ISSN 2304 -6201 BicHuk XapkiBcbkoro HawjioHanbHOro yHisepcuteTy imeHi B. H. KapasiHa
cepis «MaTemaTnyHe MoaentoBaHHs. IHhopmaLliiHi TexHonorii. ABTOMAaTM30BaHi CUCTEMM ynpaBniHHs», BUNyck 67, 2025 101

DOI: https://doi.org/10.26565/2304-6201-2025-67-10

VJIK (UDC) 004.8

Omelchenko Ihor PhD student, Department of Mathematical Modeling and Data Analysis
Valeriiovych Karazin Kharkiv National University, Svobody Sq 4, Kharkiv, Ukraine,
61022

e-mail: ihor.v.omelchenko@gmail.com;
https://orcid.org/0009-0007-4474-4916

Strukov Volodymyr PhD in Technical Sciences, Associate Professor; Head of the Department
Mykhailovych of Mathematical Modeling and Data Analysis
Karazin Kharkiv National University, Svobody Sq 4, Kharkiv, Ukraine,
61022

e-mail: volodymyr.strukov@karazin.ua;
http://orcid.org/0000-0003-4722-3159

Impact of decoding methods in LLMs on the correctness of agent action
planning in virtual environments

Relevance: The knowledge and skills acquired by Large Language Models (LLMs) from training data can be applied to the
task of action planning for autonomous agents. The classical approach to text generation can violate the syntax of a JSON plan,
making it difficult or even impossible to parse and use such a plan. A potential solution to this problem is the application of the
Grammar-Constrained Decoding (GCD) method, which restricts the set of possible texts for generation according to a specified
grammar.

Goal: To investigate the impact of the Grammar-Constrained Decoding (GCD) method (with and without reasoning) compared
to classical Unconstrained Decoding (UCD) on JSON schema compliance, accuracy, and planning time for various LLMs in
the Minigrid virtual environments.

Research methods: Research methods are computational experiments and comparative analysis. The studied LLM sequence
decoding methods are Unconstrained Decoding (UCD) and Grammar-Constrained Decoding (GCD). The planning quality
metrics used were: syntactic validity (compliance with the grammar/JSON schema), planning duration, and accuracy of plan
generation.

Results: This work proposes the use of Grammar-Constrained Decoding (GCD) for agent action planning tasks that utilize
Large Language Models (LLMs). A dataset of plan examples was prepared for the Minigrid environments: SimpleKeyDoor,
KeyIlnBox, and RandomBoxKey. A comparison was conducted between Unconstrained Decoding (UCD), Grammar-
Constrained Decoding (GCD), and GCD with reasoning across 10 open LLMs (from the Qwen3, DeepSeek-R1, Gemma3, and
Llama3.2 families). Using the GCD method ensured the validity of the generated plans according to the grammar specified by
the JSON schema. A reduction in planning time was achieved for the Qwen3:4b model by a factor of 17-25 and for the
Qwen3:30b model by a factor of 6-8, by limiting the number of tokens in the reasoning chains. On average, the application of
the GCD decoding method improved the accuracy of plan generation.

Conclusions: This research demonstrates that the Grammar-Constrained Decoding (GCD) method is effective in action
planning tasks with LLMs. The GCD method guarantees the syntactic validity of plans according to the JSON schema, which
is difficult to achieve with the UCD method. The GCD method also allows for the flexible determination of the length of
reasoning chains through grammar rules, thereby controlling the planning duration.

Keywords: artificial intelligence, machine learning, deep learning, artificial neural networks, intelligent information systems,
automated information systems, natural language processing, large language model, prompt, decision making, agent, virtual
environment, Minigrid.

How to quote: I. Omelchenko and V. Strukov, “Impact of decoding methods in LLMs on the
correctness of agent action planning in virtual environments”, Bulletin of V. N. Karazin Kharkiv
National University, series Mathematical modelling. Information technology. Automated control
systems, vol. 67, pp. 101-112, 2025. https://doi.org/10.26565/2304-6201-2025-67-10

Ax umuryBatu: Omelchenko 1., and Strukov V. Impact of decoding methods in LLMs on the
correctness of agent action planning in virtual environments. Bicnuk Xapkigcbko2o HaAyioHAIbHO2O
yHieepcumemy imeni B. H. Kapa3zina, cepis Mamemamuune mooemosanus. Ingopmayiiini mexnonozii.
Aemomamuszoeani cucmemu ynpaeninns. 2025, sun. 67. C.101-112. . https://doi.org/10.26565/2304-
6201-2025-67-10

© |. Omelchenko, V. Strukov, 2025
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.26565/2304-6201-2025-67-10
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-4722-3159
https://doi.org/10.26565/2304-6201-2025-67-10
https://doi.org/10.26565/2304-6201-2025-67-10
https://doi.org/10.26565/2304-6201-2025-67-10

ISSN 2304 -6201 Bulletin of V.N. Karazin Kharkiv National University
102 series Mathematical modeling. Information technology. Automated control systems, issue 67, 2025

1 Introduction

The use of language models in agent systems has become an active area of research [1-3]. Agents
operate in environments, perceive the state of the environment through observations, and execute
actions chosen from a list of valid actions for that specific environment. Upon executing a chosen
action, the agent receives feedback in the form of a changed environment state and, possibly, a reward
signal. In each new environment, the agent must find an optimal policy. In the case of deep
reinforcement learning, the agent begins learning with limited prior information about the environment.
Additional prior information about the environment can be obtained without training by using pre-
trained large language models (LLMs). Language models acquire generalized world knowledge from
extensive training text corpora. This knowledge can be applied to specific environments. The task of
planning sequences of actions, particularly abstract ones, is of special interest [4]. The planning
procedure can be performed using language models.

