
 Вісник Харківського національного університету імені В. Н. Каразіна, 2 0 1 6 5

__

© Borovinsky AV, Gakhov AV, Mishchenko VO, 2016

UDC 004.412.2:(004.94+004.438)

Energy Metrics: an experience in assessment of programs

developed within a mathematical package

AV Borovinskiy
1
, AV Gakhov

2
, VO Mishchenko

1

1
V. Karazin Kharkiv National University, Ukraine

2
ferret go GmbH, Germany

The Energy Analysis for software systems is a complex of static analysis methods

aimed to assess software reliability, complexity and benefits. It is based on a range of

consistent thermodynamic analogies and uses experience from successes and failures

of M. Halstead metrics. An important feature of this direction is that it can be applied

to various forms of programming calculations. However, every new form requires to

re-define the primitive characteristics needed for evaluation of meaningful metrics,

and such definitions are already known for some traditional programming languages.

In this work we have investigated XML format of PTS Mathcad and defined such its

primitives as length, vocabulary and potential volume

Key words: software quality metrics, static methods, Energy Analysis, computer algebra systems,

Mathcad, XML, energy balanced software.

Енергетичний аналіз програм - комплекс методів статичного аналізу, націлених

на оцінку надійності, складності та переваг програмних систем. Він створений

на основі послідовних термодинамічних аналогій, виходячи з досвіду удач і

невдач метрик М. Холстеда. Важливою рисою цього напрямку є те, що він може

застосовуватись при різних формах програмування обчислень. Однак для будь-

якої нової форми потрібно заново визначати примітивні характеристики,

необхідні для оцінювання змістовних метрик. Такі визначення відомі для деяких

традиційних мов програмування. У роботі досліджено XML формат пакету PTS

Mathcad и визначено такі примітиви як довжина, словник і потенційний об‘єм.

Ключові слова: метрики якості ПЗ, статичні методи, енергетичний аналіз, математичні

пакети, Mathcad, XML, енергетично збалансована програма.

Энергетический анализ программ – комплекс методов статического анализа,

нацеленных на оценку надёжности, сложности и преимуществ программных

систем. Он создан на основе последовательных термодинамических аналогий,

исходя из опыта удач и неудач метрик М. Холстеда. Важной чертой этого

направления является то, что он применим при разных формах

программирования вычислений. Однако для всякой новой формы нужно заново

определять примитивные характеристики, необходимые для оценивания

содержательных метрик. Такие определения известны для некоторых

традиционных языков программирования. В работе исследован XML формат

пакета PTS Mathcad и определены примитивы длины, словаря и потенциального

объёма.

Ключевые слова: метрики качества ПО, статические методы, энергетический анализ,

математические пакеты, Mathcad, XML, энергетически сбалансированная программа.

1 Introduction

The Energy Analysis for software systems is a branch of software quality control

[1] that consists of static analysis methods aimed to assess the reliability, complexity

and benefits of such systems. These methods can be considered as the modern

development of M. Halstead’s Software Science ideas [2]. The direction of such

evolution has been inspired by the theoretical thermodynamics [3]. Along with this,

the Energy Analysis is based on the experience gained from investigation and usage of

6 Серія «Мат.моделювання. Інформаційні технології. Автоматизовані системи управління», вип. 2 9

M. Halstead’s metrics (e.g. [4-6]) as well as metrics of the Energy Analysis itself [7-

11].

The important advantage of both the Halstead’s metrics and the Energy Analysis

one is their independency of the software representation, whichever it is - textual,

hierarchical, or even graphical. The downside is that, for each programming system,

there is a need to develop (or even strictly define) a set of primitive characteristics to

base metrics on. It is not a trivial problem even for “classical” procedural

programming languages, mainly because of certain level of solution uncertainty. So,

for new programming languages, the definitions have to be coordinated with already

developed ones. This task has been solved for early-generation programming

languages (60’s-70’s of the last century) and for modern languages, such as Ada, C++,

Fortran, and Java [2, 4, 12-14, 11, 10]. Recently, such methods have been developed

for such modeling languages as UML [15], but they are not ready for practical

applications at this stage. For the XML-based sources, the Energy Analysis metrics

have not been applied yet, but such problem has already raised for Android

applications [10]. In [16] and [17], Halstead’s metrics were used to evaluate projects

that contained XML sources, however, in the first work, its authors concluded that

such metrics are inappropriate for their use case; and in the second work, the metrics

were used for the non-XML sources only.

