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Application of a genetic algorithm to solve the problem of scaling hydrogen 

systems. 
The work aims to develop a robust tool for scaling hydrogen systems and their energy consumption using a genetic algorithm.  

Relevance. The most common method of hydrogen production is water electrolysis, which requires a sufficient amount of 

electricity. If electricity sources are insufficient, this can put additional strain on the power grid, especially during peak 

consumption periods. Since 87% of hydrogen plants currently use hydrogen on-site (instead of generating it and then transporting 

it for use), there is a need for optimization in this area to improve energy efficiency and sustainability. 

Current research analyzes the improvement of hydrogen systems in terms of the cost-effectiveness of systems using renewable 

energy sources and the reduction of hydrogen logistics costs by applying linear programming and particle swarm optimization 

methods. 

However, these works are mainly focused on hydrogen production systems based on a single electrolyzer and do not aim to 

assess the feasibility of using multiple units. As a result, the topic of cost optimization and maintenance strategies for multi-

electrolyzer systems remains less explored, as well as the related problem of their dispatching. 

Research methods. Stochastic methods were used to solve the problem of finding the best startup queue for electrolysis units, 

and the effectiveness of the genetic algorithm for solving this problem was tested. 

Results. A model for optimizing the peak power consumption of an electrolysis system was built, and the configuration 

evaluation function and objective function for system optimization were determined. The choice of a stochastic optimization 

method is justified by checking the objective function for the properties necessary for the effectiveness of traditional optimization 

methods, namely, continuity, differentiability, smoothness, and convexity. The effectiveness of the genetic method was tested in 

comparison with the gradient descent method on examples with different configurations of electrolyzers (similar and different 

types). 

Conclusions. These calculations have confirmed that the genetic algorithm has stable results and is effective in finding the global 

optimum, while the gradient descent may stop at local minima and require additional adjustments to achieve the optimal solution. 

Using the genetic algorithm method, we obtain results that give an approximate optimal result for a fixed number of steps. This 

approximate result, as shown in the problem with the placement of 10 electrolyzers, gives significant results — the peak 

electricity consumption has decreased by almost 40%.  

Further research can be aimed at improving the parameters of the algorithm, in particular, adaptive tuning of the mutation and 

crossover operators to increase the convergence rate. 

keywords: Optimization, Stochastic (non-deterministic) methods, Genetic Algorithm, power consumption, hydrogen systems, 

electrolysis unit. 
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1 Introduction 

Green hydrogen is one of the most promising sources of clean energy. Growing demand for energy, 

the need to reduce greenhouse gas emissions, and the desire for sustainable development are driving the 

active implementation of hydrogen technologies. The most common method of hydrogen production is 
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the electrolysis of water, which requires sufficient electricity [1]. If electricity sources are not enough, 

this can cause an additional load on the power system, especially during peak consumption periods. 

The simultaneous use of several appliances creates a large electrical and mechanical load on the power 

system. Unevenly distributed power consumption can lead to an increase in peak power and the 

occurrence of shock mechanical loads on the power system (which in turn can cause an impact on the 

turbines of the generating unit and cause their failure). 

To avoid such scenarios, installations need to have a controlling entity (controller) that will manage 

the startup queue in such a way as to minimize the amount of power used simultaneously and avoid shocks 

during the completion of the installation's cycles. This controller performs the task of finding the best 

possible startup queue.  

 

2 Problem formulation and literature review 

Optimization techniques are crucial in engineering, business, and science because they help improve 

efficiency, reduce costs, and enhance performance. Optimization techniques ensure better performance, 

lower costs, and smarter decision-making across industries. 

As 87% of existing hydrogen-generating plants currently use hydrogen on-site (instead of generating 

and then transporting and selling it)[1], there is a need for optimization in this area to improve energy 

efficiency and sustainability. 

The most common method of hydrogen production is the electrolysis of water, which requires 

sufficient electricity [2]. If electricity sources are scarce, this can put additional strain on the power grid, 

especially during peak consumption periods. 

 

Optimization helps to reduce energy consumption and carbon footprint.  

The most promising method for this is the integration of a smart grid-based control system that 

optimizes the distribution of electricity. [3, p.1] 

Various optimization and computational intelligence techniques has already been incorporated into 

large-scale grids; for example using artificial intelligence, heuristic, and evolutional optimization to 

analyze optimal power flow, power flow, SE, stability, and unit commitment. 

