52 BicHuk XapkiBcbkoro HawioHanbHoro yHiepcuteTy imeHi B. H. Kapasina, 2017

UDC 532.5

Investigation of the influence of the relaxation parameter on the
viscous fluid flow over circular cylinder modeling process with the
lattice Boltzmann method

G. Bulanchuk, A. Ostapenko
Pryazovsky State Technical University, Ukraine

In this work we investigate the influence of the relaxation parameter for the lattice
Boltzmann method on the flow modeling process for the viscous fluid. The relaxation
parameter influence on the other method parameters, the simulation time and the
numerical solution stability has been considered by example of the fluid flow around
circular cylinder modeling in a plane channel. Modeling has been performed at
moderate Reynolds numbers. The flow pattern, the drag coefficient of the cylinder and
the calculation time for the different Reynolds numbers have been shown. The results
have been compared with the known experimental data and the other numerical
solutions.
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B po6oTi mocmimKyeTbes BIUIMB MapaMeTpa pelakcalii MEeToay TpaTKOBUX DPiBHSHBb
Bonbimana Ha mpomec MonenmtoBaHHA Tedii B'SI3K0i pimmHH. JOCHIIKEHO BIUIUB
nmapameTpa peJakcaiii Ha iHII mapaMeTpy METOJY, Yac MOJICIIOBAHHS 1 CTIHKICTh
YHCENBHOTO PO3B’3Ky Ha INPUKJIAJI MOJETIOBAHHS OOTIKaHHS KOJIOBOTO IMJIHZIpa
Teuielo B'I3KOI DPIJUHM B IUIOCKOMY KaHauli. MOJENIOBaHHS IPOBOJWIOCE 3a
MOMIpHUMH 4HciIaMu PeitHombaca. JlocmimpkyeTbes xapakTep Tedil, KoedillieHT
JI000BOTO CYNMPOTHUBY IMJIHApA Ta Yac MOJEIIOBAaHHS 3a Pi3HHX 4nciax PeiHonbxaca.
OTpumMaHi pe3ylbTaTé MOPIBHIOIOTHCS 13 BIJOMUMHU €KCIIEPUMEHTAIbHUMH JaHUMHU Ta
IHIIUMH YACETFHUMH PilICHHSIMH.

Knrouosi cnosa: napamemp p@flaKClllﬂi; pemimKa, pigHﬂHH}l EO,'IbL{,VlLIH(Z, yucenvbHull po3e "A30K

B paboTe wuccnenyercs BIMSHUE IapaMerpa peJlakCallid METOJa PEIICTOYHBIX
ypaBHeHU#l bosibliMaHa Ha mIpolecc MOJEIUPOBAHUS TEUEHHS BA3KOW >KUIKOCTU.
PaccMoTpeHo BIHMsHHME MapaMeTpa pelakcaliy Ha JApyrhe mapaMeTpbl MeTo/1a, BpeMs
MOJICIIMPOBAHUS U YCTOIYMBOCTh YUCIEHHOTO PELICHHs Ha IpHMepe MOACIUPOBAHHUS
o0TeKaHusI KPYroBOro HWJIMHAPA B IUIOCKOM KaHaie. MopenupoBaHue IPOBOANIOCH
IPU YMEpeHHBIX ynciax PeliHonmbaca. Mccnenyercs xapakrep TedeHus, KodpduuneHt
J000BOTO CONMPOTHBJICHUS LMJIMHAPA M BPeMs MOJCIMPOBAHHS IPH PasIMYHBIX
yucnax PeliHonbaca. IlomydeHHble pe3yNnbTaThl CPAaBHUBAKOTCS C M3BECTHBIMHU
9KCHEPUMEHTATIbHBIMH JAHHBIMH U APYTMMH YHCIICHHBIMH PELICHUSIMH.

Knroueewvie cnoea: napamemp pejaakcayuu, peuiemkd, ypaeHeHue EOJlbqu/taHﬂ, uucienHnoe
peuienue.

1. Introduction

Lattice Boltzmann method (LBM) is one of the new promising approaches in the
computational fluid dynamics (CFD) based on the kinetic theory of gases [1].
Although there are many traditional widely used methods in the CFD, such as the
finite element method [2], the diffusion velocity method [3], the spectral method [4]
and others. LBM is rapidly growing in popularity due to lots of opportunities and
advantages. In recently published works LBM has already been used for the modeling
of multicomponent flows [5], multiphase flows [6], flows with free boundaries [7],
flows with heat transfer [8], flows with moving boundaries [9], drag and Iift
coefficient calculations [10-12]. There are such advantages of the method as easy
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programming, the simplicity in setting the complex boundary conditions and wide
opportunities in the parallel computing on CPU or GPU, in particular, the usage of the
CUDA technology that gives the significant increase in speed of computation [13].