The use of language models as a planning module in autonomous agents requires these models to
have the ability to generate sequences that strictly adhere to a given plan schema. In their early stages of
development, language models emerged as free-form text generators, lacking a mechanism to constrain
generation to a set of texts with a predefined structure. Input and output text is represented as a
sequence of tokens. The set of available tokens is defined by a token vocabulary, which is formed by
training on large text corpora such that tokens consist of the most statistically common character
sequences. However, to successfully solve the planning task, language models must generate token
sequences that conform to a specific grammar.

Language models are trained on the task of next-token prediction in a text sequence. Pre-trained
language models can be used for various tasks without fine-tuning through the method of In-Context
Learning [5], where the model receives textual demonstrations of correct behavior, based on which it
determines a generalized approach for solving the task. One of the approaches to generating structured
data is adding examples of structured data to the training set. This enabled language models to generate
structured data such as JSON, XML, and code in many programming languages with high accuracy [6].
However, this method still allows for errors in structured data generation, which lead to parsing errors
and the inability to convert the generated text into data.

The need to generate strictly structured data led to the application of grammar-constrained decoding
(GCD) methods to language models [7-9]. Grammar-constrained decoding ensures that text generated
by language models conforms to a predefined grammar. The GCD method uses a formal grammar to
describe the valid strings in a language. To describe the formal grammar, BNF (Backus-Naur Form) is
used, which is a standard notation for defining the syntax of formal languages.

GCD modifies the probability distribution of tokens from the vocabulary such that tokens forbidden
by the formal grammar receive a zero probability of being chosen. The generated sequences are always
valid according to the schema and plausible according to the token probability distribution computed by
the language model. GCD allows one to abstract away from the implementation details of the decoding
mechanism and concentrate on developing a grammar that describes the sequence’s structure. The
grammar is represented in a declarative form and guarantees that the generated sequences will always
conform to the schema.

2 Problem formulation

2.1. General problem formulation

Let V be a finite vocabulary of tokens. A language model with parameters 6 defines a conditional
distribution pg (W;11|w1.;), Which describes the probability of the next token w;,, €V following a prefix
wy.,;EVE, where V' is the set of all possible prefixes of length i and wy.;=(wy, ..., w;) is the prefix of the
generated sequence of tokens.

In the case of unconstrained generation, the language model computes the probability distribution
over tokens as a softmax function of the logits [10]:

PO,) C{ A OT)),
TR Y vev exp (Lo (vlwy))

where the logit £ (w;1|wy.;) is the output of the final layer of the neural network for an arbitrary token
w;, 1. Note that the right-hand side of the given equation is the definition of the softmax(#) function for
a vector of logits #.

ISSN 2304 -6201 BicHuk Xapkiscbkoro HauioHanbHoro yHiBepcuteTy imeHi B. H. Kapasiva
cepist MatemaTtuyHe MogentoBaHHs. [HopmaLiiHi TexHonorii. ABTOMaT30BaHi CUCTEMM YNpaBRiHHS, BUNyck 67, 2025 103

At each step i, one token is selected from the conditional distribution py(-). Various methods for
token selection exist; the simplest is selecting the token with the maximum probability. The token
selection procedure can also include a temperature parameter 7, which controls the flattening of the
token probability distribution. This results in an increased probability of selecting low-probability
tokens and a decreased probability for high-probability ones. A lower temperature value leads to the
generation of more deterministic sequences, whereas a higher temperature results in more diverse
sequences. At the temperature value of t=0, a non-zero probability remains only for the initially most
probable token, and the generation becomes deterministic.

Decoding at step i can be expressed as follows:

Wipq ~ p(gr) (Wiy1|lwy.i) (stochastic sampling), (2.1)
Wi+1:a7”gmg13€pér) (Wiy1|lwy.;) (deterministic sampling). (2.2)
w

For tasks that require the generation of texts with a strict structure, such as planning tasks, a lower
temperature value reduces the probability of selecting tokens that violate the structure. In the case of
probabilistic token selection, a language model can be made deterministic by fixing the initialization of
the random number generator. Under these conditions, for a fixed input, the language model will
produce a fixed output. In such a case, the language model can be represented as a deterministic
mathematical function s,,.=gg(sin;7), Where s;, and s, are input and output token sequences,
respectively, and r is the initialization value for the pseudorandom number generator. For a fixed r and
a fixed input prefix, the model generates a deterministic output.

To solve a task in an environment, it is necessary to sequentially select and execute actions that lead
to the desired goal. Actions in the environment have a sequential nature: the success of subsequent
actions depends on the outcome of previous actions. The planning task can be formulated as follows.
Let the agent operate in an environment with discrete time steps t=0,1,2, At each time step t, the
language model takes the prompt s,.,mpc and the observation o, as input and computes a new text
SEqUENCE Syt~ This sequence is a tuple (Sreasoning,ts Splan,t)s WHEIe Sreasoning,: 1S @ String containing the
model’s reasoning (which may be empty), and spjan, IS @ string containing an action plan formulated
based on the instructions in the prompt s;,.,mpc and the observation o;.

When a language model strictly adheres to the grammar of a plan, the generated sequence takes the
following form:

Splant=(at,1, At2,) At)
where each action a€A, and A is the set of valid actions in the environment.

The task of plan generation imposes structural constraints on the generated output s, First, the
plan must be represented as an ordered sequence of discrete actions. Second, in any specific
environment, the set of valid actions may vary, and each action has its own signature — a name and a
set of parameters. This imposes a requirement on the language model that the generation process must
produce a sequence structured as a series of actions, where each action conforms to one of the valid
action signatures.