In his guide to smart grids, James Momoh notes that: The classical optimization tools currently used 

cannot handle the adaptability and stochasticity of smart grid functions. Thus, the computational tools 

and techniques required are defined as a platform for assessment, coordination, control, operation, and 

planning of the smart grid under different uncertainties. [3, p.100] 

 In modern studies, improvements in hydrogen systems are analyzed from the perspective of cost 

efficiency in systems utilizing renewable energy sources [4,5] and the reduction of hydrogen logistics 

costs [6,7] through the application of linear programming and PSO methods. 

 

However, it is important to note that these works primarily focus on hydrogen production systems 

based on a single electrolyzer and do not aim to assess the feasibility of using multiple units. As a result, 

the topic of cost optimization and maintenance strategies for multi-electrolyzer systems remains less 

explored, along with the associated challenge of their dispatching. 

 

If we abstract from the hydrogen-specific context and focus on dispatching as an optimization 

objective, insights can be drawn from dispatching methodologies applied in power systems [8,9,10], 

emergency management [11], and construction [12]. These fields offer a well-established foundation for 

the practical application of stochastic optimization algorithms such as Lyapunov optimization, PSO, and 

GA in solving complex optimization problems. 

 

3 The research aim and problem statement 

The purpose of this study is to develop a mathematical and software tool to minimize the amount of 

power consumed by a hydrogen-generating system. 

 

An optimization problem is a mathematical task in which it is necessary to find the best (optimal) 

solution among all possible options, taking into account certain constraints and the optimality criterion 

(objective function).  

The optimality criterion in determining the best start-up shift for electrolysis units is the lowest peak 

power consumption by the hydrogen generating system.  
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Task variables: 

 n - number of units. 

 t - time 

 𝐴𝑓(𝑡) - function that describes the voltage change for the electrolysis unit 

 𝐴𝑓 - a vector of functions that describe the voltage change for each unit in the system 

 𝐼- a vector describing the number of amperes used by each unit to produce hydrogen 

 𝜛 - start time offset vector of each unit 

Equation (3.1) is a function that characterizes the system costs (power) at a point in time, further Sf. 

𝑂𝑓(3.2) - an estimation function of a specific system configuration. 

 𝑆𝑓 (𝑡, 𝐴𝑓, 𝐼, 𝜛, 𝑛 )  =  ∑ |(𝐴𝑓𝑖 (𝑡 + 𝜛𝑖) ⋅ 𝐼𝑖)|𝑛
𝑖= 0  (3.1) 

  𝑂𝑓(𝐴𝑓, 𝐼 𝜛, 𝑛) =  𝑚𝑎𝑥𝑡∈[0,2𝜋]𝑆𝑓 (𝑡, 𝐴𝑓, 𝐼, 𝜛, 𝑛 ) (3.2) 

Sf is a function that estimates a specific system configuration at a specific shift. The configuration 

consists of three main components. First, a set of functions 𝐴𝑓 describes the voltage change for each unit. 

Second, a vector 𝐼 represents the number of amperes each unit uses to produce hydrogen. Finally, a vector 

𝜛 defines the start time offset for each unit. 

The functions describing the voltage change 𝐴𝑓 and the vector describing the number of amperes 𝐼 

are defined as the input conditions of the problem, and the start time offset vector 𝜛 is a parameter 

generated from the optimal solution space. 

 

 M - a matrix of start time offset vectors of each unit or a function that generates a start time 

offset vector 

 K - is the number of shift vectors. 

 

F(𝐴𝑓, 𝐼, 𝑀, 𝑛, 𝑘) (3.3) - is the estimation function by which the optimization is performed, 

min F(𝐴𝑓, 𝐼, 𝑀, 𝑛, 𝑘) - objective function. 

 F(𝐴𝑓, 𝐼, 𝑀, 𝑛, 𝑘) =  𝑚𝑖𝑛𝑖∈[0,𝑘] 𝑂𝑓 (𝐴𝑓, 𝐼, 𝑀𝑖, 𝑛 ) (3.3) 

 

When minimizing, we are interested in the amount of power consumed, since it is this amount that 

determines the restrictions on the grid, so we use the modulo power consumption in the following. Next, 

we need to define an estimating function that measures the amount of consumption.  

The estimation function for this task is the maximum power value during the operation of the 

electrolysis system - the peak amount of power consumed. Accordingly, the objective function of 

optimization is the smallest peak power consumption. 

 

4 The research aim and problem statement 

The task of choosing an optimization method is to determine the most efficient approach for a 

particular class of problems, taking into account their mathematical properties and computing resources. 