But in spite of these advantages, it should be noted that there is the disadvantage —
the conditionally stability [14-16] that complicates the flow modeling at high
Reynolds numbers [15, 17-20].

The relaxation parameter is one of the parameters that influences the method’s
stability. It is usually assumed that z=1 [11-15, 17-20] which is the most safe value for
the modeling, as it does not cause the instability.

The aim of this work is to investigate the relaxation parameter influence on the
simulation time, the accuracy of numerical results and to define the limits at which the
solutions remain stable.

2. The Lattice Boltzmann Method: D2Q9 — BGK model
For modeling the fluid dynamics with the lattice Boltzmann method, the pseudo-

particles described by the discrete particle densities distribution function f, [15] are
used. Each value of the function f, describes the probability of a particle movement

in one of the k directions. Let us note, that according to the kinetic theory of gases the
particle density distribution function defines the probability density of finding a
particle around a point in a six-dimensional phase space (coordinates and velocities)
[22].

Let us divide the computational domain into square cells with the sides d. Each cell
will contain nine values of the particle density distribution function. Thus, the particles
can move to one of the eight possible directions or remain at rest (figure 1). Such
model is called a two-dimensional nine-vectors model of the lattice Boltzmann
method (D2Q9) [14].
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Fig.1. Possible directions of the particle movement according to D2Q9 model

Firstly, we should specify the kinematic viscosity of the fluid and the number of
cells per unit length N that will determine the cell’s size d. After that the time step can
be calculated according to the equation [14]:



54 Cepisi ¢Mart. mogentoBaHHs. IHpopmaLiiHi TexHonorii. ABTOMaT30BaHi CUCTEMM yipaBiHHsH, BIAM. 33

2
Atzld—(r—lj @
3v 2

where 7 — nondimensional relaxation parameter [14,15]. Based on (1) and condition
At >0 we can get the limit: 7>0.5. Usually it is set as z=1 [11-15, 17-20]. But in this
work we will use the relaxation parameter value from the range 0.5< 7 <1.

Let us define such modeling parameters as the lattice speed ¢ and the lattice speed
of sound c, according to the expression [14]:
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The discrete system of kinetic equations which describes the dynamics of the
pseudo-particles is following [14]:

fi(r+ed,t+at)= 1, (rt)+Q, k=08 (3)

where Q, — collision operator [14] (approximation of the collision integral from the
integral Boltzmann equation);

r= (x,y) — vector of coordinates;

t —time.

Let us use the model of the collision integral in the form of BGK (Bhatnagar-
Gross-Krook) approximation [14], which is a linear relaxation to the local Maxwell
equilibrium [4,14,15]:

o i (o) (rt) "

T

For modeling isothermal fluid flows under the LBM we are using the expansion of
the Maxwell equilibrium distribution function by the powers of the velocity vector

[23]:
fl (F,t) =wkp(F,t) 1+ (CEk ,:fr,t)) +%(Cek t:jrit)) —%u(z;t) (5)

S S S

where w, — weights;
p — density;

u — velocity vector.

The weights for the D2Q9 model are: w, = g;w14 =—W, g = % [15].

1
9
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The conversion from the particle densities distribution function to the real fluid

parameters such as density p , velocity U and pressure p can be done according to
the equations [15]:

p(F)=2 (7t a(f,t):ﬁgm(at); p(F.t)=c2p(rt) ©

To calculate the drag coefficient of the bodies in the flow let us use the following
equation [10]:
IR
pY;S
where F, —x — component of the total force, acting on the body in the fluid;
U,, —inlet velocity (fig. 2);
S — area of the body.