When selecting the next token according to the probability distribution, the chosen token may
violate the plan’s schema. To address this problem, the Grammar-Constrained Decoding (GCD) method
can be applied, which restricts the selection of tokens to only those that do not violate the grammar.

In this work, we investigate the impact of Grammar-Constrained Decoding (GCD) method on agent
action planning using language models in the Minigrid virtual environment.

Let G denote a context-free grammar that specifies the valid textual sequences of plans. We denote
the language as L(G)SV", where V" is the set of all possible strings formed from tokens in the
vocabulary V. At step i, for a prefix wy.;, we introduce the set of allowed tokens:

C(wy.)={WEV|IceV :w,,; - w - EL(G)},
that is, a token w is allowed if there exists some sequence continuation ¢ such that the concatenation of
sequences wy.; - w - ¢ belongs to the language L(G) with the context-free grammar G.

Then, Grammar-Constrained Decoding (GCD) restricts the possible tokens at step i to the set

C(wy,;). After applying temperature, we obtain the masked logits:

250 (wiwy)= {t’((;) Wlwyy), ifwel(wy,);
' —00, otherwise.

ISSN 2304 -6201 Bulletin of V.N. Karazin Kharkiv National University
104 series Mathematical modeling. Information technology. Automated control systems, issue 67, 2025

The probability distribution over tokens is obtained by applying the softmax function to the masked
logits [9]:

exp (37 (wlwy,)) (2.3)
Yvev exp (L350 (Wlwy))

Decoding is performed by selecting the next token from the masked distribution (2.3) either
stochastically (2.1) or deterministically (2.2).

,C
pSO (wiwy)=

2.2. Studied Environment
For the decision-making task, a set of environments from the Minigrid library was selected. This
library provides a toolkit for creating two-dimensional environments that require sequential action
planning. We used three environments of increasing complexity:
o SimpleKeyDoor: The agent must find and pick up a key which position is not known in
advance, then find a door, navigate to it, and open it. This is a basic sequential planning task.
e KeylInBox: The key is located inside a box. The agent must first find and open the box, take the
key, and then find and open the door. This increases the plan length.
e RandomBoxKey: The key can be located either inside a box or outside of it. The agent has to
either find and pick up the key, or find and open the box. This creates a branching of choices.
Obijects in the environment have attributes such as object type, position, and color. The observations
from the environment include colors, but the actions selected by the agent do not. In the environments
used, the color of the door and the key always match; therefore, color is not used in the planning
schema.

2.3. Language Models and Tools

The application of language models in agents imposes several requirements. These include high
speed of sequence generation to ensure agent responsiveness and the ability to execute language models
on low-performance devices for use in robotic systems. The following are examples of language models
that are freely available and can be executed on accelerators with low computational power. The Qwen3
family of language models [11] includes models with parameter numbers ranging from 0.6 to 235
billion. These models support a reasoning mode that allows for the dynamic scaling of computational
resources to improve task performance. The Qwen3 family of language models demonstrates good
performance on many benchmarks for code generation, mathematical reasoning, and agent tasks. The
Gemma 3 family of language models [12] is designed to run on accessible accelerators with limited
memory, such as personal computers with graphics cards. The Llama family of language models [13] is
also freely available and can be executed on limited computational resources. Models from the
DeepSeek R1 family [14] are trained using the distillation method from a large version of DeepSeek R1
onto models from the Qwen 2.5 and Llama 3 families. A distinctive feature of these models is that they
are trained using reinforcement learning to generate long chains of reasoning.

Therefore, a set of modern open-weight language models was selected based on the following
criteria: the ability to run on graphics accelerators with up to 24 GB of VRAM, the availability of
guantized versions, and being instruction-tuned. The models used in the study are:

¢ Qwen3: gwen3:1.7b, gwen3:4b, gwen3:8b, gwen3:30b;

o DeepSeek-R1: deepseek-rl:1.5b, deepseek-rl:8b;

e Gemma3: gemma3:4b, gemma3:12b, gemma3n:e4b;

e Llama3.2: llama3.2:3b.

The Ollama software tool was used to execute the models and apply the grammar-constrained
decoding (GCD) method, as it supports text generation conforming to a JSON schema.

For all language models, a modified prompt from the work [15] was used, which included a task
description, a JSON schema, reasoning instructions, and examples of the correct planning.

3 Methods

3.1. Decoding Methods

The following sequence decoding methods were used in the language models. The first method was
Unconstrained Decoding (UCD), where the most probable token is selected at each step. The prompt
included an instruction to generate only JSON without reasoning; however, this does not guarantee the

ISSN 2304 -6201 BicHuk Xapkiscbkoro HauioHanbHoro yHiBepcuteTy imeHi B. H. Kapasiva
cepist MatemaTtuyHe MofentoBaHHs. [HopmaLiiiHi TexHonorii. ABTOMaT30BaHi CUCTEMM YNpaBniHHS, BUNyck 67, 2025 105

syntactic correctness of the generated text. Additional post-processing was applied to the generated text
to remove the reasoning fragment, if present, and to extract the substring containing the JSON object.
The second method was Grammar-Constrained Decoding (GCD) without reasoning. In this case, the
model generated a string that strictly conforms to the plan’s schema, which guarantees syntactic
correctness and requires no additional post-processing before parsing the JSON object. The third
method, Grammar-Constrained Decoding (GCD) with reasoning, involved adding an optional
"reasoning" field to the JSON schema, allowing the model to generate textual reasoning before
formulating the final action plan.

