BicHuk XapkiBcbkoro HawjoHanbHoro yHisepcuteTy iMeHi B. H. KapasiHa, 2016 5

UDC 004.412.2:(004.94+004.438)

Energy Metrics: an experience in assessment of programs
developed within a mathematical package

AV Borovinskiy®, AV Gakhov?, VO Mishchenko®
!v. Karazin Kharkiv National University, Ukraine
*ferret go GmbH, Germany

The Energy Analysis for software systems is a complex of static analysis methods
aimed to assess software reliability, complexity and benefits. It is based on a range of
consistent thermodynamic analogies and uses experience from successes and failures
of M. Halstead metrics. An important feature of this direction is that it can be applied
to various forms of programming calculations. However, every new form requires to
re-define the primitive characteristics needed for evaluation of meaningful metrics,
and such definitions are already known for some traditional programming languages.
In this work we have investigated XML format of PTS Mathcad and defined such its
primitives as length, vocabulary and potential volume

Key words: software quality metrics, static methods, Energy Analysis, computer algebra systems,
Mathcad, XML, energy balanced software.

Eneprernunnii aHaii3z mporpam - KOMIUIEKC METOJIB CTAaTHYHOTO aHAJi3y, HAIICHUX
Ha OLIHKY HaIiHHOCTI, CKJIaQHOCTI Ta IepeBar MporpaMHUX CHCTeM. BiH cTBOpeHmit
Ha OCHOBI TOCIIJTOBHHX TCPMOJMHAMIYHHMX aHAJOTiH, BUXOASYM 3 JOCBIAY yrmad i
HeBaad MeTpuk M. Xoscrena. BaxinBoro pucoro IbOTo HANPSIMKY € Te, [0 BiH MOXe
3aCTOCOBYBATHCH IIPU Pi3HHUX (opMax mporpamyBaHHs oOuncieHs. OnHak s Oyb-
AKOi HOBOI (opMH MOTPIOHO 3aHOBO BHU3HAYATH NPUMITHBHI XapaKTEPUCTUKH,
HEeOoOXi/IH1 AT OL[IHFOBAaHHS 3MICTOBHUX METPHK. Taki BU3HAYCHHS BiIOMI UL ACSIKAX
TpaJuLiiHUX MOB MporpamyBaHHs. Y poOoTi gocmimkeno XML ¢opmar makery PTS
Mathcad u BU3HaY€HO TaKi MIPUMITHBH SIK JOBXKHHA, CJIOBHHK 1 MOTCHI[HHUN 00°€M.

Knrwouosi cnosa: mempuxu axocmi [13, cmamuyni memoou, enepeemuynuil aHais, Mamemamuyti
naxemu, Mathcad, XML, enepeemuuno 30a1anHco8ana npocpama.

OHepreTuyecKuii aHaaM3 MPOrpaMM — KOMIUIEKC METOJIOB CTATUYECKOrO aHalu3a,
HAlleJICHHBIX Ha OLEHKY HAaJE&KHOCTH, CIOXXHOCTH U IPEUMYIIECTB NPOrpPaMMHBIX
cucteM. OH cO3/1aH Ha OCHOBE IIOCIIEAOBATEIBbHBIX TEPMOANHAMHUYECKIX AHATOTHH,
UCXOAsl M3 OmbITa ynad U Heynad merpuk M. Xoncrema. Baxnoit yepToit 3TOro
HalpaBlICHUs] SIBISE€TCS TO, YTO OH TMPUMEHHM TIpH pa3HBIX (opmax
MPOTPaMMHPOBaHMA BeIYHCIeHIA. OHAKO I BCIKOH HOBO# (hOPMBI HY)KHO 3aHOBO
ONpeeNsATh INPUMHUTHBHBIE XapaKTEPHCTUKH, HEOOXOAWMBIE JUI1 OLICHMBAHHUS
colep)KaTeNbHbIX MeTpUK. Takue omnpeneneHus W3BECTHBI JUII HEKOTOPBIX
TPaANIMOHHBIX S3BIKOB INporpaMMupoBanus. B pabore umccnenoBan XML ¢dopmar
nakera PTS Mathcad u onpesiesieHbl MPUMHUTHBBI AJHHBI, CJIOBapS ¥ MOTEHI[HAIBHOTO
00BéMa.

Kniouesvie cnosa: mempuru xavecmsa 110, cmamuyeckue memoobl, SHepeemuiecKuti aHaius,
mamemamuyeckue nakemot, Mathcad, XML, snepeemuuecku céarancuposannas npozpavma.

1 Introduction

The Energy Analysis for software systems is a branch of software quality control
[1] that consists of static analysis methods aimed to assess the reliability, complexity
and benefits of such systems. These methods can be considered as the modern
development of M. Halstead’s Software Science ideas [2]. The direction of such
evolution has been inspired by the theoretical thermodynamics [3]. Along with this,
the Energy Analysis is based on the experience gained from investigation and usage of

© Borovinsky AV, Gakhov AV, Mishchenko VO, 2016

6 Cepis (MaT.mogentoBaHHs. IHhopmaLliiHi TexHonorii. ABTOMAaTIU30BaHi cUcTEMM ynpaBniHHs, Bum. 29

M. Halstead’s metrics (e.g. [4-6]) as well as metrics of the Energy Analysis itself [7-

11].