C, = (7)
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Fig. 2. The scheme of the problem of the flow around a circular cylinder

To calculate the total force acting on a body in the flow, use the formula [10]:

EzZii-céa[fk(ib,t)+ fE(;(b +EEAX,I)} (8)

Q k=0

where Q — boundary layer of the body (fig. 2)
Xo — boundary cell of the body (x» =(x,y)eQ);

i —indicator; i=1, if the cell Xo + €k iS a body cell and i=0 if it is the fluid cell;
ex — opposite to e« direction of the particle movement (fig. 1)

As in this work in contrast to [10-12] the lattice speed (c#1) but is defined by the
equation (2) and the relaxation parameter is varying within the range 0.5<7<1 we
should add the additional multipliers to the equation (8). Thus, the expression for the
calculation of the total force acting on a body in the flow will be:

— 1 8. . - -
szzr_lggrcek[fk (Xb,t)+ fE(Xb +ekAx,t)} 9)

As mentioned above, the LBM disadvantage is its conditional stability [14-16].

The stability of the solution is affected by:
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e ¢, — the lattice speed of sound; as shown in [14], the method remains stable

when C <«f1—U,iax, where U .. is the maximum speed value in the

computational domain;

e 7 — the relaxation parameter; to avoid the negative influence of the relaxation
parameter it is usually set as z =1 [15];

e ¢ —the lattice speed; as it is shown in [14,24,25], the method remains stable
when M <<1, where M is the lattice Mach number, which can be calculated
by the equation:

U

M = —mex (10)
C

3. Numerical results

Let us consider a rectangular domain which size is 3x1 m (fig. 3). The domain is
filled with a liquid with a kinematic viscosity v. The no-slip boundary conditions are
set on the upper and lower boundaries of the domain. The fluid enters through the left
boundary with the velocity U;;=0.1 m/s. The outlet of the liquid is set on the right

boundary using the constant pressure condition: P, =const. There is a circular

out
cylinder with the radius R=0.0625 m in the channel. The cylinder’s center has
coordinates (0.6; 0.5), taking into account the location of the coordinate axes, as

shown in fig. 3. So the blockage ratio is B:ﬂ=;=8. This value is not a
D 2-0.0625
random choice, but the most common in modeling such flows [11,12].
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Fig. 3. The flow around the circular cylinder in a plane channel problem

The modeling has been performed using the original program written in C ++ in
MS Visual Community 2015 development tool on a computer with quad-core Intel
Core i3 processor, 4GB RAM, 2 GHz frequency and using OpenMP technology for
CPU parallel computing.

The series of calculations have been carried out with different relaxation
parameters and Reynolds numbers. The dimension of the grid has been adjusted so
that the lattice Mach number has been M = 0.15. As shown in [25], this value allows
us to get the results with high accuracy within the optimum simulation time.

The results of the calculation at Reynolds number Re=40, namely: the number of
cells per unit length N, which is required to achieve the value M=0.15, the drag



BicHuk XapkiBcbkoro HawioHanbHoro yHiepcuteTy iMeHi B. H. Kapasina, 2017 57

coefficient C,, the relative error of simulation ¢ and the simulation time T, is

presented in tab.1. In order to compare obtained results, the flow simulation with the
same parameters by the finite element method (FEM) in the Comsol Multiphysics
package has been performed. The results have been compared with the experimental
data presented in [26] as well. The calculations have been carried out with the
relaxation parameters t = 1.0, 0.75, 0.6, 0.55, 0.535 till point-in-time T = 100 s. The
flow pattern is shown in fig. 4. As you can see, the flow is laminar and vorticity
behind the cylinder does not occur.

Fig. 4. The lines of equal velocities in the flow around circular cylinder at the Reynolds
number Re = 40, received with LBM

Table 1. The results of the simulation of the flow around a circular cylinder at Re = 40 with the
various relaxation parameters of LBM

N C, e, % T,
LBM, =1,0 500 1,4678 0,8 14 h 42 min
LBM, 1=0,75 300 1,3827 6,6 4 h 36 min
LBM, t=0,6 110 1,2946 12,5 16 min
LBM, t=0,55 70 1,3642 7,8 3 min
FEM, Comsol 100 1,55 4,7 21 min
Experiment, [26] - 1,48 - -

It can be seen from Tab.1, that the relaxation parameter decrease can reduce the
number of cells per unit and thus substantially reduce simulation time.

Similar calculations have been made for Reynolds numbers Re = 60, 100. The
results are showed in tables 2 and 3 respectively. The formation of the vortex street
behind the cylinder (figure 5) is typical for these Reynolds numbers (unlike Re = 40)
and the frequency of the vortices increases with the increase in Reynolds number.

