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A mathematical model and results of numerical computations of the dynamics of
processes of resonant scattering and generation of waves by a three-layer dielectric
containing absolutely transparent decanalizing and canalizing nonlinear media are
presented. The approach is based on a self-consistent solution of systems of nonlinear
boundary value problems near the eigen-frequencies of the corresponding linearized
spectral problems. The analysis of the relative Q-factors of the oscillations has shown
the possibility of an indirect description of the processes of energy exchange.
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3amponoHOBaHa MaTeMaTWYHAa MOJENIb 1 HAaBEINCHI Pe3ybTaTH YHCEIBbHOTO aHaji3y
IUHAMIKH TPOLECIB PE30HAHCHOTO PO3CITHHA Ta TeHepalii XBHIb TPHOXIIAPOBUMH
TENeKTPUKAMH, IO MICTATh aOCOJIOTHO MPO30pYy NCKaHANI3YIUy Ta KaHATI3YIUy
HeNiHiiHYy cepeny. B 0CHOBI pO3BHHEHOTO MiAXOAY JIEKHUTh CAMOY3TO/DKEHE PIllICHHS
CHCTEM HENIHIHHUX TpaHWYHUX 337ad MOOJIM3Y BJIACHUX 4YacTOT BiANOBITHHX
JIiHeapH30BaHUX CHEKTPAIBHHUX 337ad. AHaji3 BEIWYMH BITHOCHHX JOOpOTHOCTEH
KOJIMBaHb TT0Ka3aB MOJKIJIMBICT HEMIPSIMOT'O OITUCY IPOIECIB EHEPreTHIHOTO OOMIHY.

Knwouosi cnosa: xybiune nonspusyema cepeoaq, De30OHAHCHE PO3CIAHHSA, 2eHepayis Xeuib,
63AEMOY32004CEHULL AHANE3, CNEKMPATbHI 3a0ayi, BIOHOCHA 00OPOMHICMb.

IIpennokeHna MareMmaTWdeckas MOJECIb M IPHBEACHBI PE3yIbTaThl UHCIEHHOTO
aHanu3a JUHAMUKH TIPOIIECCOB PE30HAHCHOTO pacCesHHs W TEHEpalud BOJH
TPEXCIOWHBIMH  JUINEKTPHKAMH,  COAEPXKAIMUMH  a0COIMIOTHO  HPO3PAYHYI0
JEKaHATM3UPYIOIIYI0 ¥ KaHAIU3UPYIONYI0 HEIMHEHHYI0 cpeny. B ocHOBe pasBuTOro
MOJX0/1a JIEXKUT CaMOCOIIaCOBAHHOE PEILICHUE CUCTEM HEIMHEHHBIX IrPaHIYHbIX 33/1a4
BOJIM3M COOCTBEHHBIX YaCTOT COOTBETCTBYIOIIUX JIMHEAPU30BAHHBIX CIEKTPAIBHBIX
3a1a4. AHaJIM3 BEIWYMH OTHOCHTENBHBIX JOOpOTHOCTEH KojeOaHWi IoKasal
BO3MOXXHOCTH KOCBEHHOTO OITHICAHHS MIPOIIECCOB YHEPTETHIECKOTO OOMEHa.

Kniouesvie cnosa: xyouuecku nonspusyemas cpeod, pe3oHAHCHOe paccesHue, 2eHepayus GOH,
CamMoCo2acO8AHHbII AHANU3, CHEKMPALbHbLE 3a0ayl, OMHOCUMENbHAS O0OPONHOCTb.

1. Introduction

Nonlinear dielectrics with controllable permittivity have been intensively studied
over the recent decades and have now found wide applications in optics and
electronics [1-6]. In most of the published papers, the scattering properties of
nonlinear media and objects are analyzed. These include studies that investigate
resonant scattering properties on nonlinear layered media with Kerr nonlinearity. In
the resonance region, the analysis of such problems reduces to the solution of
nonlinear boundary value problems. The next stage of research is connected with the
investigation of the resonant properties of scattering and generation of waves by
nonlinear layered structures [7, 8]. This causes the necessity to solve systems of
nonlinear boundary value problems in a self-consistent way.
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This paper presents a mathematical model as well as computational results of the
dynamics of resonant scattering and wave generation for the wave packet excitation of
a layered dielectric object which is formed from nonlinear cubically polarizable
absolutely transparent (in the linear approximation) decanalizing and canalizing
media. Calculations near the resonance frequencies of scattering and generation have
shown that the minimum of the function, which characterizes the ratio of the quality
factors of the eigen-oscillations of the induced nonlinear structure at the frequencies of
excitation and generation, respectively, corresponds to the maximum value of the
generated energy.