3.2. Plan Schema

We define a plan configuration as a structure consisting of a "reasoning" text field and a "plan"
sequence of actions. A plan, P=(ay,..., a,;,), contains from 1 to 7 actions (1 < m < 7). Each action qa;
is chosen from a set of options: "explore for objects”, "go to object"”, "pick up", "drop", "toggle". The
"object" parameter is a single element, while "objects" is one or more elements from a defined set

O={door,key,box}.

3.3. Evaluation Metrics
To evaluate the correctness of a plan, we used the Mean Exact-Prefix Accuracy (MEPA) metric.
This metric measures the fraction of prefixes of the generated plan that exactly match the ground-truth
plan. Let the ground-truth plan be T™=(t,,..., t,), where n is the number of steps in the ground-truth
plan, and the generated plan be P(™=(p,...,p,), Where m is the number of steps in the generated
plan. The indicator function for a correct action is:
_ 1, lflS‘n/\lSm/\tL:p“
= {O, otherwise.
Let us denote the indicator of an exact prefix match for prefix of length i as
g;= H_L]'=1 Cj.
That is, o;=1 if and only if all of the first i steps match. Then, MEPA for a single example is defined

as the average of these indicators over all prefixes of the ground-truth plan:
MEPA(T ™, P(m)==31 o,
Note that the case n=0 does not occur, as our dataset does not include examples with an empty plan.
As an example of calculating the MEPA metric, if T=(explore,go to,toggle) and
P=(explore,go to,drop), then g, =1, 6,=1, 63=0. The metric value will be (1+1+0)/3 = 0.67.

For a set of K examples, we calculate the macro-averaged MEPA:

1
MEPAacr0= % k=1 MEPA,,

where MEPA, is the MEPA value for the k-th example. Hereafter, the metric MEPAmacro Will be
denoted as MEPA.

4 Experiments
We conducted computational experiments in three environments from the Minigrid suite:
SimpleKeyDoor, KeylnBox, and RandomBoxKey.
4.1. Experimental Setup
All experiments were conducted on hardware with an NVIDIA RTX 3090 GPU (24 GB VRAM).
We used the Ollama 0.11.10 framework to run quantized versions of the models (Q4_K_M). To ensure
reproducibility, the generation temperature parameter was set to 0, and the top_k sampling limit was set
to 1. The maximum length of the generated sequence was limited to 4096 tokens.
We compared three decoding methods:
1. UCD (Unconstrained Decoding): The model was instructed to generate only JSON. The
output was then post-processed to extract a JSON object.
2. GCD (Grammar-Constrained Decoding): Generation was constrained by a JSON schema for
the plan, which did not include a field for reasoning.
3. GCD+R (GCD with Reasoning): The JSON schema included an optional "reasoning"” field,
allowing the model to generate reasoning before the plan.

ISSN 2304 -6201 Bulletin of V.N. Karazin Kharkiv National University
106 series Mathematical modeling. Information technology. Automated control systems, issue 67, 2025

4.2 SimpleKeyDoor Environment

For the SimpleKeyDoor environment, there are six unique abstract states of the environment. When
colors are taken into account, this results in 31 examples with a correct plan. The task of the language
model is to generate a plan based on an observation that most closely matches the ground-truth plan.

Valid Schema Ratio
o o o
E=Y o -]

(=]
N
1

0.0 -
R1:1.5b G:edb R1:8b Q:4b Q:1.7b G:12b L:3b G:4b Q:8b Q:30b

Language Model

Fig. 4.1 Fraction of correctly generated plans according to the schema for different language models. The black
vertical bars represent the 95% confidence interval. Legend for language models: Q:1.7b — Qwen3:1.7b, Q:4b —
Qwen3:4b, Q:12b — Qwen3:12b, Q:30b — Qwen3:30b, G:4b — Gemma3:4b, G:12b — Gemma3:12b, G:e4b —
Gemma3n:e4b, L:3b — Llama3.2:3b, R1:1.5b — DeepSeek-R1:1.5b, R1:8b — DeepSeek-R1:8b.

Puc. 4.1 Yacmka kopekmHO 32eHepO8aHUx NIAHI6 GIONOGIOHO 00 cXeMu OJisl PI3HUX MOGHUX MoOenel. YopHi
eepmuKanbHi Kl nosnavaroms 95% Oosipuuil inmepean. Ymoeni noznauenns mosHux modeneu. Q:1.7b —
Qwen3:1.7b, Q:4b — Qwen3:4b, Q:12b — Qwen3:12b, Q:30b — Qwen3:30b, G:4b — Gemma3:4b, G:12b —
Gemma3:12b, G:e4b — Gemma3n:e4b, L:3b — Llama3.2:3b, R1:1.5b — DeepSeek-R1:1.5b, R1:8b — DeepSeek-
R1:8b.

When using the UCD method (Fig. 4.1), not all models were able to generate syntactically correct
JSON, which made further processing impossible. The DeepSeek-R1:1.5b and Gemma3n:e4b models
proved to be the least reliable. The GCD method, by definition, guarantees 100% schema correctness.

1.0 - = UCD
s GCD
s GCD+R

> 0.8

[1v]

—

3

S 0.6 1

<

o

c

‘= 0.4

[

o

[«

o
[N}
1

0.0 -

Q:30b G:12b Q:8b RL:8b Qb Gi4b Q:1.7b Gedb L3b R1:1.5b
Language Model

Fig. 4.2 MEPA for different language models and generation methods. The legend and confidence intervals are
the same as in Fig. 4.1
Puc 4.2 MEPA 0n5 piznux Mognux mooenel ma memoois eenepayii. Ymoeui noznavents ma 008ipuyi inmepaanu
30icatomuvces 3 makumu 0nsi Puc. 4.1
Figure 4.2 shows that for this relatively simple task, the most powerful models (Qwen3:30b,
Gemma3:12b) achieve nearly perfect accuracy regardless of the decoding method. This indicates that
the task is comparatively simple for them. Meanwhile, for smaller models such as Gemma3n:e4b, the
GCD method slightly improves the result. Overall, for 7 out of 10 models, the planning performance
either remained unchanged or improved.