Fig. 5. The lines of equal velocities in the flow around circular cylinder at the
Reynolds number Re = 100, received with LBM
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Table 2. The results of the simulation of the flow around a circular cylinder at Re = 60 with the
various relaxation parameters of LBM

N C, e, % T,
LBM, t=1,0 600 1,3325 4,1 19 h 3 min
LBM, t=0,75 400 1,3116 5,6 7h 21 min
LBM, t=0,6 200 1,3663 1,7 1h 21 min
LBM, t=0,55 100 1,1405 17,9 12 min
FEM, Comsol 100 1,34 3,6 22 min
Modeling, [11] - 1,39 - -

It can be seen from tables 1 and 2, that modeling flows with the lattice Boltzmann
method with the parameter t = 1 consumes significant time. Moreover, if we increase
Reynolds number, simulation time significantly increases. Reducing the relaxation
parameter significantly reduces simulation time. The obvious advantage of this
approach, however, is offset by a possible instability of the solution and the increased
possibility of a computing error. As we can see it is extremely problematic to calculate
flows at Reynolds numbers Re> 60 with the value t = 1 because of large simulation
time. The next series of calculations for Re = 100, 200, 300, 400 have been made with
1 <1 (table 3-6.).

Table 3. The results of the simulation of the flow around a circular cylinder at Re = 100 with
various relaxation parameters of LBM

N C, €,% [26] T,
LBM, 1=0,75 500 1,1865 4,3 14 h 42 min
LBM, 1=0,6 300 1,1929 3,8 9 h 39 min
LBM, 1=0,55 200 1,1922 3,8 2 h 15 min
LBM, 1=0,535 100 1,1833 4,6 23 min
FEM, Comsol 100 1,2875 3,8 19 min
Modeling, [26] - 1,24 - -
Modeling, [27] - 1,33 - -

It can be seen from table 3, reducing the relaxation parameter for the Re = 100 is
fully justified and provides the solution with a relative error £<5% for small simulation
time.

Table 4. The results of the simulation of the flow around a circular cylinder at Re = 200 with
various relaxation parameters of LBM

N C, e, % Ts
LBM, 1=0,55 300 1,1836 1,0 4 h 56 min
LBM, 1=0,535 225 1,1229 4,2 2 h 32 min
FEM, Comsol 100 1,1825 1,0 20 min
Modeling, [27] - 1,172 - -

Tab. 3-4 shows that the closer the relaxation parameter to its limit (t = 0.5), the
more significant the influence of its change on the calculations. In this case, even a
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little deviation of the relaxation parameter entails a significant change in the
calculations.

The results obtained with LBM at Re = 300, 400 are shown in tab. 5 and 6,
respectively.

Table 5. The results of the simulation of the flow around a circular cylinder at Re = 300 with
various relaxation parameters of LBM

N C, e, %FEM | Ts
LBM, t=0,535 300 1,1296 0,5 4 h 58 min
FEM, Comsol 100 1,135 - 22 min

It is obvious, that modeling the flow at Reynolds numbers Re>300 with the lattice
Boltzmann method should be done with the 0.5 <t<0.535. With > 0.535 simulation
time will increase significantly which makes modeling not suitable for a practical
application.

Table 6. The results of the simulation of the flow around a circular cylinder at Re = 400 with
various relaxation parameters of LBM

N Cd e, % FEM Ts
LBM, 1=0,535 400 1,1774 54 10 h 58 min
FEM, Comsol 100 1,1175 - 19 min

Further reducing the relaxation parameter, i.e. 1<0.535, results in the instability of
the solution, therefore it is still impossible to do simulation with this parameter at high
Reynolds numbers.

4. Conclusion

The studies show that reducing the relaxation parameter can reduce the number of
cells per unit length of the computational domain and thus significantly reduce
simulation time. But it is necessary to control the stability of the solution.

The calculations show that decreasing the relaxation parameter value allows to
obtain the solutions with a relative error £<5% for small simulation time. The closer
the relaxation parameter to its limit (t=0.5) the more considerable the influence of its
changes on the calculations. In this case, even a small deviation of the relaxation
parameter entails significant changes in the calculations.

The research conducted shows that the flow simulation at Reynolds numbers
Re>300 with the lattice Boltzmann method should be carried out using the relaxation
parameter within the range 0.5<1<0.535.

It should be noted that in the similar works, concerning modeling the fluid flow
around bodies in a plane channel with the lattice Boltzmann method, the solutions for
Re>150 have not been received [11,12, 15, 17, 19]. In this work, we have obtained the
stable solutions for Reynolds numbers up to Re=400. In the future we plan to obtain
stable solutions at high Reynolds numbers.
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