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Controlling LEDC timers of the ESP32 microcontroller using registers

Relevance. This paper examines precise generation and control of pulse-width modulation (PWM) signals using the LEDC
(LED PWM Controller) subsystem of the ESP32 microcontroller via direct register access. As embedded real-time systems
increasingly require fine timing control in LED drivers, motor control and power electronics, standard high-level driver APIs
can be insufficient. Direct register manipulation of LEDC enables more precise tuning of frequency, resolution and pulse timing,
which is critical for synchronization-sensitive applications.

Objective. To analyze the capabilities of ESP32 LEDC timers when configured through direct register writes, to experimentally
evaluate the accuracy and stability of generated PWM signals across representative configurations, and to provide practical
recommendations for optimizing LEDC parameters in applied embedded projects.

Methods. The investigation employed low-level register programming under Espressif’s ESP-IDF on an ESP32-DevKitC V4
(WROOM-32D). Time-domain characteristics of the PWM outputs were measured with a Logic Analyzer (24 MHz sampling, 8
channels). The study combined theoretical derivations of PWM frequency and period based on clock source, divider (DIV) and
counter resolution (RES) with implementation of direct register sequences to configure HSTIMERO and HS channel 0, and
comparative measurements for eighteen distinct configurations covering multiple RES, DIV and DUTY values.

Results. The register-based control method enabled generation of high-frequency PWM in the MHz range with close agreement
between calculated and measured values. Across tested configurations the maximum relative deviation did not exceed +0.03%
for frequency and period, and +0.6% for pulse high-time (duty width). Increasing counter resolution improved duty-cycle
granularity, while the prescaler DIV produced a linear change in PWM frequency. The experimental limitations observed at the
highest frequencies are attributable to the finite sampling capability of the measurement equipment.

Conclusions. Direct register access to the LEDC allows for obtaining deterministic, high-precision PWM signals with minimal
parameter update latency, making them suitable for applications in robotics, power electronics, and other systems with high
synchronization requirements. Further research is recommended on the influence of alternative clock sources, low-speed LEDC
modes, integration with ISR/FreeRTOS, and extending the approach to other timers and channels.
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Introduction

In modern technological systems, embedded computing modules are becoming increasingly
important, providing intelligent process control, data acquisition, and communication between devices.
They are the basis of robotic systems, automated production lines, sensor networks, and consumer loT
solutions. A high level of integration, compactness, and energy efficiency makes such systems a key
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element of modern electronics [1], [2]. One of the fundamental tasks for embedded controllers remains
the precise generation and control of signals, particularly pulse-width modulated signals, which control
LEDs, motors, power switches, and other peripheral devices.

Traditionally, for educational and prototyping purposes, microcontrollers of the ATmega series,
particularly the ATmega328P and ATmega2560, which are the foundation of the Arduino Uno and
Arduino Mega platforms, are widely used. They are distinguished by their simple architecture, extensive
library support, and a user-friendly programming environment. However, the use of the high-level Wiring
language and the abstraction layers of the Arduino IDE significantly limits the possibilities for precise
configuration of timers and pulse-width modulation [3], [4]. In specialized developments, to achieve
maximum configuration flexibility, direct access to the microcontroller's registers is used, which allows
changing PWM parameters with minimal delay [5].

In recent years, ESP32 microcontrollers from Espressif Systems have become widespread, combining
high computational power, built-in Wi-Fi and Bluetooth interfaces, hardware timer modules, and
advanced PWM signal control capabilities.

In the microcontroller platform market, the most common boards are the Arduino UNO
(ATmega328P) and Arduino MEGA (ATmega2560), with official prices as of October 2025 of 29.30
EUR and 52.80 EUR, respectively, according to the Arduino Store [6], [7].

In contrast, the ESP32-DevKitC module, which is an official product of Espressif Systems, is available
in the manufacturer's official store on the AliExpress platform [8] for a price of 8-15 USD, which is
several times cheaper while offering significantly higher computing power and integrated wireless
interfaces (Wi-Fi, Bluetooth).

Thus, for a comparable price, the user gets a dual-core 32-bit processor with a clock speed of up to
240 MHz, 16 PWM channels, and an advanced clocking system. This makes the ESP32 a cost-effective
choice for developers of real-time systems and researchers in the field of precision electronics.