The important advantage of both the Halstead’s metrics and the Energy Analysis
one is their independency of the software representation, whichever it is - textual,
hierarchical, or even graphical. The downside is that, for each programming system,
there is a need to develop (or even strictly define) a set of primitive characteristics to
base metrics on. It is not a trivial problem even for “classical” procedural
programming languages, mainly because of certain level of solution uncertainty. So,
for new programming languages, the definitions have to be coordinated with already
developed ones. This task has been solved for early-generation programming
languages (60’s-70’s of the last century) and for modern languages, such as Ada, C++,
Fortran, and Java [2, 4, 12-14, 11, 10]. Recently, such methods have been developed
for such modeling languages as UML [15], but they are not ready for practical
applications at this stage. For the XML-based sources, the Energy Analysis metrics
have not been applied yet, but such problem has already raised for Android
applications [10]. In [16] and [17], Halstead’s metrics were used to evaluate projects
that contained XML sources, however, in the first work, its authors concluded that
such metrics are inappropriate for their use case; and in the second work, the metrics
were used for the non-XML sources only.

Some custom forms of programming could also be found in popular general-
purpose computer algebra systems. In this article we consider one of such systems -
PTS Mathcad 14 [18] that offers a WYSIWYG interface and the ability to utilize a
total user experience in the form of a file that contains both the program and the
results of calculations.

The main goal of the current research is to develop ways for the automatic
evaluation of Mathcad programs in order to estimate costs of creation, risks of
programming errors, understandability, and forecast the maturity level. Note, that the
one-file form of the Mathcad programs simplifies formulas for the energy metrics and
makes some of them close to Halstead’s metrics.

As the metrics which help to achieve our goal, we’ve selected the following:
“difficulty measure” and “volume” (both are introduced by M. Halstead),
“development difficulty”, “programming work™ (in this case they are just a
rectification of the Halstead’s metrics “difficulty” and “effort”), “specification energy”
(evaluated from the Halstead’s “approximation effort”, but in case of Mathcad isn’t
equal to it), and, finally, “energy balance”, that is specific for the Energy Analysis.

To estimate such metrics, we use the generic estimation schemes from the Energy
Analysis [1, 3, 4] together with specific methods for Mathcad programs to define
primitive characteristics (or simply - primitives).

e The first from such primitives is the observed program length [5] or simply length
N - number of used semantic atoms counting all their occurrences. Halstead called
such atoms as tokens. The second - program vocabulary or simply vocabulary 7 -
the alphabet of unique programming symbols. The third (but last in sense of its
importance) primitive is the differentiation of the units and the vocabulary to the
sum of operators and operands. Such differentiation was very native in Halstead’s
times, but nowadays it quite often hits contradictions that is reported by many
researches [1,3,4]. Finally, the fourth (but the most important one) — architecture

BicHuk XapkiBcbkoro HawjoHanbHoro yHisepcuteTy iMeHi B. H. KapasiHa, 2016 7

temperature, that can be seen as the Halstead's potential volume in such a few
cases when it can be defined uniquely [1-4]. In most cases, we call the architecture
temperature as a potential volume and define as V* just to keep the continuity of
the terminology.

e According to our goal, the main tasks of the research can be formulated as
follows:

e to develop methods for estimation of the primitives for Mathcad programs;

e to develop a way for automatic calculation of the energy metrics for Mathcad
programs;

e to check if the expected regularities for Halstead's and energy metrics are fulfill on
samples of programs from different authors and sources.

2 Application domains and regularities related to the metrics
We start by refreshing the well-known definitions of the Halstead’s metrics -
volume, difficulty and effort:

V =Nlog,n or B=V/Vy, (Vg=3000 bit-sym), (2.1)

b= N2 '771* , (7, * - is a constant equals to 2 bit-sym) (2.2)
m2-m

A=D.V , (2.3)

where N, N, - number of tokens and operands in the program (or program module);
n, ny, 1, - vocabularies of tokens, operators, operands.

Note, that there is no standard selection for names and denotations of the
Halstead’s metrics. In our work we use names from IEEE [5], but denotations are
taken from [2, 4]. In (2.1) the alternative dimensionless metric number of errors B is
the only metric in the strictest sense, but at the same time the Halstead’s volume is
playing an important role in definitions for other metrics, therefore, we can assume
that (2.1) defines 2 different forms of the same metric.