ISSN 2304 -6201 BicHnk XapkiBCbKOro HawjioHanbHOro yHisepcuteTy imeHi B. H. KapasiHa
cepis MatemaTtnyHe MogentoBaHHs. [HopmaLiiHi TexHonorii. ABTOMaT30BaHi CUCTEMM ynpaBRiHHA, BUnyck 67, 2025 107

=

o
-
1

10° 5

Planning Time [sec]

Q:1.7b R1:1.5b L:3b Q4b Gi4b Q:8b RL:8b G:12b Gedb Q:30b
Language Model

Fig. 4.3 Average generation time for a single plan for different language models and generation methods. The
legend and confidence intervals are the same as in Fig. 4.1
Puc. 4.3 Cepeoniil uac eenepayii 00H020 niany 015 pi3HUX MOGHUX MOOeLel ma Memooie cenepayii. Ymoemi
no3HawenHst ma 008ipui inmepeanu 30icaromocsi 3 makumu oas Puc. 4.1

The vertical axis of Fig. 4.3 shows the plan generation time on a logarithmic scale. As is evident
from this figure, the UCD method for the Qwen3:4b and Qwen3:30b models was significantly slower:
by a factor of = 25 for Qwen3:4b and =~ 8 for Qwen3:30b. This is because these models, despite
instructions not to generate reasoning, produced long chains of reasoning before the JSON response.
The GCD method causes the Qwen3:4b and Qwen3:30b models to immediately generate a structured
result, which significantly reduces planning time and makes these models more suitable for real-time
agent systems.

4.3. KeyInBox Environment
In the KeyInBox environment, the planning complexity increases as additional steps appear: find the
box, open it, and only then take the key and open the door.

Em UCD
. GCD
B GCD+R

Plan match

Q:30b G:12b Q:8b Q:4b Q:1.7b G:i4b R1:8b G:edb RI1:1.5b L:3b
Language Model

Fig. 4.4 MEPA for the KeylnBox environment for different language models and generation methods. The legend
and confidence intervals are the same as in Fig. 4.1

Puc. 4.4 MEPA ona cepedosuwa KeylnBox 0ns pisHux MosHux mooeneti ma memooie eeHepayii. Ymoeri
nosHauenHs ma 008ipyi inmepsanu 3oicaromvcs 3 maxumu 0 Puc. 4.1

Fig. 4.4 demonstrates that models such as Qwen3:30b continue to show high accuracy. The result for
the DeepSeek-R1:8b model is particularly interesting: its accuracy significantly increases when using

ISSN 2304 -6201 Bulletin of V.N. Karazin Kharkiv National University
108 series Mathematical modeling. Information technology. Automated control systems, issue 67, 2025

GCD with reasoning. This may indicate that for models trained to generate long chains of reasoning,
providing a special "reasoning” field within the JSON schema improves the quality of the final plan.
Overall, for 9 out of 10 models, the planning results remained unchanged or improved.

=

o
—
1

100 E

Planning Time [sec]

Q:1.7b R1:1.5b L:3b Q:4b G:4b Q:8b R1:8b G:12b G:edb Q:30b
Language Model

Fig. 4.5 Average single-plan generation time for the KeylnBox environment across different language models and
generation methods. The legend and confidence intervals are the same as in Fig. 4.1
Puc. 4.5 Cepeoniii uac cenepayii o0noeo niany ons cepedosuwa KeylnBox ons pisnux mMognux mooeneti ma
Memooie cenepayii. Ymoeri nosnauents ma 008ipui inmepseanu 36icaromocs 3 makumu oasa Puc. 4.1

Fig. 4.5 confirms the trend observed in the previous experiment: the Qwen3:4b and Qwen3:30b
models take significantly more time to generate a plan using the UCD method due to the generation of
redundant reasoning, whereas GCD ensures a fast and predictable response time. For this environment,
unlike the previous one, this phenomenon is also observed for the DeepSeek-R1:8b model.
Unconstrained generation was approximately 17 times slower for the Qwen3:4b model, 6 times slower
for Qwen3:30b, and 9 times slower for DeepSeek-R1:8b.

4.4. RandomBoxKey Environment

1.0 4 == UCD
. GCD
0.8 - B GCD+R
o
o
o] 06 N
=
5
E 0.4 1
0.2 1

0.0 -

Q:30b G:12b Q:8b R1l::8b Q:1.7b G:4b Q:i4b G:edb L:3b RI1:1.5b
Language Model

Fig. 4.6 MEPA for the RandomBoxKey environment for different language models and generation methods. The
legend and confidence intervals are the same as in Fig. 4.1

Puc. 4.6 MEPA ona cepeoosuwa RandomBoxKey, piznux mMogHux mooeneil ma memoois eenepayii. YmoeHi
nosHauenHs ma 008ip4ui inmepsanu 3oicaromvcs 3 maxumu 0 Puc. 4.1

ISSN 2304 -6201 BicHnk XapkiBCbKOro HawjioHanbHOro yHisepcuteTy imeHi B. H. KapasiHa
cepist MatemaTtuyHe MogentoBaHHs. [HopmaLiiiHi TexHonorii. ABTOMaT30BaHi CUCTEMM YNpaBniHHS, BUNyck 67, 2025 109

The results in Fig. 4.6 highlight the importance of GCD in complex tasks. Both DeepSeek-R1
models failed completely with unconstrained generation, as they exceeded the 4096 token limit by
generating redundant reasoning. GCD not only allowed them to generate a response but also
significantly improved accuracy. For models like Qwen3:30b, accuracy remains high, but the speed
advantage of GCD becomes significant. Overall, for 8 out of 10 models, the planning accuracy either
did not change or improved.