Software development for the ESP32 is possible both in the Arduino IDE environment and using ESP-
IDF — the official SDK from Espressif Systems. However, working through the Arduino layer, which is
built on the Wiring language, creates additional delays in function calls and conceals the low-level
mechanisms for accessing hardware [9]. That is why for tasks related to high-frequency processes, motor
control, or the study of timing characteristics, programming in C with direct writes to peripheral registers
is advisable, as it allows for achieving maximum performance and precision in signal control.

Among the peripheral subsystems of the ESP32, a special place is held by the LEDC (LED PWM
Controller) — a module for generating pulse-width modulated signals, capable of forming up to 16
independent PWM channels with support for high-speed (up to 40 MHz) and low-speed modes. PWM
modulation is a basic tool for controlling LEDs, electric motors, audio modules, and other loads, where
the stability and precision of the signal parameters determine the operational quality of the entire system:

— in LED drivers — regulating brightness without flickering;
— motor control systems — smoothness of rotation and torque precision;
— indigital audio interfaces — affecting the level of noise and harmonics;
in synchronization generators — minimization of time fluctuations of the signal.

The use of standard APIs, particularly the ESP-IDF LEDC driver, significantly simplifies
programming but does not allow for full control over the timer registers. This limits the precision of
configuring the frequency, duty cycle, and the timing of the signal update. In specialized systems, such
as robotic controllers or precision power control circuits, such capabilities are insufficient. In these cases,
an effective solution is direct access to the LEDC registers, which allows for flexible modification of all
necessary parameters, eliminating the overhead of the driver layer.

The purpose of this study is to analyze the capabilities of controlling the LEDC timers of the ESP32
microcontroller through direct access to its registers, and to experimentally evaluate the accuracy and
stability of the generated PWM signals.

2 Architecture and Operating Principle of the ESP32 LEDC

In classic microcontrollers of the ATmega family (specifically, ATmega328P, ATmega2560), the
implementation of pulse-width modulation (PWM) is based on linking each timer to strictly defined
output channels and pins of the chip [10]. For example, Timer0 in the ATmega328P serves only the
OCOA and OCOB outputs, and these pins are hardware-fixed. This approach simplifies the hardware logic
but significantly limits the flexibility of channel allocation when designing complex control systems [11].
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In contrast, the ESP32 microcontroller implements the principle of hardware decoupling between the
timer, the channel, and the GPIO output. Each of the 16 channels of the LEDC subsystem can be
independently assigned to any of the four available timers and, in turn, routed to any available pin of the
microcontroller. This architecture provides exceptional flexibility when implementing complex control
systems, such as multi-channel motor drivers, RGB matrices, or power management systems, where not
only timing precision but also the efficient use of GPIOs is critical.

Thus, the ESP32 allows for the programmatic reconfiguration of the logical mapping between
channels and timers without hardware changes, which significantly expands design possibilities.
Furthermore, unlike in AVR, the LEDC features a separation between the logical control level (channel)
and the periodicity generator (timer).

— The timer determines the frequency and resolution of the PWM signal.

— The channel is responsible for the duty cycle and the connection to a specific GPIO.

This allows a single timer to be used for multiple channels that will have the same frequency but
different duty cycles. Unlike classic AVRs, where the pulse typically begins upon a counter reset, the
LEDC architecture allows setting an arbitrary pulse start time using the special HPOINT register,
providing flexible control over the phase shift between channels.

2.1 Brief Hardware Context of the ESP32

The ESP32 [12] microcontroller, developed by Espressif Systems, is a high-performance integrated
platform for building embedded systems with support for wireless technologies. Its core is a dual-core
Tensilica Xtensa LX6 processor, which operates at a clock frequency of up to 240 MHz. The processing
cores feature an advanced power-saving system, allowing for dynamic performance adjustments based
on the application's needs.
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Fig. 1 ESP32 model Wroom-32D
Puc. 1 ESP32 mooeni Wroom-32D

The ESP32 is distinguished by a rich set of peripheral modules, including:

— Communication interfaces (UART, SPI, I?C, IS, CAN),

— Analog-to-digital (ADC) and digital-to-analog (DAC) conversion blocks,

— General-purpose hardware timers,

— Cryptographic accelerators,

— Specialized modules for signal control.