2. Statement of the problem
The problem of resonant scattering and generation of waves by a nonlinear,

nonmagnetic, isotropic, E-polarized E=(E,,O0, O)T, H:(O,Hy,HZ)T, cubically

polarizable p(NL) =(PX(NL),O, O)T, layered dielectric structure (see Fig.1) is
investigated in a self-consistent formulation [3]. The time dependency has the form
exp(—inwt), neN. Here the variables X,y,zt denote dimensionless spatial-
temporal coordinates such that the thickness of the layer is equal to 475, with 6 >0;
now=nxc are the circular frequencies, nx=27z/4,, . are frequency parameters; A,

are the lengths of the incident waves: c=(eoy0)‘]/2, Imc=0, g and g are the
free space permittivity and permeability, respectively.

gr=ebpett)

/ -2md

Fig. 1. The nonlinear layered dielectric structure.

The incidence of a packet of plane waves

B 3 : 3
inc inc
E VY, E Y ’
{ 1 (ngy z)}n:1U{_1 (nx;y z)}n:1
with
- 3
—inc . inc
E_1 (nery.z)| _ Ani exp[i(q)nKyirnK(zJ?Zﬂé))], 2 +215 ,
inc . .. Inc <
E; (nK,y,Z) b n=1

onto the layered structure at the angles {gon,(,ﬁ—gon,(:|(pn,(|<7r/2}ﬁ:1 and with

respect to the amplitudes {a/"®, K"} at the frequencies {nx}>_; is considered.
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Here the excitation field consists of a strong field at the frequency « (generating a
field at the triple frequency) and of weak fields at the frequencies 2x, 3x (having an
impact on the process of third harmonic generation due to the contribution of the weak
electromagnetic fields).

In such a situation the problem under consideration can be described by a system of
one-dimensional nonlinear integral equations w.r.t. the unknown functions

U (nK'; ) el, (—27[5, 27[5) , see [8],

i 2 2m
0 (i) + LT iy, 12-2)
Nk 276
x[l—gnK(g,a(g),{u (mx;f)}?nzl)}u (ni; &)dé&
i(nk)? 270

= | exp(iCnclz-¢)a (&) U (26:6)u” (3:8) O

ZFHK 270

+53 {%UB(I{;f)-i-U 2(2k;6)U* (K;g)Hdg

+Umc(nzc;z)+gin°(nzc;z), n=123,
where
Th (ni;2) = affe exp[ —ily, (2-275) ],
U™ (n; 2) =bie exp[ iy, (z+275) ],
5:1‘ — Kronecker’s symbol; * — complex conjugation; FnK=W and

@, =nksin(p,.) — the transverse and longitudinal propagation constants of the
nonlinear structure,

Enie ={1,|z|>27z§; and (1) + c(NL), |Z|£27r§},

€(L) =1+ 471;(1(1) (Z),

3
e = a(z) {2 |Ex(miry,2)f° )

m=1

. 2
[El (x; y,z)] \ 52 E (2x;y,2)
E(x;y,2) " E(2x:y,2)

+{65% Ei(x;y.2)  E1(3x3Yy,2) |,

a(z):37z;()(§z(x(z) — the function of cubic susceptibility of the nonlinear medium,

;(%() and ZS&X — components of the susceptibility tensors of the nonlinear medium.
The solution of the problem is represented as
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Ex (N y,2) =U (n; 2)exp(i®p,.y)
aiC exp i ©ny ~ Ty (2-275)])

+ a2 exp{i[ @y + T (2-209) ]}, 2> 275,
=1U (nx; 2)exp(i®p,Y), |2|< 270,
p/nc exp{i[ @pyey + Ty (2+275) |}

+RY9N exp {i[ @py — T (2+270) )}z <275,

and can be obtained from (1) using the formulas
U (nk; 2728 ) = all® +aS@Y%N | U (ni;—276) =B + b0 n =123,

®)

3. Self-consistent analysis and spectral problems

The application of suitable quadrature rules to the system of nonlinear integral
equations (1) leads to a system of complex-valued nonlinear algebraic equations of the
second kind [8]

[I nx UK"UZI(’U3K‘ :|UnK‘

= 52C, (Upe, Uz ) + 65 <:3,((U,<,U2,()+Un,(+u'”C n=123,

nx?’