M. Halstead introduced the following elementary primitives:

N, Nla N21 771 7711 7]2 (24)

but there are only 4 functionally independent among them. However, how it was
discovered by Halstead and confirmed by other researchers on many examples, such
primitives have another, statistical, connection - there is a correlation between N and
the value that the standard [5] calls estimated program length:

N = N(1,772) = 1095 71 +172 1095 7. (2.5)

In many experiments performed in 70’s of the last century with samples of programs
written in Algol, Fortran, PL/1, etc., it was observed a close statistical relationship

between N and N. For instance, on samples of 10-20 [2] the values of the
correlation coefficient were around 0.95 and more. As reported by another researcher
in [4], with the large sample (about 1.6-10%) the relative difference between these
values for average-sized modules was less than 6%. Therefore, in experiments one

8 Cepis (MaT.mogentoBaHHs. IHhopmaLliiHi TexHonorii. ABTOMAaTI30BaHi cuUcTEMM ynpaBniHHs, By, 29

shouldn’t use more than 3 different Halstead’s metrics, based on the primitives (2.4),
at the same time.

As a guide to clarify the primitives’ definitions for new languages could be used
the fulfilment of the Halstead’s program length equation [15]. However, as it followed
from the English prose example [2], in a general case the Halstead’s program length
equation should be considered in the following generic form:

3 s : Corr(N, N(7,,7,);$)> 05, 2.6)

where S —a large sample of programs (modules) writing on a some language (at least
20 modules, according to [2]);
Corr(x,Y,S) - correlation coefficient between x, y on sample S;

(Note, that the universal quantifier V is considered here not literally, but in the sense
that for any random sample of different modules it’s unlikely that this condition will
be violated). At the same time, it’s appropriate to estimate the Halstead’s redundancy
factor k [2] by minimizing the average error U(k) of the module’s length prediction
over its estimation for the base sample S:

Avr | [N (k7 ki72) =N
U(k) = > min. 2.7
(k) S N " (2.7)

where Avr — the sample’s average.

In complex software systems that consist of many modules the Halstead’s volume
has to be corrected according to the intermodule connections and order of their
development. Such correction could be achieved by introducing metric volume of
development. The program difficulty metric becomes problematic in this case because
it was proposed [2] in assumption of the module’s self-sufficiency, thus, in the Energy
Analysis it’s considered as an alternative value to avoid errors in module’s difficulty
analysis (the effort, that derive from this metric, is totally ignored by us). In such cases
when programs on the certain programming language can’t be multi-module, then the
importance (2.2) for control purposes is increasing, but the metric (2.3) isn’t
considered anyway during the energy analysis, except technical needs.

Finally, the last primitive characteristic - the potential volume:

V= n*logs (%) (28)

or, up to evident mathematical transformation, * — the number of the block’s formal
operators, that in the Energy Analysis is defined as:

n*=2+p+P2+i1-d2, (2.9)

where p; — number of configuration parameters;

p> — humber of calling parameters (incl. output of the function, if any);

j1 — number of 1/O operations;

j» — number of files used by 1/O operations.

The correctness of such definition opens the way to use in practice of the Energy
Analysis the formula of M. Halstead’s “theoretical” metric of difficulty:

BicHuk XapkiBcbkoro HawjoHanbHoro yHisepcuteTy iMeHi B. H. KapasiHa, 2016 9

D=WN* , (2.10)

where W — development volume for the module (equal to V, if only 1 module exists).

The programming effort metric implements the Halstead's idea that the
programmer’s effort related on the difficulty of the program understanding multiplied
by the potential number of programming errors it may contain:

A=D-W (2.11)

The specification energy for a single module with many non-grouped blocks (as it
takes place in Mathcad) can be found as:

(V*)3/)b2 whenm <5

= 2.12
(\/*)3/22(rg+0.5)2whenm25 (2.12)
rae m — the number of non-grouped blocks of the module;
/ —the language level by Halstead.
As soon as everything above is calculated, we can estimate the most important
metric in the Energy Analysis, the energy balance:

E-A

" maxE, A) (2.13)

q

This metric provides the prediction of the balance between architecture design process
and the process of design implementation in the code during the software
development. Particularly, in the decimal representation of the metric (2.13) the first
significant digit should be different from 9 for the well-balanced case.

An important regularity can be seen on random samples of programs that are
developed in the same language (sometimes with additional external restrictions, e.g.
also developed for the same application domain) — values (2.13) are randomly
scattered around zero, however, with significant deviations. Such regularity was
noticed, in fact, by M. Halstead for single-module programs without internal blocks

[2]. However, he had hypothesized the value (\/*)3 / A% asan approximation to effort

estimation that wasn’t confirmed afterwards [4]. Similarly, to the program length
equation in form of (2.6), such regularity, in general, requires a normalization
constant. As such constant we can use A (2.12), however, then its value may be
different from the Halstead’s language level [19], that is evaluated on the basis of
other considerations.