Some custom forms of programming could also be found in popular general-

purpose computer algebra systems. In this article we consider one of such systems -

PTS Mathcad 14 [18] that offers a WYSIWYG interface and the ability to utilize a

total user experience in the form of a file that contains both the program and the

results of calculations.

The main goal of the current research is to develop ways for the automatic

evaluation of Mathcad programs in order to estimate costs of creation, risks of

programming errors, understandability, and forecast the maturity level. Note, that the

one-file form of the Mathcad programs simplifies formulas for the energy metrics and

makes some of them close to Halstead’s metrics.

As the metrics which help to achieve our goal, we’ve selected the following:

“difficulty measure” and “volume” (both are introduced by M. Halstead),

“development difficulty”, “programming work” (in this case they are just a

rectification of the Halstead’s metrics “difficulty” and “effort”), “specification energy”

(evaluated from the Halstead’s “approximation effort”, but in case of Mathcad isn’t

equal to it), and, finally, “energy balance”, that is specific for the Energy Analysis.

To estimate such metrics, we use the generic estimation schemes from the Energy

Analysis [1, 3, 4] together with specific methods for Mathcad programs to define

primitive characteristics (or simply - primitives).

 The first from such primitives is the observed program length [5] or simply length

N - number of used semantic atoms counting all their occurrences. Halstead called

such atoms as tokens. The second - program vocabulary or simply vocabulary η -

the alphabet of unique programming symbols. The third (but last in sense of its

importance) primitive is the differentiation of the units and the vocabulary to the

sum of operators and operands. Such differentiation was very native in Halstead’s

times, but nowadays it quite often hits contradictions that is reported by many

researches [1,3,4]. Finally, the fourth (but the most important one) – architecture

 Вісник Харківського національного університету імені В. Н. Каразіна, 2 0 1 6 7

temperature, that can be seen as the Halstead's potential volume in such a few

cases when it can be defined uniquely [1-4]. In most cases, we call the architecture

temperature as a potential volume and define as V* just to keep the continuity of

the terminology.

 According to our goal, the main tasks of the research can be formulated as

follows:

 to develop methods for estimation of the primitives for Mathcad programs;

 to develop a way for automatic calculation of the energy metrics for Mathcad

programs;

 to check if the expected regularities for Halstead's and energy metrics are fulfill on

samples of programs from different authors and sources.

2 Application domains and regularities related to the metrics

We start by refreshing the well-known definitions of the Halstead’s metrics -

volume, difficulty and effort:

2logNV  or 0VVB  , (symbitV  30000), (2.1)

*
ˆ

12

12










N
D , (*1 - is a constant equals to 2 bit·sym) (2.2)

VDA  ˆˆ , (2.3)

where 2, NN - number of tokens and operands in the program (or program module);

 21,,  - vocabularies of tokens, operators, operands.

Note, that there is no standard selection for names and denotations of the

Halstead’s metrics. In our work we use names from IEEE [5], but denotations are

taken from [2, 4]. In (2.1) the alternative dimensionless metric number of errors B is

the only metric in the strictest sense, but at the same time the Halstead’s volume is

playing an important role in definitions for other metrics, therefore, we can assume

that (2.1) defines 2 different forms of the same metric.
M. Halstead introduced the following elementary primitives:

N, N1, N2, η, η1, η2 (2.4)

but there are only 4 functionally independent among them. However, how it was

discovered by Halstead and confirmed by other researchers on many examples, such

primitives have another, statistical, connection - there is a correlation between N and

the value that the standard [5] calls estimated program length:

22212121 loglog),(ˆˆ   NN . (2.5)

In many experiments performed in 70’s of the last century with samples of programs

written in Algol, Fortran, PL/1, etc., it was observed a close statistical relationship

between N and N̂ . For instance, on samples of 10-20 [2] the values of the

correlation coefficient were around 0.95 and more. As reported by another researcher

in [4], with the large sample (about 1.6·10
3
) the relative difference between these

values for average-sized modules was less than 6%. Therefore, in experiments one

8 Серія «Мат.моделювання. Інформаційні технології. Автоматизовані системи управління», вип. 2 9

shouldn’t use more than 3 different Halstead’s metrics, based on the primitives (2.4),

at the same time.
As a guide to clarify the primitives’ definitions for new languages could be used

the fulfilment of the Halstead’s program length equation [15]. However, as it followed

from the English prose example [2], in a general case the Halstead’s program length

equation should be considered in the following generic form:

  5.0);,(ˆ,: 21  SNNCorrSk  , (2.6)

where S – a large sample of programs (modules) writing on a some language (at least

20 modules, according to [2]);

),,(SyxCorr - correlation coefficient between x, y on sample S;

(Note, that the universal quantifier  is considered here not literally, but in the sense

that for any random sample of different modules it’s unlikely that this condition will

be violated). At the same time, it’s appropriate to estimate the Halstead’s redundancy

factor k [2] by minimizing the average error U(k) of the module’s length prediction

over its estimation for the base sample S:

min
),(ˆ

)(
21














 


kN

NkkN

S

Avr
kU


. (2.7)

where Avr – the sample’s average.