(4)

where Up, ={U (nx;7 )} — the vectors of the unknown approximate values of the
solution, {{z|}|:1 1y =-2710<...<7 <..<Zy =270} — a discrete set of interpolation

N
nodes, | ={§|m}| . — the identity matrix, By, (U, Uz, Uz, ) —nonlinear matrices,
;m=

Ci(Uzie Uz ), Cai(Uye, Uy, ) — the vectors of the right-hand sides determined by

i N
the choice of the quadrature rule, U'n",f_{a:{,'fexp[—il"n,((q—27T5)]}| 1 and

N
uin _ {b'“c exp[iln.(z +27:5)]}| - the vectors induced by the incident wave

packets at the multiple frequencies nx, n=1,2,3.

A self-consistent solution of (4) can be found numerically by the help of a block-
iterative method, where at each iteration step in each block of the system (4) a system
of linearized algebraic equations is solved [8].

The analytic continuation of the linearized problems into the region of complex
values of the frequency parameter allows us to switch to the analysis of spectral
problems [8, 9]. The determination of the eigen-frequencies «;, and eigen-fields U,

reduces to the solution of the following equations:
{fn,((l(n det[l nie (Kn )] 0,

[1-Bne (xn) U, =0, ®)
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where xp, € Q. cH,,, k=conste[0,+x), n=1,23, Q.  are the sets of eigen-

frequencies and H,, denote two-sheeted Riemann surfaces [8], U, ={U (xn57) )}|N:1

- the vector of unknown values of the nontrivial solution at the nodes in the layer
corresponding to the eigen-frequency «,, B, (x,)=B,, (x;U_U,U,) - the

n

matrix with the given vectors U__(cf. (4)).
We mention that the radiation condition to the eigen-fields

ay _ _ >

E (xn;y,2)= 0 exp[l((l)n,(yirl“,(n (K'n,q)n,()(2+2ﬂ5))], z<4_rZ7r§, n=12,3,
Kn

for real values of the parameters x, and @ _ is consistent with the physically

justified requirement of the absence of waves coming from infinity z =zoo in the
radiation fields:

ImT . (K, P, )20, ReT,. (&5, Py )REAR >0,

for Im®,,. =0, Imx, =0, n=1,2,3.
The nontrivial solutions of the spectral problem (5) allow us to write the electric
components of the eigen-fields as follows:

Ey(kn;y.2)=U (kn;2)exp(i@p,y) =
& exp[i(cI)nKyH“Kn (Kn,CDn,()(z—erd))J, 7> 276,
=1U (kn;2)exp(i®p,.y), |z| < 276,
be, exp[i(ch,(y—l“Kn (K0, @y )(2 +27r5))}, 7<-2796.
Here: x,eQ,.cHp., N=12,3, x=x" - a given constant value equal to the
excitation frequency of the nonlinear structure, a, =U(Kn;27r5) u

bKn=U(Kn;—27Z'5) - the radiation coefficients of the eigen-field,

Ly (Kn,(DnK):«/an—d)nKz - the functions of the transverse propagation

(depending on the complex spectral frequency parameters x,), @, =Nk sin(gonK) -
the given real values of the longitudinal propagation constants.

The eigen-frequencies x;, € Q. cHp,, N=1, 2, 3, i.e. the characteristic numbers
of the dispersion equations of problem (5), are obtained by solving the corresponding
dispersion equations fn, (x,)=det[1-By,(;)]=0, n=123, using Newton's

iterative method or a modification of it. The nontrivial solutions U, of the
homogeneous systems [I—BnK(Kn)]Uano, n=12,3, of linear algebraic

equations (5) corresponding to these characteristic numbers are the eigen-fields (6) of
the linearized nonlinear layered structures with an induced dielectric permittivity (2).
The sought solutions U x, are unique except for an arbitrary multiplicative constant.
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Since the irregular dynamics of the resonance processes of scattering and
generation of waves is observed near the eigen-frequencies of the object under study,

such excitation frequencies = k'"° = const €[0,+00) are of interest, which are
determined, for example, by one of the following quantities:
k=Rex,/n for vne{123}; -

k=Re(xy + K +K3)/(1+2+3); K= Re(K1+K3)/(1+3).
One of the requirements (7) can be satisfied by an iterative approach such that, at
each step, iterative processes of the successive solution of problems (4) u (5) are
carried out. As an initial approximation to the solution of the noted nonlinear problem

(4), (5), (7), we can take the solution of the corresponding linear problem with the
coefficient of nonlinear susceptibility «(z)=0.