3 Estimation of elementary primitives

The concept of tokens in the source codes has been introduced by M. Halstead [2]
to define alternative choices available to the software developer on each step of the
development. For classical programming languages, as candidates on such role could
be considered keywords and operation signs (incl. inseverable combinations),
numerical literals, simple identifiers, etc. However, there are additional nuances for
software development using general-purpose computer algebra systems (or simply,
mathematical packages). Such development process could be followed by the

10 Cepisi¥MaT.MoaentoBaHHs. IHhopmaLliiiHi TexHonorii. ABTOMaTWU30BaHi CUCTEMM yNpaBmiHHSY, BUN.2Y

immediate interpretation of inserted commands, simultaneous results output, it could
also use graphics (mostly, produced by the developer and don’t consist of sequences
of some limited alphabet, but also could contain complex mathematical formulas). A
natural representation of such structure is a hierarchy. The developer of a computing
program for some mathematical package usually consequently selects tokens to put
into the program, and, in fact, decides at each step whether to continue putting them at
the current hierarchical level, create a new (deeper) level, or to finish the current layer
(and maybe some other existing layers as well). Hierarchical structures can be mapped
into some sequential text, for instance, using such mapping formats as XML and
JSON. A Mathcad program is stored in .xmcd file that contains the XML
representation, included a metadata for its execution in the Mathcad environment and
the logic of the programmed calculations. The choice between the alternatives during
the running process of Mathcad calculations is hard to describe formally, but it can be
compared with the choice which would have to make the developer while building the
logical part of .xmcd file for the developed program manually instead of using the
Mathcad environment. We hypothesize that these two development processes (real and
imaginary) are equivalent in terms of quality characteristics reflected in energy
metrics (assuming that imaginary process is performed by a person, who also is
imaginary and is as good in .xmcd files arrangement, as the real developer is in
Mathcad).

Based on this hypothesis, we have built a projection of the “full” language for
.xmcd files on such its part that is responsible for calculations by user’s algorithm, that
also allows us to transform .xmcd files into a hierarchically structured text. According
to the hypothesis, such the algorithm’s representation is the formalized Mathcad
program. The process of obtaining such representation we call the .xmcd cleaning. It
includes deleting all tags and attributes that are additional to computation itself, such
as XML metadata, references to colors, images positions, etc. The adapted file must
consist only of constructions of the following types, which contain exactly one token:

<regions> text </regions> , (3.1)

<ml: keyword {ml-option} > text </ml: keyword>, (3.2)
<result > text </result > , (3.3)

<ml: operator > , (3.9

where elements written in italics are not parts of the tokens and added only to explain
the Itoken usage. It must be clear that text may consist of the same or “other” lexemes
of the formal language of adapted.xmcd files. The mentioned “other” tokens include
such token kinds as

identifies , integer numbers, real-number , strings, (3.5

and also:
1) the keywords that enter the ml-tags by pairs, such as

define, id, real, function, boundVars, (3.6)

and dozens of other;
2) ml-options such as

BicHuk XapkiBcbkoro HawjoHanbHoro yHisepcuteTy iMeHi B. H. KapasiHa, 2016 11

xml:space="preserve" , symbol=string, [prefix-Jalgorithm=string, (3.7)

and others (specific to the ml-tag’s keywords);
3) some prefixes and postfixes of some ml-options, e.g.

auto- (ethe prefix of the last option, which shown in (3.7)) ; (3.8)
4) ml-operators such as
plus/, div/, neg/, pow/, greaterThan/, (3.9

and many others.
For example, consider such .xmcd file:

<region region-id="5" left="12" top="50.25" width="55.5" height="27.75" align-
x="47.25" align-y="66" show-border="false” show-highlight="false" is-
protected="true" z-order="0" background-color="inherit" tag="">
<math optimize="false" disable-calc="false">
<ml:define xmlIns:ml="http://schemas.mathsoft.com/math30">
<ml:id xml:space="preserve">lambda</ml:id>
<ml:apply>
<ml:div/>
<ml:real>1</ml:real>
<ml:real>10</ml:real>

</ml:apply>
</ml:define>
</math>
<rendering item-idref="5"/>
<[region>

The result of its cleaning will be a text file that contains:

<ml:define>
<ml:id xml:space="preserve">lambda</ml:id>
<ml:apply>
<ml:div/>
<ml:real>1</ml:real>
<ml:real>10</ml:real>
</ml:apply>
</ml:define>

The cleaning process is implemented in EA_XMCD_Analyzer, developed by us in
PHP that has useful features for such tasks [20]. To calculate elementary primitives
(2.4) we use SAX-parser [21] (Simple API for XML), from the libxml library included
as an extension in PHP and enabled by default. For instance, to search opening and
closing tags corresponding to programming symbols-operators, we use built-in
function xml_set_element _handler, and to search symbols-operands we use
xml_set_character_data_handler.

12 Cepisi¥MaT.MoaenioBaHHs. IHhopmaLliitHi TexHonorii. ABTOMaTWU30BaHi CUCTEMM yNpaBmiHHSY, BUN.2Y

4 Estimation of potential volumes

The adapted code in a file of some Mathcad program is the only module of this
program, but its internal architecture is usually nontrivial. Blocks could be represented
by such constructions as functions, integrals, derivatives, etc. For instance, the
construction below defines a block - the function, that returns a value and one explicit
parameter:

<ml:function>
<ml:id xml:space="preserve">Init_Array</ml.id>
<ml:boundVars>
<ml:id xml:space="preserve">sep</ml:id>
</ml:boundVars>
</ml:function>
<ml:program>

<ml:return>
<ml:id xml:space="preserve">vec</ml:id>
</ml:return>

</ml:program>
There are 2 formal parameters for this block: the first is defined by the tag
<ml:boundVars>, and the second — by the output. We also use PHP to find such
structures and calculate all their parameters.