2.2 Structure of the LEDC Subsystem

LEDC is a hardware PWM controller with 16 independent channels that can generate PWM signals
of various frequencies and duty cycles. Key features of the LEDC include:
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—  Support for high-speed and low-speed modes

— High precision (fractional frequency division)

— Fading (automatic duty cycle change)

LEDC has two logical classes of channels:

High-Speed (HS) — 8 channels designed for high-speed PWM generation (using timers
HSTIMERO..3);

Low-Speed (LS) — 8 channels oriented towards low-frequency or power-saving modes (using timers
LSTIMERQO..3).

LED_PWM

High_Speed_Channel Low_Speed_Channel
R ) N I I
h_timer0 > | timer0 >
h_timer1 > |_timer1 >

Mux Mux

h_timer2 > - |_timer2 ——®
h_timer3[—— |_timer3 —— ™ —
— S |

Fig. 2 LED_PWM architecture
Puc. 2 LED PWM apximexmypa

As you can see, each output channel (signal), for example h_chn, can operate from any HSTIMERX
timer.

2.3 LEDC Registers

The LEDC subsystem of the ESP32 microcontroller manages the pulse-width modulation channels
through a set of specialized registers. It is the manipulation at this register level that provides maximum
flexibility in configuring signal parameters and minimizing delays.

Let's examine the structure of the high-speed timer and channel.

h C hn LEDC_IDLE_LV_HSCHn
LEDG_HPOINT_HSCH: _sig_out _
I
h_timerx LEDC_CLK_DIV_NUM_HSTIMERx high_level
LEDC_HSTIMER:_PAUSE comparator LEDC_SIG_OUT_EN_HSCHn
LEDC_DUTY_START_HSCHn
FT LEDC_DUTY_ING_HSCHn
w“o : : LEDG_DUTY_NUM_HSCHn
ractiona " LEDG_DUTY_HSCHn  LEDC_DUTY_CYCLE_HSCHn
I, ., [—=(Counter (20 bit) LEDC, HPOINT_HSCHn L EDC_DUTY_SCALE_HSCH
APB CL divider (18 bit) ref pulse - - e . n
 CLK, [, T _p ¢
LEDC_TICK_SEL_HSTIMERx ~ LEDC_HSTIMERx_RST low_level
LEDG_HSTIMERX_DUTY_RES — comparator

Fig. 3 LED_PWM High-Speed Channel Diagram
Puc. 3 LED PWM Jliazpama 6ucokowmeuoKicHo2o Kanay
From this structure, it is clear that the following need to be configured:
1. The h_timerx timer,
2. The h_chn channel,
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3. The link between the channel and the timer.
The LEDC_HSTIMERx_CONF_REG register is responsible for configuring the parameters of the
high-speed timer and has the following structure:

é %
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0 0 0 1 0

Fig. 4 Structure of the LEDC_HSTIMERx_CONF_REG register
Puc. 4 Cmpyxmypa pecicmpy LEDC HSTIMERx CONF REG

LEDC_TICK_SEL_HSTIMERX (bit 25) This bit is used to select the clock source for high-speed
timer x, either APB_CLK or REF_TICK.

1: APB_CLK (80 MHz) This is the main peripheral bus of the ESP32. Selecting APB_CLK is typical

for tasks requiring the generation of high-frequency PWM signals.

0: REF_TICK (1 MHz) This is a stable but slower reference clock source. REF_TICK is ideal for low-

frequency applications.

LEDC_HSTIMERX_RST (bit 24) This bit is used to reset high-speed timer x. The counter value will
be “zero" after the reset.

LEDC_HSTIMERXx_PAUSE (bit 23) This bit is used to pause the counter in high-speed timer x.

LEDC_CLK_DIV_NUM_HSTIMERX (bits 22-5) This field is used to configure the division factor
for the clock divider in high-speed timer x.

The upper 10 bits (22-13): Define the integer part of the divider.