Since different optimization methods have their limitations and peculiarities, choosing the right method 

depends on the characteristics of the objective function and constraints. In general, optimization methods 

can be classified into the following two types: Traditional (deterministic) methods and Stochastic (non-

deterministic) methods. 

Traditional (deterministic) methods are not always able to solve optimization problems efficiently. 

They are usually based on such properties as continuity, differentiability, smoothness, and convexity of 

the objective function and constraints (if any). The absence of at least one of these properties makes it 

difficult to apply traditional optimization methods [13]. Therefore, to further search for a solution to this 

problem, we checked these properties. 

 

Continuity. The functions that describe the power consumed by the electrolyzer are periodic and 

without discontinuities. They are represented as the sum of sinusoidal functions (sines and cosines) with 

different frequencies and amplitudes. Since sines and cosines are continuous functions, their sum also 

retains this property. In addition, the set of possible values for the maximum of the approximation 

functions is compact (closed and bounded), which confirms the continuity of the corresponding function. 
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Differentiability. The minimum function of the target function is not differentiable since it may have 

a fracture at the minimum point. For example, if a pure sinusoidal signal models the behavior of an 

electrolyzer, then when the startup is shifted by 90 degrees, the problem equivalent to max(sin(x), cos(x)) 

arises. At the points where these functions are equal, a sharp transition occurs, making it undifferentiable. 

 

Because of this, traditional optimization methods cannot be applied to this problem. 

Using a direct search of possible shift operations is also inefficient because it generates numerous 

variants to be checked. To solve the problem in this way, it is necessary to check all possible combinations 

of startup time shifts of n units with k number of shifts. Accordingly, the number of such combinations 

is the number of placements with repetitions of n elements by k elements [14 p.14]. 𝐴𝑛
𝑘  =  𝑛𝑘.  

Therefore, for 3 units and 21 offset options (from 0 to 60 minutes in increments of 3), the number of 

combinations will be  ., for 4 units 194481, and for 5 units 4084101. When the quality and number of 

units change, the complexity of the execution time increases significantly. In this case, the complexity is   

𝛩(𝜙) =  𝑛𝑘 ⋅  𝑡 (where t is the number of steps required to calculate the estimation function). 

Therefore, one of the stochastic algorithms should be chosen instead. The choice of a stochastic 

optimization method depends on the characteristics of the problem, such as the dimensionality of the 

solution space, the differentiability of the function, the constraints, and the required accuracy.  

 It is worth noting that due to the ability to work with complex, multidimensional or discrete 

optimization problems with many local optima, evolutionary algorithms are often used to solve 

scheduling problems. [15, p.4 Table 1]. 

That is why it was decided to select a genetic algorithm to solve this problem. 

 

5 Genetic algorithm 

A genetic algorithm is an evolutionary search algorithm used to solve optimization and modeling 

problems by sequentially selecting, combining, and varying the desired parameters using mechanisms 

that resemble biological evolution. The specific feature of the genetic algorithm is the emphasis on the 

use of the “crossover” operator, which performs the recombination of candidate solutions, the role of 

which is similar to the role of crossing in living nature [16]. 

 

population = INIT() //Initialize the population using. 

best_solution = None  

best_fitness = negative infinity. 

FOR Number_of_generations: 

    // the fitness of each individual in the population 

    fitnesses = [FITNESS(population)] 

    if max(fitnesses) > best_fitness: 

        best solution, best_fitness = max(fitnesses) 

    new_population = [] 

 

    FOR population_size / 2: 

        parent1, parent2 = SELECT(population) 

        child1, child2 = CROSSOVER(parent1, parent2) 

        child1, child2 =MUTATE(child1, child2) 

        new_population.add[ child1, child2] 

    // Replace the old population with the new population. 

    population = new_population  

// Return the best solution and its fitness. 

return best_solution, best_fitness   

Scheme of the genetic algorithm in the form of pseudo-code 
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The main stages of the genetic algorithm: 

Creation of the initial population. The first step is to create an initial set of solutions (chromosomes) 

that can be generated randomly or based on certain assumptions. In our case, it is assumed that the values 

are generated randomly in the range from 0 to 60 minutes (from 0 to 2). The number of chromosomes in 

each group corresponds to the number of electrolysis units, and the total number of solution groups is set 

manually and can be increased to improve search efficiency. 