It’s more complex question how to deal with files and input/output operators,
because the Mathcad semantics differs from the traditional procedural programming
languages. In early versions of EA_XMCD_Analyzer we didn’t consider such case at
all.

First of all, in the adapted .xmcd files we can consider as input/output operators the
structures of assignments and calls, that were used by the developer to set values for
constants and variables in Mathcad. As an example, review the following XML.:

<ml:define>
<ml:id xml:space="preserve"> a0 </ml:id>
<ml:real> 1.0 </ml:real>

</ml:define>

Such structures could be also found inside of functions:

<ml:localDefine>
<ml:id xml:space="preserve"> max </ml:id>
<ml:apply>
<ml:absval/>
<ml:apply>
<ml:indexer/>
<ml:id xml:space="preserve"> v </ml:id>
<ml:id xml:space="preserve"> ¢ </ml:id>
</ml:apply>
</ml:apply>
</ml:localDefine>

BicHuk XapkiBcbkoro HawjoHanbHoro yHisepcuteTy iMeHi B. H. KapasiHa, 2016 13

The lexeme/paired tags <result> text </result> is to be considered as the output
statement because they are generated in Mathcad source code when the program
developer writes “<variable> =", having in mind to output the current value of a
variable.

In the second version of the program EA_XMCD_Analyzer, the input/output
operations were covered by the identification of constructions that are similar to
described above. That made possible to calculate the value j; required in the formula
(2.9), while the value of j, is chosen of 2, 1 or 0 depending on the presence or absence
of constructions for keyboard input or display output.

5 Calculation

In the preceding sections, we have described the developed methods; and further
we explain how they constitute the technology of automated assessment of the energy
metrics (Fig. 1).

At the beginning, the selected (uploaded) text file progname.xmcd (where
progname is the analyzed file’s name) is subjected to the purification procedure
described in section 3. The resulting adapted xmcd-progname.xml file with a
Mathcad computing program is the source of data for two processes. The first process
calculates the elementary primitives (2.4) and dumps them into a text file
tokens_xmcd-progname.txt. The second - finds formal parameters of blocks and
calculates the potential volume. Data contained in the two files allow (Fig. 5.1) to
calculate all Halstead’s (2.1)-(2.3) and energy (2.10)-(2.13) metrics discussed above.

Load Text file Clean Text file
[xmcd] [adapted xmcd]

Metrics
[txt]

Tokens = Find Length
[txt] (and Vocabulary

Evaluate D,
DE, A A q

YW* of all bloks Calculate Assess blocs
[txt] WY metric parameters

Fig. 5.1 The energy metrics assessment bases on .xmcd file

Out of these results we build the file sss_xmcd-progname.txt.

6 Check expected regularities for the metrics on an experimental sample

Despite the fact that for the Energy Analysis purposes splitting of specific program
lexemes into statements and operands does not matter, it is interesting to compare the
lexical features of different programs using the Halstead’s length equation. We have
selected those programs, which implement different computational methods. Table. 1
illustrates the results of primitives assessment (2.4) for the sample S23 of 23 Mathcad
programs, selected from sources [18-21]. The table shows characteristics obtained for
programs with the maximum and minimum length, as well as the average for the

14 Cepisi ¥MaT.MoaenioBaHHs. IHhopmaLliitHi TexHonorii. ABTOMAaTWU30BaHi CUCTEMM yNpaBmiHHSY, BUM.2Y

sample (an asterisk marks the average values defined as medians; in all other cases
they are the arithmetic average).

We have been noticed the systematic and meaningful violation of the length
equation (in its original form) for almost every considered Mathcad program (see the
2nd column in the Table 1), but the requirement (2.6) has been met.

Table.1 Reference values for the Mathcad programs in sample S23

The case N/N7™ | NN B DI N A* A '}
max values | 3.00 | 3.69 38.2 | 230 | 300.1 | 1073 4.36 0.96
avr values 0.68 | 0.85 75 |69 2.19* | 128,2* | 0,53* -0.98
min values 0.19 | 0.24 0.7 |10 0.49 0,18 0.12 -0.26

The length N (the 3rd column in the Table 1) is obtained for the redundancy
factor that was found from the condition (2.7):

Corr(N,N;S$23) =051 k=12 (U(k)=0.63) . (6.1)

Thus, in this case we deal not with the redundancy, but with the lack of the alphabet;
and the average N by Ny "prediction” error is 63%, which is worse than the 40% of
the worst cases for the procedural languages [4] . We want to note that if to swap the
roles of N and N in (2.7), the best value will be different: k = 2.12 (average error
equals 60%).

It is also valuable to find out how big is the difference between assessment of
difficulty classes in terms of metric (2.2) and the reference values calculated long time
ago (1979) for the completely different language (PL/S). For the sample S23 we’ve
obtain:

AVr(N, /np) +Std(N, /ny) =7.52, Avr(ny) =27.87, Std(ny)=9.90, (6.2)

where Avr(x) is the average value of the sample x;
Std(x) - is the standard error of the same sample.