In complex software systems that consist of many modules the Halstead’s volume

has to be corrected according to the intermodule connections and order of their

development. Such correction could be achieved by introducing metric volume of

development. The program difficulty metric becomes problematic in this case because

it was proposed [2] in assumption of the module’s self-sufficiency, thus, in the Energy

Analysis it’s considered as an alternative value to avoid errors in module’s difficulty

analysis (the effort, that derive from this metric, is totally ignored by us). In such cases

when programs on the certain programming language can’t be multi-module, then the

importance (2.2) for control purposes is increasing, but the metric (2.3) isn’t

considered anyway during the energy analysis, except technical needs.

Finally, the last primitive characteristic - the potential volume:

*)(log** 2 V , (2.8)

or, up to evident mathematical transformation, η* – the number of the block’s formal

operators, that in the Energy Analysis is defined as:

21212* jjpp  , (2.9)

where p1 – number of configuration parameters;

p2 – number of calling parameters (incl. output of the function, if any);

j1 – number of I/O operations;

j2 – number of files used by I/O operations.

The correctness of such definition opens the way to use in practice of the Energy

Analysis the formula of M. Halstead’s “theoretical” metric of difficulty:

 Вісник Харківського національного університету імені В. Н. Каразіна, 2 0 1 6 9

*VWD  , (2.10)

where W – development volume for the module (equal to V, if only 1 module exists).

The programming effort metric implements the Halstead's idea that the

programmer’s effort related on the difficulty of the program understanding multiplied

by the potential number of programming errors it may contain:

WDA  (2.11)

The specification energy for a single module with many non-grouped blocks (as it

takes place in Mathcad) can be found as:














5)5.0
9

(*)(

5*)(

223

23

mwhen
m

V

mwhenV
E




 (2.12)

где m – the number of non-grouped blocks of the module;

 λ – the language level by Halstead.

As soon as everything above is calculated, we can estimate the most important

metric in the Energy Analysis, the energy balance:

),max(AE

AE
q


 , (2.13)

This metric provides the prediction of the balance between architecture design process

and the process of design implementation in the code during the software

development. Particularly, in the decimal representation of the metric (2.13) the first

significant digit should be different from 9 for the well-balanced case.

An important regularity can be seen on random samples of programs that are

developed in the same language (sometimes with additional external restrictions, e.g.

also developed for the same application domain) – values (2.13) are randomly

scattered around zero, however, with significant deviations. Such regularity was

noticed, in fact, by M. Halstead for single-module programs without internal blocks

[2]. However, he had hypothesized the value 23*)(V as an approximation to effort

estimation that wasn’t confirmed afterwards [4]. Similarly, to the program length

equation in form of (2.6), such regularity, in general, requires a normalization

constant. As such constant we can use λ (2.12), however, then its value may be

different from the Halstead’s language level [19], that is evaluated on the basis of

other considerations.

3 Estimation of elementary primitives

The concept of tokens in the source codes has been introduced by M. Halstead [2]

to define alternative choices available to the software developer on each step of the

development. For classical programming languages, as candidates on such role could

be considered keywords and operation signs (incl. inseverable combinations),

numerical literals, simple identifiers, etc. However, there are additional nuances for

software development using general-purpose computer algebra systems (or simply,

mathematical packages). Such development process could be followed by the

10 Серія «Мат.моделювання. Інформаційні технології. Автоматизовані системи управління», вип. 2 9

immediate interpretation of inserted commands, simultaneous results output, it could

also use graphics (mostly, produced by the developer and don’t consist of sequences

of some limited alphabet, but also could contain complex mathematical formulas). A

natural representation of such structure is a hierarchy. The developer of a computing

program for some mathematical package usually consequently selects tokens to put

into the program, and, in fact, decides at each step whether to continue putting them at

the current hierarchical level, create a new (deeper) level, or to finish the current layer