 

Performing iterations until the stop criterion is reached. The process is repeated until the 

algorithm's stopping criterion is met (in this case, reaching a certain number of generations or steps). 

Evaluating the suitability of solutions (fitness function). For each element of the population, a 

fitness function value is calculated that reflects the quality of the solution in the context of the problem. 

In this case, the estimation function 𝑂𝑓(𝐴𝑓, 𝐼 𝜛, 𝑛) is used. 

Selecting individuals for the next generation (“selection”) 

The chromosomes that will be used to create the next generation are selected. Tournament selection 

is used in this process: several chromosomes are selected, and the best one moves on. 

Crossover and/or mutation 

In this implementation, both mechanisms are used. 

● Crossover: new chromosomes are formed by combining pairs of initial solutions. Universal 

crossing is used (5.1), in which each gene (the offset of a particular unit i) is inherited from the parents in 

proportion to a random value within [0;1]:  

 𝜛𝑛𝑖  =  𝛼 ⋅ 𝜛1𝑖  +  (1 − 𝛼) ⋅ 𝜛2𝑖 (5.1) 

● Mutation: a random introduction of minor changes to the genes of a chromosome. In this case, 

a Gaussian mutation is used, which involves changing the value of a gene within the permissible range. 

Formation of a new population. A new population is created, consisting of the resulting descendants 

(the results of crossing and mutation) that replace the previous population. 

 

6 Numerical results 

To validate the proposed method, we will test the proposed solution to the problem of producing 

354.538𝑚3 of hydrogen per hour. The function 𝐴𝑓(𝑡) describing the voltage change for the electrolysis 

unit is given in Table 1, and the approximation based on this table 𝐴𝑓(𝑡) (6.1).  

  𝐴𝑓(𝑡) = −
0.58

2
− 0.46 cos(𝑡) + 1.63 sin(𝑡) + 0.19 cos(2𝑡) − 0.15 sin(2𝑡) + 0.44𝑠𝑖𝑛(3𝑡) (6.1) 

+4𝑐𝑜𝑠(4𝑡) + 0.03𝑠𝑖𝑥(4𝑡) + 0.06𝑐𝑜𝑠(5𝑡) + 0.2 ∗ 𝑠𝑖𝑛(5𝑡) 

Table 1. time series of voltage changes of the full cycle of hydrogen and oxygen production during 

electrolysis using the Fe electrode assembly (sponge). Current density: I = 0.015 A/𝑐𝑚2 

Таблиця 1. Зміна напруги повного циклу виділення водню і кисню під час електролізу з 

використанням електродної збірки Fe (губчасте). Щільність струму: I = 0,015 А/см2 

T 0 1,5 3 4,5 6 7,5 9 10.5 12 13,5 13,5 15 16,5 

U 0 0.31 0.37 0.41 0.47 0.51 0.61 0.68 0.77 0.88 0.88 1.01 1.2 

T 18 19,5 21 22,5 24 25,5 27 28,5 30 31,5 33 34,5 36 

U 1.31 1.42 1.51 1.57 1.71 1.4 0 -0.43 -0.78 -1.13 -1.43 -1.62 -1.71 

T 37,5 39 40,5 42 43,5 45 46,5 48 49,5 51 52,5 54  

U -1.76 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 0  

 

 

 To produce 1𝑚3 of hydrogen, our electrolyzer consumes 4.24 kW of electricity [17]. Therefore, to 

produce 354.538𝑚3 of hydrogen, we need to spend 1503.244 kW of electricity. 

In order to verify the suitability of the genetic algorithm, the first exercise compares its results with 

the results that can be obtained using the gradient descent algorithm. Consider a situation in which 10 

identical electrolyzers produce the required amount of hydrogen, each of which has a plate area of 

75162.2𝑐𝑚2 . The use of the direct search method is not advisable since 6010 possible combinations need 

to be checked to calculate qualitative results (with a time step of at least 1 minute).  The results of the 

calculations are shown in Table 2. 
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Table 2: Comparison of the peak power obtained by 5 rounds of optimization using the genetic algorithm 

and the gradient descent method. 