The lower 8 bits (12-5): Define the fractional part of the divider (with a precision of 1/256).

LEDC_HSTIMERx_DUTY_RES (bits 4-0) This field is used to define the bit-width of the counter
(from 1 to 20 bits), which is the number of steps in the PWM period for high-speed timer x.

The choice of bit resolution is a trade-off: higher resolution provides smoother control (e.g., of an
LED's brightness) but lowers the maximum possible PWM frequency, and vice versa. This relationship
is clearly demonstrated by formula (2.1), which integrates all the parameters discussed.

The PWM frequency is calculated by the formula:

frwm = D Iffsgss (2.1)

where fcrk — is the clock source (APB_CLK a6o REF TICK),
DIV —is the divider,
RES — is the counter resolution.

After configuring the HSTIMERQO timer, the output channel must be configured. The parameters for
an individual channel of a high-speed timer x are defined by the LEDC_HSCHn_CONF0_REG register.
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Fig. 5 Structure of the LEDC_HSCHn_CONFO_REG register
Puc. 5 Cmpyxmypa pezicmpy LEDC HSCHn_CONFO_REG

The register has the following fields:

LEDC_IDLE LV _HSCHn (bit 3) — determines the signal level on the output when the channel is
inactive.

0 — The output is LOW (0 V).

1 — The output is HIGH (3.3 V).

LEDC_SIG_OUT_EN_HSCHN (bit 2) — enables the signal output to the GPIO.

0 — Disables the PWM output (regardless of the timer's operation).

1 — Enables the PWM output (if the timer is running).

LEDC_TIMER_SEL_HSCHn (bits 0-1) — determines which timer controls the PWM channel. The
ESP32 has 4 high-speed timers (HSTIMERO — HSTIMERS3).

To describe the relationship between the channel and the timer, it is first necessary to understand how
PWM works. The signal is generated as follows:

T g = = = = g g e g e

T T T S T e L ELCORRA

S0 _out

Fig. 6 Diagram of the output PWM signal
Puc. 6 [liaepama suxionoeo LLIIM cuenany

Each PWM channel receives a 20-bit value from the counter associated with the selected high-speed
timer. This value is compared with two registers to generate the signal:
1. LEDC_HPOINT_HSCHn — when the counter reaches this value, the PWM output signal goes
HIGH.
2. LEDC_HPOINT_HSCHn + LEDC_DUTY_HSCHN[24:4] — when the counter reaches this sum,
the PWM signal returns to LOW.
Thus, HPOINT defines the start time of the pulse, and DUTY sets the duration of the HIGH level,
forming the desired duty cycle.

To set the HPOINT value, the LEDC_HSCHn_HPOINT_REG register is used.
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(reserved)
LEDC_HPOINT _HSCHn

31 20 119 0

Fig. 7 Structure of the LEDC_HSCHn_HPOINT_REG register
Puc. 7 Cmpyxmypa pecicmpy LEDC_HSCHn_HPOINT_REG

The LEDC_HPOINT_HSCHn field (bits 19 - 0) defines the condition under which the output signal
will switch to 1 (HIGH).

This happens when the value of the timer counter, LEDC_HSTIMERX_CNT in the
LEDC_HSTIMERXx_VALUE_REG register, matches the value of LEDC_HPOINT_HSCHn in the
LEDC_HSCHn_HPOINT _REG register. At this moment, a logical one (HIGH) is set on the
corresponding PWM output.

To set the DUTY value, the LEDC_HSCHn_DUTY_REG register is used.

LEDC_DUTY_HSCHn

(reserved)

24 0

Fig. 8 Structure of the LEDC_HSCHn_DUTY_REG register
Puc. 8 Cmpyxmypa pecicmpy LEDC_HSCHn_DUTY_REG