(and maybe some other existing layers as well). Hierarchical structures can be mapped

into some sequential text, for instance, using such mapping formats as XML and

JSON. A Mathcad program is stored in .xmcd file that contains the XML

representation, included a metadata for its execution in the Mathcad environment and

the logic of the programmed calculations. The choice between the alternatives during

the running process of Mathcad calculations is hard to describe formally, but it can be

compared with the choice which would have to make the developer while building the

logical part of .xmcd file for the developed program manually instead of using the

Mathcad environment. We hypothesize that these two development processes (real and

imaginary) are equivalent in terms of quality characteristics reflected in energy

metrics (assuming that imaginary process is performed by a person, who also is

imaginary and is as good in .xmcd files arrangement, as the real developer is in

Mathcad).

Based on this hypothesis, we have built a projection of the “full” language for

.xmcd files on such its part that is responsible for calculations by user’s algorithm, that

also allows us to transform .xmcd files into a hierarchically structured text. According

to the hypothesis, such the algorithm’s representation is the formalized Mathcad

program. The process of obtaining such representation we call the .xmcd cleaning. It

includes deleting all tags and attributes that are additional to computation itself, such

as XML metadata, references to colors, images positions, etc. The adapted file must

consist only of constructions of the following types, which contain exactly one token:

<regions> text </regions> , (3.1)

<ml: keyword {ml-option} > text </ml: keyword>, (3.2)

<result > text </result > , (3.3)

<ml: operator > , (3.4)

where elements written in italics are not parts of the tokens and added only to explain

the ltoken usage. It must be clear that text may consist of the same or “other” lexemes

of the formal language of adapted.xmcd files. The mentioned “other” tokens include

such token kinds as

identifies , integer numbers , real-number , strings , (3.5)

and also:

1) the keywords that enter the ml-tags by pairs, such as

define , id , real , function , boundVars , (3.6)

and dozens of other;

2) ml-options such as

 Вісник Харківського національного університету імені В. Н. Каразіна, 2 0 1 6 11

xml:space="preserve" , symbol=string , [prefix-]algorithm=string , (3.7)

and others (specific to the ml-tag’s keywords);

3) some prefixes and postfixes of some ml-options, e.g.

auto- (ethe prefix of the last option, which shown in (3.7)) ; (3.8)

4) ml-operators such as

plus/ , div/ , neg/ , pow/ , greaterThan/ , (3.9)

and many others.

For example, consider such .xmcd file:

<region region-id="5" left="12" top="50.25" width="55.5" height="27.75" align-

x="47.25" align-y="66" show-border="false" show-highlight="false" is-

protected="true" z-order="0" background-color="inherit" tag="">

 <math optimize="false" disable-calc="false">

 <ml:define xmlns:ml="http://schemas.mathsoft.com/math30">

 <ml:id xml:space="preserve">lambda</ml:id>

 <ml:apply>

 <ml:div/>

 <ml:real>1</ml:real>

 <ml:real>10</ml:real>

 </ml:apply>

 </ml:define>

 </math>

 <rendering item-idref="5"/>

</region>

The result of its cleaning will be a text file that contains:

<ml:define>

 <ml:id xml:space="preserve">lambda</ml:id>

 <ml:apply>

 <ml:div/>

 <ml:real>1</ml:real>

 <ml:real>10</ml:real>

 </ml:apply>

</ml:define>

The cleaning process is implemented in EA_XMCD_Analyzer, developed by us in

PHP that has useful features for such tasks [20]. To calculate elementary primitives

(2.4) we use SAX-parser [21] (Simple API for XML), from the libxml library included

as an extension in PHP and enabled by default. For instance, to search opening and

closing tags corresponding to programming symbols-operators, we use built-in

function xml_set_element_handler, and to search symbols-operands we use

xml_set_character_data_handler.

12 Серія «Мат.моделювання. Інформаційні технології. Автоматизовані системи управління», вип. 2 9

4 Estimation of potential volumes

The adapted code in a file of some Mathcad program is the only module of this

program, but its internal architecture is usually nontrivial. Blocks could be represented

by such constructions as functions, integrals, derivatives, etc. For instance, the

construction below defines a block - the function, that returns a value and one explicit

parameter:

<ml:function>

 <ml:id xml:space="preserve">Init_Array</ml:id>

 <ml:boundVars>

 <ml:id xml:space="preserve">sep</ml:id>

 </ml:boundVars>

</ml:function>

<ml:program>

 …..