Then, following the known procedure, detailed in [4], it’s possible to calculate the
boundaries separating the difficulty classes, both standard and optional [9] (for
comparison, in brackets are given the known estimations for such boundaries
calculated for the language PL/S [4, 5, 9]):

D, =105 (115, D, =142 (160), Dz =216 (250),
Dy =291 (340), Ds =365 (430) . (6.3)

We can see that there is no fundamental difference between the obtained
assessments for Mathcad programs and the corresponding known values. Also, 91% of
the programs in the sample S23 belong to the difficulty class 0, only one - to the class
1, and the most difficult program belongs to the class 3. This is in contrast to the
known examples of program modules written in universal procedural languages (e.g.
[9]). It could happen that we chose mostly simple programs, but also it is possible that
Mathcad is not intended for complex calculations more typical for universal
procedural languages. If the result is not just a coincidence, we can expect that the

BicHuk XapkiBcbkoro HawjoHanbHoro yHisepcuteTy iMeHi B. H. KapasiHa, 2016 15

majority of the programs in the sample, being simple, were well-thought-out by their
authors and, hence, they are energetically balanced.

Let us try to find out the energy balance metrics distribution over our experimental
sample. The values of language level / lay in the range from 1.0 to 2.0 for high-level
languages and for low-level ones between 0.5 and 1.0 [2]. For the Mathcad language
we would expect 4 = 1.0, but its estimation obtained over the sample S23 by the

standard assessment method (iz 2.2) [4] and, especially, by the Halstead’s
"theoretical" method (A1 * = 128) are suspiciously big (Table 1). Assuming that S23 is
representative with respect to the language level and reflects a regularity for the metric
g (2.13) mentioned at the end of Section 2, it makes sense to consider for all programs
such expression

A=EQ/A , (6.4)

where E(A) is an estimation of (2.12), in which language level 1 is indicated in

parentheses (e.g. 1 in (6.4)). If to take for the language level the median of these
values, then exactly the half of the programs will have q > 0, and for another half q <
0, which is unlikely. We performed a different (subjectively selected) procedure: to
exclude 20% of the biggest and smallest values obtained by (6.4). The rest gave a
fairly reliable first interval approximation to the expected language level:

0.314 <4< 1.385 . (6.5)

Unfortunately, this range is too wide. Let us consider its center 1; = 0.849; then — the
widest range of 4 variations, in which the deviation from A; in both directions (bigger
or smaller) doesn’t change the interrelation between the signs of metrics q in our
sample. This is our "satisfactory” but rather hypothetical interval approximation:

0.845<%<0.93 . (6.6)

(Note, when it’s necessary to use a particular value, it makes sense to take the center -
0.89).

Such choice of the language level has reduced the number of energetically unbalanced
programs to just 2 out of 23, that is consistent with the assumption of maturity of most
programs in the sample. Also, 39% of the programs has g, > 0 that shows the effect of
metrics values scatter around zero. If we choose for the level any value of the interval

(6.5), the most of programs stay balanced. Let us note that if assume A = A then only
two programs (9%) will have g > 0, and the half of programs will be marked as
unbalanced (12). This hardly meets our expectations, but the reliable conclusion about
the language level requires much more statistical data to be processed.

7 Conclusion

In this article we have shown that for programs developed in Mathcad it is possible
to create an accurate definition of Halstead’s primitives that follows common practice
of Halstead’s definitions and the definition of the potential volume from the Energy
Analysis. The research has been done under the hypothesis about correspondence
between XML-oriented representation of the program and its interactive development
process in Mathcad.

16 Cepisi¥MaT.MoaentoBaHHs. IHhopmaLliiiHi TexHonorii. ABTOMAaTWU30BaHi CUCTEMM yNpaBmiHHSY, BUM.2Y

Furthermore, we have demonstrated the possibility to estimate the primitives in an
automatic mode and, consequently, to create a program solution for the developed
assessment method.

The test of the method on an experimental sample for Mathcad programs gave
preliminary conclusions about relatively weak manifestation of the regularity known
as Halstead’s length equation in such case. It makes sense to consider such regularity
in the form (2.7) including redundancy factor that has been estimated by us at the level
of 1.2 (or 2.12 in case of another choice criterion). Note, the value bigger than 1.0
indicates the “insufficiency” of the alphabet in the Halstead’s sense [2].

The tendency of Mathcad programs to be “in average” energy balanced is
detectable for any language level chosen according to our “semi-heuristic” estimation
from the range (6.5).

In the article we have presented a new halstead-like estimation method for
primitive characteristics of the programming process in a mathematical package
environment.

For the first time, the Energy Analysis’ methods have been implemented for a
formal language, which is based on XML and reflects the calculation logic of the
Mathcad package. In addition, these methods are developed in PHP and they allow, in
principle, to provide estimation online services.