Lad
[
[
h

LEDC_DUTY_HSCHn (bits 24 - 0) defines how long the signal remains high (HIGH) during one
PWM period.
When the counter of the hstimerx timer, which is linked to channel n, reaches the value
LEDC_LPOINT_HSCHn, the PWM output signal is set to LOW (0).
The duration of the signal's high state is measured in timer ticks. The value of
LEDC_LPOINT_HSCHn is calculated by the formula:
LEDC_LPOINT_HSCHn = LEDC_HPOINT_HSCHnl1 + LEDC_DUTY_HSCHn?2 (2.2)
or
LEDC_LPOINT_HSCHn = LEDC_HPOINT_HSCHnl1 + LEDC_DUTY_HSCHn2 + 1 (2.3)
depending on the settings. The key point is that the lower 4 bits of the DUTY field are not used
The program implements the enabling of the LEDC clock, the configuration of the HSTIMERO timer
and the HSCHO channel, as well as outputting the signal to GP102:
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3 Testing Methodology

3.1 General Methodology

For this research, the ESP32-DevKitC V4 hardware platform, based on the ESP32-WROOM-32D
module, was utilized. A Logic Analyzer 24 MHz 8CH served as the measurement tool, allowing for the
examination of the timing parameters of pulse signals. Additionally, software control of the ESP32
peripheral clock signal was implemented through the DPORT module, which handles clock
enabling/disabling for the LEDC [13].

Timer management was performed via direct access to the microcontroller's registers, using the ESP-
IDF libraries:

Fig. 9 ESP-IDF libraries
Puc. 9 Buxopucmani 6ioniomexu ESP-IDF

The program implements the enabling of the LEDC clock, the configuration of the HSTIMERO timer
and the HSCHO channel, as well as outputting the signal to GP102:

WRTTE(DPORT_PERIP_CLK_EN_REG, G_READ(DPORT_PERIP_CLK_EN_REG) | DPORT_LEDC_CLK_EN);
JRITE(DPORT_PERIP_RST_EN_REG, AD(DPORT_PERIP_RST_EN_REG) & ~DPORT_LEDC_RST);

E(GPIO_FUNC2_OUT_SEL_CFG_REG, LEDC_HS_SIG_OUT@_IDX);
:ITE(GPTIO_ENABLE_WITC_REG, (1 << 2));

WRITE (LEDC_HSTIMER® CONF_REG, ((1<<25)|(2<<13)](5)));

WRITE (LEDC_HSCH@ CONF@ _REG, (1<<2));

WRITE (LEDC_HSCH@_HPOINT_REG,
ITE (LEDC_HSCH@_DUTY_REG, (18<<4));

RITE(LEDC_HSTIMER®_CONF_REG,REG_READ(LEDC_HSTIMER®_CONF_REG)&~(1<<23));
RITE (LEDC_HSCH@ CONF1_REG, (1 << 31});

Fig. 10 Main program
Puc. 10 Ocnosna npoepama

To adjust the configurations, line #19, LEDC_HSTIMERO_CONF_REG, was modified to set the
clock source, divider (DIV), and counter resolution (RES). The DUTY value was set in the
LEDC_HSCHO DUTY_REG register on line 25.

During the experiments, the following PWM signal parameters were determined:

— The signal frequency, calculated by formula (2.1), with f;;x = 80 MHz.

— The signal period was calculated by the formula:
1

Tpwy = Frwm (3.1)
— The duration of the high level:
DUTY
tn = Sres * Tpwm (3.2)

where DUTY is the duty cycle value,
RES is the counter resolution.
3.2 Example of Configuration Analysis
To illustrate the methodology in more detail, let's consider configuration 9 with the following
parameters:
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RES =5 bits, DIV =2, DUTY =10
In this configuration, the clock frequency of the LEDC subsystem is f-;x = 80 MHz.. The theoretical
frequency is calculated using formula (2.1) and is:
feik 80 * 10°T
Towm =y oREs =~ 558
The signal period is calculated by formula (3.1), and is:

= 1.25 MHz.

Tows = frwm T 125%106 0.8 ps.
The duration of the high level is calculated by formula (3.2), and is:

DUTY 6
ty :W*TPWM =?*0.8* 107° = 0.25ps

Practical results were obtained using a logic analyzer. [14].

Fig. 11 Logic analyzer readings
Puc. 11 Iloka3zu noziunoco ananizamopa

The average values of the indicators were calculated over a signal duration of 0.5 seconds and entered
into the table.