Similar to the results for the previous two environments, Fig. 4.7 shows a significantly longer
planning time for the Qwen3:4b and Qwen3:30b models when using the UCD method, making this
approach impractical for complex tasks. Unconstrained generation was =~ 22 times slower for the
Qwen3:4b model and =~ 6 times slower for Qwen3:30b.

=

o
—
1

10° -

Planning Time [sec]

Q:1.7b R1:1.5b L:3b Q:4b G:i4b Q:8b G:12b G:e4b Q:30b R1:8b
Language Model

Fig. 4.7 Average generation time for a single plan for the RandomBoxKey environment for different language
models and generation methods. The legend and confidence intervals are the same as in Fig. 4.1
Puc. 4.7. Cepednee snauenns uacy eenepayii 00noeo niawny 05 cepedosuuia RandomBoxKey 0ns pisnux MoeHux
MoOQenell ma Memodis eenepayii. YmosHi nozuauenns ma 008ipyi inmepaanu 30icaiomovcs 3 maxumu 01 Puc. 4.1

Table 1. A comparison of different LLM mean MEPA precentage improvement

Tabn. 1 [lopisnsinHs cepedHb020 3HAUEHHSL 8i0COMKO8020 GIOHOCHO20
noxkpawents MEPA ons pisnux LLM

LLM Mean MEPA improvement, %
deepseek-r1:1.5b -
Ilama3.2:3b 151.2
deepseek-r1:8b 69.9
gemma3n:e4b 449
gwen3:1.7b 19.4
gemma3:4b 4.5
gwen3:4b 35
gemma3:12b 1.8
gwen3:30b 0
gwen3:8b 1.4
5 Discussion

Table 1 demonstrates the average relative percentage improvement for the MEPA metric across
three environments for various language models using the GCD method relative to the baseline (results

ISSN 2304 -6201 Bulletin of V.N. Karazin Kharkiv National University
110 series Mathematical modeling. Information technology. Automated control systems, issue 67, 2025

of the UCD method). The DeepSeek-R1:1.5b model had a zero MEPA value for the UCD baseline,
making it impossible to calculate the relative improvement. For models with high MEPA value
(Qwen3:8b, Qwen3:30b, Gemma3:12b), the increase is not significant, as their results were already
close to the maximum.

The conducted experiments lead us to several key conclusions about the impact of the GCD method
on the accuracy, schema compliance, and action planning time of agents using language models.

The UCD method, despite explicit instructions in the prompt prohibiting reasoning, cannot guarantee
the absence of reasoning or control the length of reasoning chains. Many models, especially smaller
ones (DeepSeek-R1:1.5b, Gemma3n:e4b), often generated syntactically incorrect JSON or added
redundant reasoning, which made automatic parsing of the result impossible. This creates significant
obstacles for building stable agentic systems. In contrast, the grammar-constrained decoding (GCD)
method completely solves this problem by guaranteeing 100% syntactic validity of the output. This is a
crucial advantage for automated data processing systems.

One of the most significant results is the substantial acceleration of the planning process when using
GCD. Models prone to generating extensive reasoning (in particular, the Qwen3:4b and Qwen3:30b
models for all studied environments, and DeepSeek-R1:8b for the KeylnBox environment)
demonstrated significantly longer generation time with the UCD method. By constraining the output to
a strict JSON schema, GCD allows for controlling the presence or length of the reasoning chain. This
makes language models much more suitable for systems that require real-time decision-making.

In simple environments (SimpleKeyDoor), the advantages of GCD in planning accuracy were minor
for relatively large models. However, as the task complexity increased, the impact of structured
generation became more noticeable. In the most complex environment (RandomBoxKey), the
unconstrained approach led to the complete failure of the DeepSeek-R1 models due to exceeding the
token limit. GCD not only made it possible to obtain a response from them but also significantly
increased its correctness.

6 Conclusions

This study accomplished the following. We proposed the use of Grammar-Constrained Decoding
(GCD) for agent action sequence planning tasks in virtual environments, as an alternative to the classic
Unconstrained Decoding (UCD) method. A dataset containing examples of correct action plans was
prepared for three Minigrid environments. Computational experiments were conducted to generate
agent action plans in environments from the Minigrid suite using UCD, GCD, and GCD with reasoning.
The performance of these methods was evaluated based on the following metrics: syntactic validity,
planning duration, and plan generation accuracy. Finally, we analyzed and compared the results of
applying the UCD, GCD, and GCD with reasoning methods to the agent action planning task across the
three Minigrid environments.

The results of the study demonstrated that, unlike the classic UCD method, applying the GCD
method ensures that the generated sequence conforms to the specified plan grammar. This eliminates
syntax errors and guarantees the successful syntactic parsing of the generated JSON plan. This outcome
is particularly significant for relatively small language models, such as DeepSeek-R1:1.5b and
Gemma3n:edb. When using the classic UCD method, these models generate grammatically incorrect
sequences in more than 50% of cases, whereas applying GCD guarantees adherence to the grammar.