REFERENCES

1. Mumenko B. O. Marematuueckas Mozmenb crtwig Software Science mis
METPUYECKOrO aHajM3a CIOKHBIX HayKoéMkux nporpamm / B. O. Mumienko //
Bicauk XapkiBchbKOTO HaIliOHATBHOTO yHiBepcUTeTY: 30. HayK. mpailb. — X., 2004.
— Ne 629. — C. 70-85. — Title in English : Mishchenko, V. O. (2004) The
Mathematical Model in Software Science Style for Measurement of Complex
Scientific Software. — Bulletin of V. Karazin Kharkiv National University, Series
«Mathematical Modelling. Information Technology. Automated Control
Systemsy, 629, 3.

2. Halstead, M.H. Elements of Software Science / Halstead, Maurice H. Elsevier
Publications, N-Holland, 1977. // Operating and programming systems series. —
NY : Elsevier Science Inc. New York. — ISBN:0444002057.

3. Mumenko B. O. CASE-oieHKa KpUTHYECKHMX MPOTPaMMHUX cucTeM. Tom 3.
Onenka kauectBa / B. O. Mumenxko, O. B. Ilomopoga, T. A. ['oBopyrieHko ; mof
pen. Xapuenko B. C. — X : Hau. aspokocMudecknili yH—T «XapbK. aBuall. HH-T»,
2012. — 201 c. . — Title in English : Mishchenko, V. O., Pomarova, OV,
Govorushchenko, TA (2012) Case-assessment of critical software systems.
Volume 1. Quality, ed. Charchenko, VS, Kharkiv: Natonal Aerospase University
named after N.E.Zhukovsky “KhAI”.

4. Shen V.Y. Software Science Revisited: A Critical Analysis of the Theory and Its
Empirical Support / V.Y. Shen, S.D. Conte, H.E. Dunsmore // IEEE
Transactions on Software Engineering. — 1983. — Vol. SE-9, Ne 2. — P. 155-165.

5. 982.2-1988 - IEEE Guide for the Use of IEEE Standard Dictionary of Measures to
Produce Reliable Software. - Institute of Electrical and Electronics Engineers,
1989.

BicHuk XapkiBcbkoro HawjoHanbHoro yHisepcuteTy iMeHi B. H. KapasiHa, 2016 17

10.

11.

12.

Al Qutaish. An Analysis of the Design and Definitions of Halstead’s Metrics /
Proceedings of the 15th International Workshop on Software Measurement
(IWSM'05), Montréal, Québec, Canada, 2005, pp. 337-352.

B. M. I'ogyako B. M. KadectBo TpaHcmaTropa ma0ioHOB IuHaAMHUYecKux html
crpanun ausi Ada WEB cepsepor / B. M. T'onxyuko, B. O. Mumienko, M. M.
Pesnuk, /1. B. llItedan // PanioenextponHi i komm’totepHi cuctemu. — 2012, — Ne
5. — C. 225-229. . — Title in English : V.M. Godunko, V.O. Mishchenko, M.M.
Reznik, D.V. Shtefan. Dynamic generation html pages for ada web server
Radioelectronic And Computer Systems, 2012, 5.

Mimenko B. O. Mogeni Ta xapakTepHUCTUKH OOYHCIIIOBAJIBHOTO KiacTepa, siKi
JIONIOMArafoTh BU3HAYATH HANPSIMKH HOro mojaneimoro po3sutky / B. O.
Mimenko // Bicauk Xapk. Han. yH-Ty., — 2013. — Ne 1058. Cep. «MatemaTnune
MoneroBaHHA. [HQopmariiini TexHoyorii. ABTOMAaTH30BaHi CHCTEMH
ynpasminas», Bumn. 21. — C. 122-131. — Title in English : Mishchenko, V. O.
(2013) Bulletin of V. Karazin Kharkiv National University, — 2013. — Series
«Mathematical Modelling. Information Technology. Automated Control Systems»,
1058, 21.

Mumenko B. O. MeTpuku TpyJHOCTH B OLICHKE HAIEXHOCTH UHCTPYMEHTAIBHBIX
oubnurek u ¢ppeiimBopkos / B. O. Mumenko Bichuk Xapk. Hai. yH-TY., — 2014, —
Ne 1133. Cep. «MarematnuHe MOJCIIOBaHHSA. [H(OpMaIiiHI TEXHOJIOTII.
ABTOMAaTH30BaHi CHCTEMH ympaBiiHHs», Bum. 25. — C. 126-147. . — Title in
English : Mishchenko, V. O. (2014) Difficulty metrics in assessing the reliability
of tool libraries and frameworks. Bulletin of V. Karazin Kharkiv National
University, Series «Mathematical Modelling. Information Technology. Automated
Control Systemsy, Issue 1131, 25.

Murenko B. O. Ucnonb3oBanue sHEPreTUYECKUX METPHUK MPU aHAIM3E KauyecTBa
Android npunoxenuit / B. O. Mummenko, A. 0. Veapenko // Tpyasr XVII
MexnyHapoIHOTO cuMIIo3nyMa «MeToabl TUCKPETHBIX 0COOCHHOCTE! B 3a/1a4ax
Mmaremarnuyeckoir ¢uszuku»y (DSMMPh-2015), 2015. — XapbkoB-Cymbl: H31I.
XapkiBCbKOTO HallioHanmsHOTO yHiBepcuteTy imeHi B. H. Kapaszina, 2015, C. 173-
176. . — Title in English : Mishchenko, V. O., Uvarenko, A Yu. (2015) Proceedings
of the XVII International Symposium "Discrete singularities methods in
mathematical physics", Kharkov-Sumy.