 <ml:return>

 <ml:id xml:space="preserve">vec</ml:id>

 </ml:return>

</ml:program>

There are 2 formal parameters for this block: the first is defined by the tag

<ml:boundVars>, and the second – by the output. We also use PHP to find such

structures and calculate all their parameters.

It’s more complex question how to deal with files and input/output operators,

because the Mathcad semantics differs from the traditional procedural programming

languages. In early versions of EA_XMCD_Analyzer we didn’t consider such case at

all.

First of all, in the adapted .xmcd files we can consider as input/output operators the

structures of assignments and calls, that were used by the developer to set values for

constants and variables in Mathcad. As an example, review the following XML:

<ml:define>

 <ml:id xml:space="preserve"> a0 </ml:id>

 <ml:real> 1.0 </ml:real>

</ml:define>

Such structures could be also found inside of functions:

<ml:localDefine>

 <ml:id xml:space="preserve"> max </ml:id>

 <ml:apply>

 <ml:absval/>

 <ml:apply>

 <ml:indexer/>

 <ml:id xml:space="preserve"> v </ml:id>

 <ml:id xml:space="preserve"> c </ml:id>

 </ml:apply>

 </ml:apply>

</ml:localDefine>

 Вісник Харківського національного університету імені В. Н. Каразіна, 2 0 1 6 13

The lexeme/paired tags <result> text </result> is to be considered as the output

statement because they are generated in Mathcad source code when the program

developer writes “<variable> =”, having in mind to output the current value of a

variable.

In the second version of the program EA_XMCD_Analyzer, the input/output

operations were covered by the identification of constructions that are similar to

described above. That made possible to calculate the value j1 required in the formula

(2.9), while the value of j2 is chosen of 2, 1 or 0 depending on the presence or absence

of constructions for keyboard input or display output.

5 Calculation

In the preceding sections, we have described the developed methods; and further

we explain how they constitute the technology of automated assessment of the energy

metrics (Fig. 1).

At the beginning, the selected (uploaded) text file progname.xmcd (where

progname is the analyzed file’s name) is subjected to the purification procedure

described in section 3. The resulting adapted_xmcd-progname.xml file with a

Mathcad computing program is the source of data for two processes. The first process

calculates the elementary primitives (2.4) and dumps them into a text file

tokens_xmcd-progname.txt. The second - finds formal parameters of blocks and

calculates the potential volume. Data contained in the two files allow (Fig. 5.1) to

calculate all Halstead’s (2.1)-(2.3) and energy (2.10)-(2.13) metrics discussed above.

Fig. 5.1 The energy metrics assessment bases on .xmcd file

Out of these results we build the file sss_xmcd-progname.txt.

6 Check expected regularities for the metrics on an experimental sample

Despite the fact that for the Energy Analysis purposes splitting of specific program

lexemes into statements and operands does not matter, it is interesting to compare the

lexical features of different programs using the Halstead’s length equation. We have

selected those programs, which implement different computational methods. Table. 1

illustrates the results of primitives assessment (2.4) for the sample S23 of 23 Mathcad

programs, selected from sources [18-21]. The table shows characteristics obtained for

programs with the maximum and minimum length, as well as the average for the

14 Серія «Мат.моделювання. Інформаційні технології. Автоматизовані системи управління», вип. 2 9

sample (an asterisk marks the average values defined as medians; in all other cases

they are the arithmetic average).

We have been noticed the systematic and meaningful violation of the length

equation (in its original form) for almost every considered Mathcad program (see the

2nd column in the Table 1), but the requirement (2.6) has been met.

Table.1 Reference values for the Mathcad programs in sample S23

The case N/N^ Nk^/N B D^ λ^ λ* λ qλ
max values 3.00 3.69 38.2 230 300.1 1073 4.36 0.96

avr values 0.68 0.85 7.5 69 2.19* 128,2* 0,53* -0.98

min values 0.19 0.24 0.7 10 0.49 0,18 0.12 -0.26

The length Nk^ (the 3rd column in the Table 1) is obtained for the redundancy

factor that was found from the condition (2.7):

)63.0)((2.1,51.0)23;ˆ,( kUkSNNCorr . (6.1)

Thus, in this case we deal not with the redundancy, but with the lack of the alphabet;

and the average N by Nk^ "prediction” error is 63%, which is worse than the 40% of

the worst cases for the procedural languages [4] . We want to note that if to swap the

roles of N and Nk^ in (2.7), the best value will be different: k = 2.12 (average error

equals 60%).