Measurements of planning duration indicate that the classic UCD method does not guarantee a limit
on the number of tokens in the generated sequence; specifically, a significant number of tokens are
generated in reasoning chains. Some language models ignore instructions that prohibit the generation of
long reasoning chains. Applying the GCD method resulted in a significant reduction in planning time
compared to the UCD method across various environments for the following models: the planning
duration for the Qwen3:4b model decreased by a factor of 17-25, for the Qwen3:30b model by a factor
of 6-8, and for the DeepSeek-R1:8b model by a factor of 9 (in the KeyIlnBox environment). The
application of GCD led to this substantial reduction in planning time by constraining the length of the
reasoning chains.

Applying the GCD method improves, on average, the plan generation accuracy as measured by the
MEPA metric for most models. The most significant accuracy gain was observed for the DeepSeek-R1
models. When using the UCD method, these models generated excessively long reasoning chains,
which led to exceeding the token limit and resulted in failed plan generation. In contrast, with the GCD
and GCD with reasoning methods, these models were guaranteed to generate a plan.

ISSN 2304 -6201 BicHuk Xapkiscbkoro HauioHanbHoro yHiBepcuteTy imeHi B. H. Kapasiva
cepis MatematnyHe mogentoBaHHs. [HchopmalLiiHi TexHonorii. ABTOMaT30BaHi cucteMu ynpasniHHs, Bunyck 67,2025 111

This research has shown that applying GCD improves, on average, the plan generation accuracy for
most of the models tested and guarantees the syntactic validity of the generated plan according to the
JSON schema. In the case of LLMs that already demonstrate high accuracy, the main benefit of GCD is
the reduction in planning time rather than an improvement in accuracy. Therefore, the use of the GCD
method is beneficial for enhancing the performance of language models in planning tasks.

REFERENCES

Lo

I. Dasgupta et al., "Collaborating with language models for embodied reasoning”, arXiv [cs.LG].
2023. [Online]. Available: https://arxiv.org/abs/2302.00763.

2. W. Huang et al., "Inner Monologue: Embodied Reasoning through Planning with Language
Models", arXiv [cs.RO]. 2022. Available: https://arxiv.org/abs/2207.05608.

3. B. Hu, C. Zhao, P. Zhang, et al., "Enabling Intelligent Interactions between an Agent and an LLM:
A Reinforcement Learning Approach”, Reinforcement Learning Journal, Vol. 3, P. 1289-1305,
2024.

4. R. Sutton, D. Precup, and S. Singh, "Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning”, Artificial Intelligence, Vol. 112, P. 181-211, 1999.

5. T. B. Brown et al., "Language Models are Few-Shot Learners", arXiv [cs.CL]. 2020. [Online].
Available: https://arxiv.org/abs/2005.14165.

6. S. Minaee et al., "Large Language Models: A Survey", arXiv [cs.CL]. 2025. [Online]. Available:
https://arxiv.org/abs/2402.06196.

7. Y. Dong et al., "XGrammar: Flexible and Efficient Structured Generation Engine for Large
Language Models", rXiv [cs.CL]. 2025. [Online]. Available: https://arxiv.org/abs/2411.15100.

8. S. Geng, M. Josifoski, M. Peyrard, and R. West, "Grammar-Constrained Decoding for Structured
NLP Tasks without Finetuning”, arXiv [cs.CL]. 2024. [Online]. Available:
https://arxiv.org/abs/2305.13971.

9. L. Beurer-Kellner, M. Fischer, and M. Vechev, "Guiding LLMs The Right Way: Fast, Non-
Invasive Constrained Generation”, arXiv [cs.LG]. 2024. [Online]. Available:
https://arxiv.org/abs/2403.06988.

10. K. Murphy, "Probabilistic machine learning: an introduction”, MIT press, 2022.

11. A. Yang et al., "Qwen3 Technical Report", arXiv [cs.CL]. 2025. [Online]. Available:
https://arxiv.org/abs/2505.09388.

12. G. Team et al.,, "Gemma 3 Technical Report", arXiv [cs.CL]. 2025. [Online]. Available:
https://arxiv.org/abs/2503.19786.

13. A. Grattafiori et al., "The Llama 3 Herd of Models", arXiv [cs.Al]. 2024. [Online]. Available:
https://arxiv.org/abs/2407.21783.

14. DeepSeek-Al et al., "DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning”, arXiv [cs.CL]. 2025. [Online]. Available:
https://arxiv.org/abs/2501.12948.

15. I. Omelchenko and V. Strukov, "On the impact of prompts on agent performance in a virtual
environment”, Bulletin of V. N. Karazin Kharkiv National University, series Mathematical
modelling. Information technology, Automated control systems, Vol. 65, P. 56-63, 2025.

https://arxiv.org/abs/2302.00763
https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2411.15100
https://arxiv.org/abs/2305.13971
https://arxiv.org/abs/2403.06988
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2501.12948

ISSN 2304 -6201 Bulletin of V.N. Karazin Kharkiv National University
112 series Mathematical modeling. Information technology. Automated control systems, issue 67, 2025

Omeabuenko Irop Acnipanm, kagedpa mamemamuuno2o MoOeNIOBAHHA MA AHANI3ZY OAHUX
BanepiiioBuu Xapxkiecokuii nayionanvhuu ynieepcumem im. B.H. Kapasina. maiidan Ceo6oou, 4,
Xaprxis, Xapxiecoka obnracme, 61022

Ctpykos K.M.H., 0oyenm, 3a6i0yeay Kagheopu MamemamuiHo20 MOOENIO8AHHS MA AHANIZY OAHUX
Bosoaumup Xapriscokuil HayionanvHuil yHisepcumem im. B.H. Kapaszina. matioan Ceoboou, 4,
MuxaiinoBuy4 Xaprxis, Xapxiecoka obonacme, 61022