Таблиця 2: Порівняння пікової потужності, отриманої за 5 раундів оптимізації з використанням 

генетичного алгоритму та методу градієнтного спуску. 

genetic algorithm gradient descent method 

915.43 1011.83 

903.64 953.05 

918.53 952.18 

913.32 1000.05 

924.14 984.40 

 

The best result obtained with gradient descent in this configuration has a maximum peak power of 952 

kW (startup queue: 46.69 min, 7.09 min, 37.81 min, 32.92 min, 53.29 min, 22.43 min, 20.36 min, -0.26 

min, 11.62 min, 39.56 min). The genetic algorithm provided the best result with a peak power of 903 kW 

(start-up queue: 15.26 min, 27.31 min, 6.55 min, 18.07 min, 30.72 min, 51.77 min, 2.54 min, 42.52 min, 

53.78 min, 38.82 min). 

We also investigated the algorithm's effectiveness in two more cases. The first is a configuration of 

three identical electrolyzers, each with a plate area of 125270.3𝑐𝑚2, and the first electrolyzer with a plate 

area of 375811𝑐𝑚2. The second half of the production is covered by two identical electrolyzers, given by 

Table 1 and Equation 1, and two PEM electrolyzers, given in Equation below (6.2). 

𝐴𝑓(𝑡) =  8.13 2 +  1.00 ∗ cos(1 ∗  𝑡) +  0.34 ∗ sin(1 ∗  𝑡) − 4.61 ∗ cos(2 ∗  𝑡) 

−4.37 ∗ sin(2 ∗  𝑡) − 0.94 ∗ cos(3 ∗  𝑡) − 1.70 ∗ sin(3 ∗  𝑡) +  0.27 ∗ cos(4 ∗  𝑡) 

+ 2.73 ∗ sin(4 ∗  𝑡) +  0.13 ∗ cos(5 ∗  𝑡) +  0.85 ∗ sin(5 ∗  𝑡) +  0.01 ∗ cos(6 ∗  𝑡) 

−0.33 ∗ sin(6 ∗  𝑡) − 1.04 ∗ cos(7 ∗  𝑡) − 0.23 ∗ sin(7 ∗  𝑡) +  0.17 ∗ cos(8 ∗  𝑡) 

+ 0.02 ∗ sin(8 ∗  𝑡) +  0.90 ∗ cos(9 ∗  𝑡) +  1.01 ∗ sin(9 ∗  𝑡) +  0.01 ∗ cos(10 ∗  𝑡) 

+ 0.34 ∗ sin(10 ∗  𝑡) +  0.21 ∗ cos(11 ∗  𝑡) − 0.64 ∗ sin(11 ∗  𝑡) 

 + 0.35 ∗  𝑐𝑜𝑠(12 ∗  𝑡)  − 0.35 ∗  𝑠𝑖𝑛(12 ∗  𝑡) (6.2) 

 

 

Figure 1. Optimization of a configuration of 3 identical electrolyzers, each with a plate area of 125270.3𝑐𝑚2 

and an electrolyzer with a plate area of 375811𝑐𝑚2 using a genetic algorithm.  

Рисунок 1. Оптимізація конфігурації 3 однакових електролізерів, кожен з яких має площу пластини 

125270,3〖см〗^2 , та електролізера з площею пластини 375811〖см〗^2 за допомогою генетичного 

алгоритму. 



ISSN 2304 -6201 Bulletin of V.N. Karazin Kharkiv National University 
72 series Mathematical modeling. Information technology. Automated control systems, issue  67, 2025 

 

 

Figure 2. Optimization of a configuration of 2 identical membrane-less electrolyzers and 2 PEM electrolyzers 

using a genetic algorithm. 

Рисунок 2. Оптимізація конфігурації 2 ідентичних безмембранних електролізерів та 2 PEM 

електролізерів за допомогою генетичного алгоритму. 

 

Table 3: Numerical results of optimization of the startup queue for configurations of systems with several 

electrolyzers using the genetic algorithm and the gradient descent method. 

Таблиця 3: Числові результати оптимізації черги запуску для конфігурацій систем з декількома 

електролізерами з використанням генетичного алгоритму та методу градієнтного спуску. 

Configuration Genetic algorithm Gradient descent 

3 identical electrolyzers, 

each with a plate area of 

125270.3 
2cm , and 1 

electrolyzer with a plate area of 

375811 
2cm  

903.64 926.81 

2 identical membrane-less 

electrolyzers and 2 PEM 

electrolyzers 

3256.94 3315.41 

 

The analysis of the numerical results (presented in Table 3 and Figures 1 and 2) confirms that the 

genetic algorithm demonstrates higher efficiency than the gradient descent method. This is observed 

regardless of the number of electrolysis units in the configuration and the type of units used. 

In particular, the genetic algorithm consistently provides the best values of optimized parameters, 

which indicates its ability to effectively find global optimal solutions, even in cases with high 

dimensionality of the search space and complex dependence of input parameters. 