It is also valuable to find out how big is the difference between assessment of

difficulty classes in terms of metric (2.2) and the reference values calculated long time

ago (1979) for the completely different language (PL/S). For the sample S23 we’ve

obtain:

90.9)(,87.27)(,52.7)()(112222  nStdnAvrnNStdnNAvr , (6.2)

where)(xAvr is the average value of the sample x;

)(xStd - is the standard error of the same sample.

Then, following the known procedure, detailed in [4], it’s possible to calculate the

boundaries separating the difficulty classes, both standard and optional [9] (for

comparison, in brackets are given the known estimations for such boundaries

calculated for the language PL/S [4, 5, 9]):

),250(216),160(142),115(105 321  DDD

)430(365),340(291 54  DD . (6.3)

We can see that there is no fundamental difference between the obtained

assessments for Mathcad programs and the corresponding known values. Also, 91% of

the programs in the sample S23 belong to the difficulty class 0, only one - to the class

1, and the most difficult program belongs to the class 3. This is in contrast to the

known examples of program modules written in universal procedural languages (e.g.

[9]). It could happen that we chose mostly simple programs, but also it is possible that

Mathcad is not intended for complex calculations more typical for universal

procedural languages. If the result is not just a coincidence, we can expect that the

 Вісник Харківського національного університету імені В. Н. Каразіна, 2 0 1 6 15

majority of the programs in the sample, being simple, were well-thought-out by their

authors and, hence, they are energetically balanced.

Let us try to find out the energy balance metrics distribution over our experimental

sample. The values of language level λ lay in the range from 1.0 to 2.0 for high-level

languages and for low-level ones between 0.5 and 1.0 [2]. For the Mathcad language

we would expect λ ≈ 1.0, but its estimation obtained over the sample S23 by the

standard assessment method (̂ ≈ 2.2) [4] and, especially, by the Halstead’s

"theoretical" method (* ≈ 128) are suspiciously big (Table 1). Assuming that S23 is

representative with respect to the language level and reflects a regularity for the metric

q (2.13) mentioned at the end of Section 2, it makes sense to consider for all programs

such expression

AE)1( , (6.4)

where)(E is an estimation of (2.12), in which language level λ is indicated in

parentheses (e.g. 1 in (6.4)). If to take for the language level the median of these

values, then exactly the half of the programs will have q > 0, and for another half q <

0, which is unlikely. We performed a different (subjectively selected) procedure: to

exclude 20% of the biggest and smallest values obtained by (6.4). The rest gave a

fairly reliable first interval approximation to the expected language level:

0.314 < λ < 1.385 . (6.5)

Unfortunately, this range is too wide. Let us consider its center λ1 = 0.849; then – the

widest range of λ variations, in which the deviation from λ1 in both directions (bigger

or smaller) doesn’t change the interrelation between the signs of metrics q in our

sample. This is our "satisfactory" but rather hypothetical interval approximation:

0.845< λ < 0.93 . (6.6)

(Note, when it’s necessary to use a particular value, it makes sense to take the center -

0.89).

Such choice of the language level has reduced the number of energetically unbalanced

programs to just 2 out of 23, that is consistent with the assumption of maturity of most

programs in the sample. Also, 39% of the programs has qλ > 0 that shows the effect of

metrics values scatter around zero. If we choose for the level any value of the interval

(6.5), the most of programs stay balanced. Let us note that if assume λ = ̂ then only

two programs (9%) will have q > 0, and the half of programs will be marked as

unbalanced (12). This hardly meets our expectations, but the reliable conclusion about

the language level requires much more statistical data to be processed.

7 Conclusion

In this article we have shown that for programs developed in Mathcad it is possible

to create an accurate definition of Halstead’s primitives that follows common practice

of Halstead’s definitions and the definition of the potential volume from the Energy

Analysis. The research has been done under the hypothesis about correspondence

between XML-oriented representation of the program and its interactive development

process in Mathcad.

16 Серія «Мат.моделювання. Інформаційні технології. Автоматизовані системи управління», вип. 2 9

Furthermore, we have demonstrated the possibility to estimate the primitives in an

automatic mode and, consequently, to create a program solution for the developed

assessment method.

The test of the method on an experimental sample for Mathcad programs gave

preliminary conclusions about relatively weak manifestation of the regularity known

as Halstead’s length equation in such case. It makes sense to consider such regularity

in the form (2.7) including redundancy factor that has been estimated by us at the level

of 1.2 (or 2.12 in case of another choice criterion). Note, the value bigger than 1.0

indicates the “insufficiency” of the alphabet in the Halstead’s sense [2].