JocaigaxeHHs BIVIMBY METOMIB I€KOAYBAHHSI Y MOBHUX MOJeJISIX HA
KOPEKTHICTh NJIAHYBAHHA [iil areHTIiB y BIpTyaJbHHMX cepeJ0BHIIAX

AKTYyaJbHicTb. 3HAHHS Ta HABUYKH, OTPUMaH1 BETUKMMU MOBHUMHU MojensiMu (LLM) 3 HaBualpHHX JaHHUX, MOXYTh OyTH
BUKOPHCTaHI B 3a7ayi IJIaHyBaHHs [iii aBTOHOMHHX areHTiB. KnmacmuHuil miaxix oo reHepamii TEKCTy MOXeE MOPYIIYBAaTH
cuatakcuc JSON-iany, mo yckiagHioe abo poOUTh HEMOXKIMBUM CHHTAKCUYHUH po30ip Ta BUKOPHCTAHHS TaKOro IUIaHY.
MosknuBuiA MiAXiA A0 BUpIIEHHA Li€l MpoOIeMu MOJIsrae y 3aCTOCYBaHHI METONY ACKOAYBAaHHS 3 OOMEXECHHSIM IpaMaTUKU
(GCD), 110 06Mexy€e MHOKUHY MOKIIMBHX TEKCTIB JJIsk TeHEpallil BiIITOBIAHO 10 33a1aHOi rpaMaTHKH.

Mera. Jlocnigutu BIUIUB METOAY AEKOMyBaHHS 3 oOMexeHHsAM rpaMatukd GCD (3 mipkyBaHHSAMH Ta 0e€3) MOPIBHAHO 3
KJIacHYHUM HeoOMexxeHuM nekonyBaHHsM UCD Ha BigmoBimHicTe JSON-cXemi, TOUHICTh Ta 4ac IUIaHYBaHHS il Pi3HUMH
LLM y BipTyansHuX cepenoBumax Minigrid.

MeToau rociiKenHsi. MeToIu TOCITiKeHH: 00UNCIIOBAIBHHI €KCIIEPUMEHT, TIOPIBHIbHUN aHaui3. MeToan 1eKoayBaHHs
nocrigoBHocteit B LLM: Unconstrained Decoding (UCD), Grammar-Constrained Decoding (GCD). BukopucTtani MeTpuKu
SIKOCTI TUTAaHYBaHHS: CHHTaKCHYHA BaJIiIHICTh (BiXNOBiAHICTH rpamMatui/JSON-cxemi), TpUBANICTh Ta TOYHICTh IJIAHYyBaHHS.

Pe3yabTaTH. 3anponoHOBaHO BUKOPHCTOBYBATH METOJ] IEKOAyBaHHA 3 oOMekeHHs rpamaTuku (GCD) B 3a1auax MiaHyBaHHS
Iifi areHTiB 3 BHUKOPUCTAHHSIM BeNWKHX MOBHUX Mmozened (LLM). IliarotoBieHo maTaceT 3 NPHUKIAAaMH IUIAHIB IS
cepenouni Minigrid: SimpleKeyDoor, KeylnBox, RandomBoxKey. IlpoBemeHo mnopiBHsHHS MetomiB Unconstrained
Decoding (UCD), Grammar-Constrained Decoding (GCD) ta GCD 3 mipkyBauusiMu st 10 Binkputux LLM (cimeiicTs
Qwen3, DeepSeek-R1, Gemma3, Llama3.2). Bukopucranus meroqy GCD 3a6e3mednsio BaIAHICTh 3reHEPOBAHOTO ILIaHY
BIJIMOBITHO J10 TpaMaTukH, 3aaanoi JSON-cxeMoro. JIoCATHYTO CKOpOYEHHS Yacy IUIaHyBaHHs A Mojeneid Qwen3:4by 17-
25 pasiB, st Qwen3:30b — y 6-8 pasiB 3a paxyHOK 0OMEXEHHS KiJIbKOCTI TOKEHIB B JIAHIIOXKKAX MIpKyBaHb. Y CEpeIHbOMY
3acTocyBaHHA MeTony AekoxyBanHs GCD mokpammio TOUHICTh TeHepaii IiaHy.

BucHoBku. JlocmipkeHHS AEMOHCTpYE, IIO 3aCTOCYBaHHS METOAY AEKOAyBaHHS 3 oOMexxeHHsM rpamatuku (GCD) e
OUUTBHUM B 3a/adax IUIaHyBaHHS Aill 3 BukopuctaHHAM LLM. Metog GCD rapaHTye CHHTaKCHYHY BaNiJHICTh IUIaHIB
BiamoBimHO 10 JSON-cxemu, mo ckiagHo gocsarta 3 mertogoM UCD. Meron GCD n03BoJisi€ THyYKO BHU3HAUYATH JOBKUHY
JIAHIIOXKKIB MipKyBaHb yepe3 MpaBHiia FpaMaTHKU 1 THM CAaMHUM KOHTPOJIIOBATH TPHUBAIIICTh IUIAHYBaHHSI.

Kniouosi cnosa: wmyunuii inmenexkm, MawuHHe HAGUAHHS, 2AUOOKe HAGUAHMHS, WIMYYHI HEUPOHHI Mepedici, iHmeneKmyaibhi
iHGhopmayitini cucmemu, ABMOMAMU308aHi THHOPMAYItHI cucmemu, 0OPoOKA NPUPOOHOT MOBU, BeTUKA MOBHA MOOEeb,
npoMnm, NPUUHAMMA pPilleHb, azenm, gipmyanvHe cepedosuuye, Minigrid.

Hagiiwna y nepuin pegakuii 09.09.2025, B octanHiit - 10.10.2025.
The first version has been received on 09.09.2025, the final version — on 10.10.2025.

