 h1:199
1 [3], 1.0723 1.2625 1.5601 3.9593 18.9838

[9] 10723 | 1.2625 | 15601 | 3.9593 | 19.1582
MDBE | 1.1034 | 1.2777 | 15638 | 3.9606 | 19.1603
MDS 10723 | 12626 | 1.5603 | 3.9508 | 19.1130
2 31, 6.2008 | 53860 | 52755 | 9.4534 | 41.3491

[9] 62008 | 53860 | 52755 | 9.4534 | 41.7683
MDBE | 6.1227 | 53534 | 52749 | 94582 | 41.5327
MDS 62090 | 53697 | 52764 | 9.4538 | 415333
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Different levels of fluid filling are considered, including h; = 1.99, that
corresponds to «ice-fishing problem», [9]. The results of calculations are close but in
some cases MDS gives more accuracy.

Considering our approximate natural sloshing modes one can observe how free
surface profiles change with the liquid depth. These results are illustrated in Fig. 2 for
the three lowest eigenvalues of the mode o = 1, and for o = 2 in Fig.3. Here numbers
1,2,3,4 correspond to the different non-dimensional filling levels: h; /R;=1.0; 0.2; 1.8;
1.9, respectively.
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Fig. 2. The radial wave profiles n=1,2,3 for different non-dimensional liquid depths hy/R;.
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Fig. 3: The radial wave profiles n=1,2,3 for different non-dimensional liquid depths hy/R;.

Fig. 4. Spatial wave patterns for a=1; m=1,2,3.

In the spherical tank with 0 < h;/R;< 0.5 the lowest mode presents a spatial wave
pattern that looks like inclination of an almost flat free surface. Increasing the liquid
depth yields more complicated free surface profiles. Fig.4 demonstrates the spatial
wave patterns for a=1, n=1,2,3 at h,/R;=1.8.

2.2. Low-frequency oscillations of the baffled spherical shell

The rigid spherical tank of radius R;=1m filled to the depth h;=1.4m is considered.
The inner periphery of the tank contains a thin rigid-ring baffle. The baffle position is
hya=1m. The different annular orifices in the baffle are considered. Radii of these
orifices are radii R;y of the interface surfaces. The first four frequencies for the mode
a=1 are evaluated for radii Ri,; =1.0m, R;w=0.7m, and R;;=0.2m. Note that Rj;; =1.0m
corresponds to the un-baffled tank. These frequencies are presented in Table 3.
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Table 2: Vibrations of the tank with a baffle, Hz

m w’lg
Rim =1.0m Rint =0.7m Rint =0.2m
1 2.1232 2.0435 1.4234
2 5.9800 5.9723 5.8405
3 9.4789 9.4785 9.4567

Figure 5 shows the first three forms of fluid vibrations in the spherical shell at a=1
with baffles.

Fig. 5. Modes of liquid vibrations in the baffled spherical shell.

When the baffle is installed, the mode shape becomes almost flat.

3. Conclusion

Sloshing in the tank may be controlled by installing baffles, and the effectiveness
highly depends on the shape, the location, and the number of baffles inside the tank.
But in practice, the effect of baffles usually can be seen after the baffle has already
been installed. Also, the visual inspection of the sloshing event inside the tank is not
adequate for baffles design validation. Due to the complexities associated with the
sloshing phenomenon, the numerical simulation is an effective method to meet the
design intent, and shorten the development time. The proposed method makes it
possible to determine a suitable place with a proper height for installing the baffles in
tanks by using the numerical simulation. Estimating the frequency of fluid oscillations
in spherical tanks on the basis of the proposed method will allow detuning from the
operating frequency range of the regulating mechanisms.
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