The tendency of Mathcad programs to be “in average” energy balanced is

detectable for any language level chosen according to our “semi-heuristic” estimation

from the range (6.5).

In the article we have presented a new halstead-like estimation method for

primitive characteristics of the programming process in a mathematical package

environment.

For the first time, the Energy Analysis’ methods have been implemented for a

formal language, which is based on XML and reflects the calculation logic of the

Mathcad package. In addition, these methods are developed in PHP and they allow, in

principle, to provide estimation online services.

REFERENCES

1. Мищенко В. О. Математическая модель стиля Software Science для

метрического анализа сложных наукоёмких программ / В. О. Мищенко //

Вісник Харківського національного університету: Зб. наук. праць. – Х., 2004.

– № 629. – С. 70–85. – Title in English : Mishchenko, V. O. (2004) The

Mathematical Model in Software Science Style for Measurement of Complex

Scientific Software. – Bulletin of V. Karazin Kharkiv National University, Series

«Mathematical Modelling. Information Technology. Automated Control

Systems», 629, 3.

2. Halstead, M.H. Elements of Software Science / Halstead, Maurice H. Elsevier

Publications, N-Holland, 1977. // Operating and programming systems series. –

NY : Elsevier Science Inc. New York. – ISBN:0444002057.

3. Мищенко В. О. СASE–оценка критических программних систем. Том 3.

Оценка качества / В. О. Мищенко, О. В. Поморова, Т. А. Говорущенко ; под

ред. Харченко В. С. – Х : Нац. аэрокосмический ун–т «Харьк. авиац. ин–т»,

2012. – 201 с. . – Title in English : Mishchenko, V. O., Pomarova, OV,

Govorushchenko, TA (2012) Case-assessment of critical software systems.

Volume 1. Quality, ed. Charchenko, VS, Kharkiv: Natonal Aerospase University

named after N.E.Zhukovsky “KhAI”.

4. Shen V. Y. Software Science Revisited: A Critical Analysis of the Theory and Its

Empirical Support / V. Y. Shen, S. D. Conte, H. E. Dunsmore // IEEE

Transactions on Software Engineering. – 1983. – Vol. SE–9, № 2. – P. 155-165.
5. 982.2-1988 - IEEE Guide for the Use of IEEE Standard Dictionary of Measures to

Produce Reliable Software. - Institute of Electrical and Electronics Engineers,

1989.

 Вісник Харківського національного університету імені В. Н. Каразіна, 2 0 1 6 17

6. Al Qutaish. An Analysis of the Design and Definitions of Halstead’s Metrics /

Proceedings of the 15th International Workshop on Software Measurement

(IWSM'05), Montréal, Québec, Canada, 2005, pp. 337-352.

7. В. М. Годунко В. М. Качество транслятора шаблонов динамических html

страниц для Ada WEB серверов / В. М. Годунко, В. О. Мищенко, М. М.

Резник, Д. В. Штефан // Радіоелектронні і комп’ютерні системи. – 2012. – №

5. – С. 225-229. . – Title in English : V.M. Godunko, V.O. Mishchenko, M.M.

Reznik, D.V. Shtefan. Dynamic generation html pages for ada web server

Radioelectronic And Computer Systems, 2012, 5.

8. Міщенко В. О. Моделі та характеристики обчислювального кластера, які

допомагають визначати напрямки його подальшого розвитку / В. О.

Міщенко // Вісник Харк. нац. ун-ту., – 2013. – № 1058. Сер. «Математичне

моделювання. Інформаційні технології. Автоматизовані системи

управління», вип. 21. – С. 122-131. – Title in English : Mishchenko, V. O.

(2013) Bulletin of V. Karazin Kharkiv National University, – 2013. – Series

«Mathematical Modelling. Information Technology. Automated Control Systems»,

1058, 21.

9. Мищенко В. О. Метрики трудности в оценке надёжности инструментальных

библитек и фреймворков / В. О. Мищенко Вісник Харк. нац. ун-ту., – 2014. –

№ 1133. Сер. «Математичне моделювання. Інформаційні технології.

Автоматизовані системи управління», вип. 25. – С. 126-147. . – Title in

English : Mishchenko, V. O. (2014) Difficulty metrics in assessing the reliability

of tool libraries and frameworks. Bulletin of V. Karazin Kharkiv National

University, Series «Mathematical Modelling. Information Technology. Automated

Control Systems», Issue 1131, 25.