4. Three-layer dielectric objects with nonlinear media

In what follows we present results of numerical studies that demonstrate the
resonance effect of the transfer of the oscillation energy at the scattering frequency to
the oscillation energy at the generation frequency for three-layer objects containing
nonlinear, absolutely transparent (in the linear approximation &) =1) layers, which
decanalize (a<0) and canalize (a <0) the excitation field. The dynamics of the
scattered/generated fields and of the nonlinear dielectric permittivities at the resonance
frequencies of scattering/generation are given, the resonance frequencies being close
to the eigen-frequencies of the considered nonlinear structures induced by the incident
field.

We consider nonlinear layered objects, see (2) and Fig. 1, with the parameters:

[+ (2). a(2)} - £V =15,0=0}, [ze-275,-275/3) U (275/3, 275];
£V =1, 0 =70.01}, ze[-275/3,275/3];

at =05 and ¢, =02, n=1,23. The excitation takes place from above by an

(8)

electromagnetlc field with al™ =const, {a"° =0}_,, {H"°=0}>_; at the basic

frequency x=x""° =Rex .
In order to describe the scattering and generation properties of the nonlinear
structure, we introduce the following notation:

.2
2 3 inc inc
/Zszl[ Agc +‘b51c

v
bscat/gen‘ /Zs 1[ aér,lfc ‘bé?(c‘ j, 7<-275, n=123.

The quantities R, R,_ are called scattering/generation (or radiation) coefficients of

the waves w.r.t. the total intensity of the incident packet.
Denote by

scat/gen

Rie =|a

j, 71> 270,

U, =U(nx;2)
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the complex Fourier amplitudes of the total scattered/generated fields at the
frequencies nx, cf. (3).

We also define the total energy of the scattered and generated fields at the
frequencies nx by

scat/gen 2 2

bscat/gen
ni ni

Wi =1|a

+ , h=1273,

and the energetic quantities

3
Wigqy =Wae /Wy, Wiggog) :W3K/ 2n=1Wnie
In the numerical experiments, the function of the relative Q-factor of the eigen-
oscillations is of particular interest:

Q{]_'S} = QK'l / QK‘3 :
Here
Qx, =—ReKn/[2|mKn]

denotes the Q-factor of the eigen-oscillations of the spectral problem (5) at the eigen-
frequencies &, € Qg . < Ho > S€€ [8, 9].

In the considered case of E-polarization, the type of the investigated field is
classified by the notation H (or TE,,, ,). The indices indicate the number of
local maxima of |E,| (or [U| due to U|=|E,], cf. (3), (6)) along the coordinate axes
X, Yy and z (see Fig. 1). Since the waves under study are homogeneous along the X -
axis and quasi-homogeneous along the y -axis, we examine fields of the type H,, ,

m,l,p m,l,p

(or TEy,, ,), Where the index p is equal to the number of local maxima of the

function |U| with respect to the argument z on the segment [-275, 275].

4.1. Structure with a nonlinear decanalizing medium

The Figs. 2-4 show the properties of the layered structure containing an absolutely
transparent (in the linear ~ approximation) decanalizing medium
{e®M =1, 0 =001, z €[-275/3, 2725/3], see (8).