Mumenko B. O. IIpenmymiectBa, 3aTpaTbl U PUCKHM MOIU(HUKALNU peamn3anui
METOJIOB JIUCKPETHBIX 0COOCHHOCTEH ¢ 11esbto onTumu3aiuu / B. O. Murienko, B.
IMaroukwr // Bicuuk XapKiBCBKOrO HAI[iOHAIBHOTO VHIBEPCHTETY
imeni B. H. Kapazina cepis Martematuune MojenoBaHHA. [Hpopmariiii
TEXHOJIOr1i. ABTOMaTH30BaHi cucreMu ynpasminas, 2015. — Beim. 28. — C. 69-76. .
— Title in English : Mishchenko, V. O., Patochkin, B. V. (2015) Optimization of
the methods of discrete singularities: the benefits, costs and risks of implementation
modifications. Bulletin of V. Karazin Kharkiv National University, Series
«Mathematical Modelling. Information Technology. Automated Control Systems»,
2015, 28.

nag_metrics - NAGWare Fortran Tools - f77 Tools [Dxexrponnsiii pecypc]. —
Pexxum nocryma: https://www.lrz.de/services/software/programmierung/toolpack/
nag_metrics.html.

18 Cepisi {MaT.MoaentoBaHHs. IHhopmaLliitHi TexHonorii. ABTOMAaTWU30BaHi CUCTEMM yNpaBmiHHSY, BUM.2Y

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Miller D. M. A software science counting strategy for the full Ada language / D.
M. Miller, R. S. Maness, J. W. Howatt, W. H. Shaw // ACM SIGPLAN Notices.
1987.—Vol. 22, No 5. — P. 32-43.

Mishchenko V. O. Does The Different Definitions Of Ada Program Tokens Have
Significant Difference? / V. O. Mishchenko // Radioelectronic And Computer
Systems. — 2008. — Ne 7 (34) — C. 103-106.

T'onynko B. M. Oco6enHoctu sHepretudeckux merpuk UML aumarpamm / B. M
Toaynko, B. O. Mumienko, A. B. [aceka // BectHuk Xapk. Hail. yH—Ta., — 2013, —
Ne 1058. Cep. "MaremaTtnyeckoe MonenupoBanue. VHpopMauuoHHbBIE
TEXHOJIOTHH. ABTOMaTH3UPOBAaHHbBIE CHCTEMBI ynpasienus”, Boim. 21. — C. 13-19.
. — Title in English : Godunko V. M., The features of the energy metrics of UML
diagrams / Godynko V. M., Mishcenko V. O., Paseka A. V. (2013) Bulletin of V.
Karazin Kharkiv National University, — 2013. — Series «Mathematical Modelling.
Information Technology. Automated Control Systemsy», 1058, 21.

Lassila, Matti. Comparison of two XML query languages from the perspective of
learners / Lassila, Matti; Junkkari, Marko; Kekalainen, Jaana // Journal of
Information Science, 2015. — Vol 41. — N 5. — P. 584-59.

Ming-Chang Lee. Software Quality Factors and Software Quality Metrics to
Enhance Software Quality Assurance Comparison of two XML query languages
from the perspective of learners / Ming-Chang Lee // British Journal of Applied
Science & Technology, 2014. — N. 4(21). — P. 3069-3095.

PTC Mathcad [@nexkTponHbIit pecypc] : Pexum JOCTyTIA:
http://www.ptc.com/engineering-math-software/mathcad.

Mumenko B. O. KomnelooTepHOoe MOAECIHPOBAHUE XAPAKTEPUCTHK CXEM
nporpaMMHbIxX cucteM / B. O. Mumienko // PaanosneKTpoHHbIE U KOMITBIOTEPHBIE
cucrembl. — XappkoB, 2010. — Ne 5 (46). — C. 158-164. — Title in English :
Mishchenko, V. O. Computer Modeling Of Software System Schemes
Characteristics. Radioelectronic And Computer Systems, 2010, 5.

PHP: Hipertext Preprocessor [Dnextponnsiii pecypc] : Pexum mocryma:
http://php.net. — 3aroaoBok ¢ ’KpaHa.

PHP: XML Parser functions [nexrponnsiit pecypc] / Mehdi Achour, Friedhelm
Betz, Antony Dovgal, Nuno Lopes, Hannes Magnusson, Georg Richter, Damien
Seguy, Jakub Vrana, et al. - ed. Peter Cowburn // PHP Documentation Group. -
http://php.net/manual/en/ref.xml.php.

PTC Community: Electrical Engineering [Dnekrponnsiii pecypc] : Pexum
moctyma : https://www.ptcusercommunity.com/community/mathcad/electrical_eng
ineering/content.

Hagiiwna y nepuwin pegakyii 29.03.2016, B octaHHii - 25.04.2016.