10. Мищенко В. О. Использование энергетических метрик при анализе качества

Android приложений / В. О. Мищенко, А. Ю. Уваренко // Труды XVІІ

Международного симпозиума «Методы дискретных особенностей в задачах

математической физики» (DSMMPh-2015), 2015. – Харьков-Сумы: изд.

Харківського національного університету імені В. Н. Каразіна, 2015, С. 173-

176. . – Title in English : Mishchenko, V. O., Uvarenko, A Yu. (2015) Proceedings

of the XVII International Symposium "Discrete singularities methods in

mathematical physics", Kharkov-Sumy.

11. Мищенко В. О. Преимущества, затраты и риски модификации реализаций

методов дискретных особенностей с целью оптимизации / В. О. Мищенко, В.

Паточкин // Вісник Харківського національного університету

імені В. Н. Каразіна серія Математичне моделювання. Інформаційні

технології. Автоматизовані системи управління, 2015. – вып. 28. – С. 69–76. .

– Title in English : Mishchenko, V. O., Patochkin, B. V. (2015) Optimization of

the methods of discrete singularities: the benefits, costs and risks of implementation

modifications. Bulletin of V. Karazin Kharkiv National University, Series

«Mathematical Modelling. Information Technology. Automated Control Systems»,

2015, 28.

12. nag_metrics - NAGWare Fortran Tools - f77 Tools [Электронный ресурс]. –

Режим доступа: https://www.lrz.de/services/software/programmierung/toolpack/

nag_metrics.html.

18 Серія «Мат.моделювання. Інформаційні технології. Автоматизовані системи управління», вип. 2 9

13. Miller D. M. A software science counting strategy for the full Ada language / D.

M. Miller, R. S. Maness, J. W. Howatt, W. H. Shaw // ACM SIGPLAN Notices.

1987. – Vol. 22, № 5. – P. 32–43.

14. Mishchenko V. O. Does The Different Definitions Of Ada Program Tokens Have

Significant Difference? / V. O. Mishchenko // Radioelectronic And Computer

Systems. – 2008. – № 7 (34) – C. 103–106.

15. Годунко В. М. Особенности энергетических метрик UML диаграмм / В. М

Годунко, В. О. Мишенко, А. В. Пасека // Вестник Харк. нац. ун–та., – 2013. –

№ 1058. Сер. "Математическое моделирование. Информационные

технологии. Автоматизированные системы управления", вып. 21. – С. 13-19.

. – Title in English : Godunko V. M., The features of the energy metrics of UML

diagrams / Godynko V. M., Mishcenko V. O., Paseka A. V. (2013) Bulletin of V.

Karazin Kharkiv National University, – 2013. – Series «Mathematical Modelling.

Information Technology. Automated Control Systems», 1058, 21.

16. Lassila, Matti. Comparison of two XML query languages from the perspective of

learners / Lassila, Matti; Junkkari, Marko; Kekalainen, Jaana // Journal of

Information Science, 2015. – Vol 41. – N 5. – P. 584-59.

17. Ming-Chang Lee. Software Quality Factors and Software Quality Metrics to

Enhance Software Quality Assurance Comparison of two XML query languages

from the perspective of learners / Ming-Chang Lee // British Journal of Applied

Science & Technology, 2014. – N. 4(21). – P. 3069-3095.

18. PTC Mathcad [Электронный ресурс] : Режим доступа:

http://www.ptc.com/engineering-math-software/mathcad.

19. Мищенко В. О. Компьютерное моделирование характеристик схем

программных систем / В. О. Мищенко // Радиоэлектронные и компьютерные

системы. – Харьков, 2010. – № 5 (46). – С. 158–164. – Title in English :

Mishchenko, V. O. Computer Modeling Of Software System Schemes

Characteristics. Radioelectronic And Computer Systems, 2010, 5.

20. PHP: Hipertext Preprocessor [Электронный ресурс] : Режим доступа:

http://php.net. – Заголовок с экрана.

21. PHP: XML Parser functions [Электронный ресурс] / Mehdi Achour, Friedhelm

Betz, Antony Dovgal, Nuno Lopes, Hannes Magnusson, Georg Richter, Damien

Seguy, Jakub Vrana, et al. - ed. Peter Cowburn // PHP Documentation Group. -

http://php.net/manual/en/ref.xml.php.

22. PTC Community: Electrical Engineering [Электронный ресурс] : Режим

доступа : https://www.ptcusercommunity.com/community/mathcad/electrical_eng

ineering/content.

Надійшла у першій редакції 29.03.2016, в останній - 25.04.2016.