Fig. 2 shows the results of a qualitative analysis of the wave scattering and
generation properties by a three-layered object with a nonlinear decanalizing medium

obtained in solving problems (4), (5) for x=&" =Re(x). The branches of the
eigen-frequencies x, = x{"")(a"™) of the investigated layered structure are depicted
by the curves 5.1, 5.2, 6.1, 6.2 in Fig. 2 (left). Ibid the curves 3.1, 3.2, 4.1, 4.2 show
the values of the corresponding eigen-frequencies x;, =x\")(al"®) =const of the
linear problems (for a =0). The eigen-frequencies K,(P do not depend on the
amplitude  characteristics of the fields, in particular, the relation

1lim zcr(,NL) (aL”C) =/<r(,") holds, see Fig. 2 (left). If a decanalizing layer is present in

Inc
a. —0
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the layered object, the growth of the excitation amplitude a,if° leads to an increase of

ReK,ﬂNL), n=1,3 (curves 5.1, 6.1), and a decrease of Im Kr(,NL)

NL)

, =13 (curves 5.2,

6.2). Here the increase of Rezc,(1 , =13 (see Fig. 2 (left)), is due to a decrease of
the values Reeg,,., n=1,3 (see. (2) and Fig. 3).

3.5

6.1 -0,2
—_ 4.1 o=
Z 3,04 ~ o
E 2 | = o
E s
. 25 03E o
:‘3;: - 5
E ek
1,04 £ -
13 - &
= £
0.5 0,4

inc

N d,
Fig. 2. Curves for x=Rexy. Left: 1- 3 =30 at a=0, 2- 3=3ND) at
a=-001; 31- kD =Rex{V, 32-Imx"), 41-Rex{", 42- 1mx"), s51-

3 ]
x(ND) ERezcl(NL), 5.2- Imzcl(NL), 6.1- REKéNL), 6.2 - ImzcéNL). Right: The

energetic properties of scattering and generation and the relative Q-factor.

Fig. 3. The scattered (left) and generated (right) fields for & =-0.01 and x =Rexj .

The spectral characteristics shown in Fig. 2 (left) allow us to analyze indirectly the
energy exchange processes occurring during scattering and generation of waves by
nonlinear objects within the framework of the developed self-consistent approach. In

particular, the value of the relative quality factor (Q-factor) of the oscillations Q{1:3} is
of interest. For example, comparing the values plotted on the curve Qu3) with the

energy characteristics represented by the curves Wigqy or Wizgoq in Fig. 2 (right), we
see the following.



BicHuk XapkiBcbkoro HawioHanbHoro yHiepcuteTy iMeHi B. H. Kapasina, 2017 15

The spectral characteristics shown in Fig. 2 (left) allow us to analyze indirectly the
energy exchange processes occurring during scattering and generation of waves by
nonlinear objects within the framework of the developed self-consistent approach. In
particular, the value of the relative quality factor (Q-factor) of the oscillations Q{1:3} is

of interest. For example, comparing the values plotted on the curve Q{l:S} with the
energy characteristics represented by the curves Wigqy Or Wizgo3 in Fig. 2 (right), we
see the following.

The local decrease in the relative Q-factor Qq.5 (@i™) with increasing amplitude
of the incident field al™ leads to a burst of energy Wiz and Wig123) generated in

the third harmonic, see Fig. 2 (right). In this case, the type of scattered and generated
oscillations does not change. In the investigated range of amplitudes of the incident

field, scattered fields of the type Hg o3 (see Fig. 3 (left)) and generated fields of the
type Hg o g (see Fig. 3 (right)) are observed.

Fig. 4. The permittivity of the nonlinear layered structure for & =-0.01 and k¥ =Rex; .

The nonlinear components ggQL) of the permittivity &, at each of the frequencies

x and 3x are determined by the values U(x;z) and U(3x;2). For non-absorbing

media Img(")(z) =0, taking into account the reality of the cubic susceptibility

a(z), the equality Imgn,((z)zlmgrg,'}"‘)(z) holds, see (2). The increase in the

amplitude @™ of the incident field at the frequency « leads to the generation of a

K

third harmonic field U(3K';Z). In the case under consideration, the quantity

ImeNY) (2) (or Ime, (z) if Ims((z) =0), that oscillates in general, takes
posititive values along the height of the nonlinear layer, see Fig. 4 (left). The described
situation characterizes the portion (loss) of energy in a nonlinear medium (at the
excitation frequency x ) that went to the generation of the electromagnetic field of the
third harmonic (at the frequency 3x) [7, 8]. The generated fields at the frequency 3x
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are weak. They do not deliver energy for the generation of new harmonics. Here

Ime{NY) (2)=0 (Ime,,(2)=0 for Im&{X) (z) =0), see Fig. 4 (right).