 

7 Conclusion  

The study substantiated the feasibility of using a genetic algorithm to solve the optimization problem 

of calculating the effective start queue of electrolyzers in a hydrogen production system. The analysis of 

its effectiveness in comparison with the gradient descent showed that the genetic algorithm demonstrated 

better quality of the obtained solutions, especially in conditions when the function is non-uniform, has 

local minima, or is not differentiable.  
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These calculations have confirmed that the genetic algorithm has stable results and is effective in 

finding the global optimum, while the gradient descent may stop at local minima and require additional 

adjustments to achieve the optimal solution. The results confirm the feasibility of using a genetic 

algorithm to solve similar optimization problems, where traditional gradient methods may be less 

effective due to their sensitivity to local minima. 

The results confirm that the genetic algorithm is a promising approach to solving optimization 

problems in cases where traditional methods have limitations.  

By using the genetic algorithm method, we obtain results that give an approximate optimal result for 

a fixed number of steps. This approximate result, as shown in the problem with the placement of 10 

electrolyzers, gives significant results — the peak power consumption decreased by almost 40%.  

Further research can be aimed at improving the parameters of the algorithm, in particular, adaptive 

tuning of the mutation and crossover operators to increase the convergence rate. 
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Застосування генетичного алгоритму для розв'язання задачі 

масштабування водневих систем 
Метою роботи є розроблення надійного інструменту для масштабування водневих систем та їх енергоспоживання за 

допомогою генетичного алгоритму.  

Актуальність 

Найпоширенішим методом виробництва водню є електроліз води, який вимагає достатньої кількості електроенергії. 

Якщо джерела електроенергії є недостатніми, це може створити додаткове навантаження на енергосистему, особливо в 

періоди пікового споживання. Оскільки 87% водневих станцій наразі використовують водень на місці (замість того, 

щоб генерувати його, а потім транспортувати для використання), існує потреба в оптимізації в цій галузі для підвищення 

енергоефективності та сталого розвитку. У сучасних дослідженнях вдосконалення водневих систем аналізуються з 

погляду економічної ефективності систем, що використовують відновлювані джерела енергії, та зниження витрат на 

водневу логістику шляхом застосування методів лінійного програмування та оптимізації рою частинок. Однак важливо 

зазначити, що ці роботи в основному зосереджені на системах виробництва водню на основі одного електролізера і не 

ставлять за мету оцінити доцільність використання декількох установок. Як наслідок, тема оптимізації витрат і стратегій 

технічного обслуговування багатоелектролізерних систем залишається менш дослідженою, а також пов'язана з цим 

проблема їх диспетчеризації. 

Методи дослідження 

Для розв’язання задачі пошуку найкращої черги запуску для електролізних установок використані стохастичні методи, 

та перевірено ефективність  генетичного алгоритму для розвʼязку цієї задачі. 

Результати 

Побудована модель оптимізації пікового споживання електроенергії електролізною системою, визначено оціночну 

функцію конфігурації та цільову функцію для оптимізації системи. Вибір стохастичного методу оптимізації 

аргументовано за допомогою перевірки цільової функції на властивості які необхідні для ефективності традиційних 

методів оптимізації, а саме — неперервність, диференційованість, гладкість та опуклість. Ефективність генетичного 

методу перевірено у порівнянні з методом градієнтного спуску на прикладах з різними конфігураціями електролізерів 

(однотипних та різнотипних). 

Висновки 

Ці розрахунки підтвердили, що генетичний алгоритм має стабільні результати і є ефективним для пошуку глобального 

оптимуму, в той час, як градієнтний спуск може зупинятися на локальних мінімумах і вимагати додаткових налаштувань 

для досягнення оптимального розв'язку. Використовуючи метод генетичного алгоритму, ми отримуємо результати, які 

дають наближений оптимальний результат за фіксовану кількість кроків. Цей наближений результат, як показано в 

задачі з розміщенням 10 електролізерів, дає значні результати — пікове споживання електроенергії зменшилося майже 

на 40%.  Подальші дослідження можуть бути спрямовані на покращення параметрів алгоритму, зокрема, адаптивне 

налаштування операторів мутації та кросовера для збільшення швидкості збіжності.  

 

Ключові слова: оптимізація, стохастичні (недетерміновані) методи, генетичний алгоритм, енергоспоживання, 

водневі системи, електролізер. 
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