4.2, Structure with a nonlinear canalizing medium
The Figs. 5-7 show the properties of the layered structure containing an absolutely

transparent canalizing medium {g(") =1, a =+0.01}, z €[-2765/3, 275/3] , see (8).

n

n

nkK, Re KU“] . Re .&LNL)

inc
-

Fig.5. Curves for x=Rex. Left: 1- 3 =3« at a=0, 2-3x=3ND at

a=+001; 31- kD =Rex™, 32- ImxM), 41-Rex"), 42- ImafH), 51-

KND =RexMD) 52 ImaMD) 61~ Rea{™, 62- Imi{ND).  Right: The

energetic properties of scattering and generation and the relative Q-factor.

24 - o |
1
2 1 A’ ‘
= 16 1 I |‘
] 1 |
D12 71 ‘|
T |
4 —
1 ~l
] e

Fig. 6. The scattered (left) and generated (right) fields for & =+0.01 and x = Rexj .

If a canalizing layer is present in the layered object, with an increase in the
perturbation amplitude a™ a decrease of Rezcr(,NL), n=13 (curves 5.1, 6.1), and
piecewise monotonic variations of the quantities Im/cr(,NL), n=13 (curves 5.2, 6.2)
are observed. This behaviour of Rezcr(]NL), n=1,3 (see curves 5.1, 6.1 in Fig. 5 (left))

is due to an increase of the values Reg,,., n=1,3 (see. (2) and Fig. 7).
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Fig. 7. The permittivity of the nonlinear layered structure for o =+0.01 and x = Rex .

In the region of monotonicity of the function Q3 » with an increase in the

inc

amplitude a,

of the incident field an increase of the energies Wizqy and Wygqpg
generated in the third harmonic is observed, see Fig. 5 (right). The main increase in
the generated energy is observed in the region of monotonic decrease a..° e(5, 23).

The amplitude a"

o ~23 corresponding to the minimum of Qq.3 s a critical

inflection point of the functions Wiaay and Wigqp3) . Therefore, in the range
alnc €[23,25.5] there are an increase of Qu3) and a spike in the generated energies
Wigqy+ Wizgog) -

Note that in the vicinity of critical points (such that a,i(”C ~5, aj(“c ~23) and
inflection points (for instance a,i(”C ~12) of the function Q{1:3}’ see Fig. 5, (right), a
type conversion or a change in the configuration of the scattered and generated

inc

oscillations is observed, see. Fig. 6. For example, with increasing a,

, changes in the

dynamics of types of the scattered oscillations Holo's(aj(nce[o.l,lz» -
Ho02(a™ €[12,23)) — Hgo3(al™ €[23,25)) — Hgg4(alf [25 255]), see
Fig. 6 (left), and generated oscillations Hgg3(all=5) — Hgg4(@™=8) —

H0,0,7(a,i(“c €[12, 25.5]), see Fig. 6 (right), are observed.

The portion of energy in the nonlinear medium that went into the generation of the
electromagnetic field of the third harmonic is described by the characteristic

oscillating quantity Ims™(z) (or Ime (z), as here Ims™(z) =0) along the

K

height of the nonlinear layer [7, 8]. In the case under investigation, the values of the
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oscillating quantity Img,((z) are positive in the range a,i('“C €[0.1,16.7), as well as

positive and negative for a,L”C €[16.7, 25.5], see Fig.7 (left).

The numerical results are obtained by means of the application of Simpson’s rule
to the system of nonlinear integral equations (1). The resulting system of nonlinear
algebraic equations (4) is solved using a self-consistent iterative algorithm that is
based on a block method [8]. In the investigated range of problem parameters the
dimension of the algebraic systems was 301. The relative error of the calculations did

not exceed 107" .

5. Conclusion

The dynamics of resonant wave processes for layered structures containing
nonlinear media has been investigated. In the framework of the developed self-
consistent approach for the solution of systems of nonlinear boundary value problems,
it is shown that, according to the spectral characteristics of the structures induced by
the incident fields, it is possible to indirectly analyze the energy exchange processes
that arise through the scattering and generation of waves by nonlinear objects. Thus,
local critical processes of energy exchange correspond to a minimum of the relative
Q-factor of the scattered and generated oscillations. The obtained results can be used,
in particular, in problems of optimization of nonlinear electrodynamic devices
possessing intense scattering and generation properties.
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