Table. 1 Configuration 9 Calculations
Tabn. 1 Pospaxyuku kougicypayii 9

Configuration 9
Frequency, Hz Period, s ty, S
Theoretical 1250000 0.0000008 0.00000025
Practical 1249593.227 | 0.00000080026 | 0.0000002495
Error relative to theory -0.03% 0.03% -0.18%

The practical results, obtained from the logic analyzer, showed a frequency of 1.2496 MHz, a period
0f 0.80026 ps, and a high-level duration of 0.2495 us.

The relative error does not exceed -0.03% for the frequency, 0.03% for the period, and +0.18% for
ty, which indicates the high accuracy of the implemented register-level control.

4 Results and Analysis

During the experiments, 18 configurations of the LEDC timers were tested with various parameters
of resolution (RES = 4, 5, 6 bits), divider (DIV =1, 2, 4), and duty cycle (DUTY = 10, 33%, 50%). For
each configuration, theoretical values of frequency, period, and high-level signal duration were
determined, and practical measurements were performed using a logic analyzer. The obtained data
demonstrated a high correspondence between the calculations and the experiment, with the maximum
error not exceeding +0.03% for the frequency and period, and +0.6% for the high-level signal duration.

Analysis of the results showed that as the resolution (RES) increases, the precision of the duty cycle
adjustment improves, whereas the PWM frequency is predominantly determined by the value of the
divider (DIV).

An increase in DIV inversely proportionally reduces the signal frequency and linearly increases its
period. The DUTY parameter directly affects the duration of the high level, t;, and it was for this
indicator that the largest relative deviations were recorded. However, these deviations remain within an
acceptable margin of error for practical applications.

5 Conclusions

This work demonstrates the capabilities of direct software control over the registers of the ESP32's
LEDC subsystem to generate ultra-high-speed PWM signals. The research confirmed that the signal
frequency is inversely proportional to the prescaler value. At the same time, the ratio of the pulse duration
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to the period (the duty cycle) remains constant if the DUTY value and the resolution are not changed.
Direct register access significantly reduces delays in updating the duty cycle, ensuring more deterministic
and stable signal generation, which is crucial for tasks with high requirements for synchronization and
error minimization.

The results of this work are of practical significance for embedded systems that require high-speed
and precisely regulated PWM signals, particularly in robotics and power electronics, and they also deepen
the understanding of the hardware limits of PWM in the ESP32. Further research could be directed
towards the application of direct register writes for other LEDC timers and channels, analyzing the impact
of different clock sources and low-speed modes on signal quality and power consumption, as well as on
the interaction with FreeRTOS cores and ISRs for the synchronous control of multiple channels.

In summary, this work investigated the LEDC architecture, developed an algorithm for the direct
configuration of the prescaler, counter resolution, and duty cycle via registers, and conducted a
comparative analysis of theoretical and practical calculations which showed a high degree of
correspondence. Thus, the scientific problem of controlling LEDC timers has been solved through the
development and experimental confirmation of a new approach, which opens up prospects for further
optimization and expansion of the ESP32's capabilities in high-speed PWM control.
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KepyBannsa LEDC Taiimepamu mikpokonTpoJiepa ESP32 3a nonmomororo
pericTpiB

AKTyanbHicTh. Y CTaTTi pO3riOaloThCsl MUTAHHS TOYHOTO ()OPMYBaHHS Ta KepyBaHHsS IIUPOTHO-iMIyiabcHEMH (ILIIM)
curHanamu Ha 6a3i mincucremu LEDC mikpokonTposnepa ESP32 nusixom mpsimoro noctymy 1o perictpis. Uepes 3poctarodi
BUMOTH JO TOYHOCTI TaifiMiHTy y CBITJIONIOZHUX JpaiiBepax, KepyBaHHI JBHI'YHaMHM Ta CHJIOBI ENEKTPOHili, a TaKoX
00Me)XeHHS BUCOKOPIBHEBUX JpaiiBepHUX IHTep(eCiB, TOCITIKEHHS € aKTYaJIbHUM JUI1 pO3pOOHHKIB BOY/IOBaHUX peabHOTO-
4acy CHCTEM.

Merta pociimxennsi. [IpoananizyBatn MoximBocti kepyBanHs LEDC-raiimepamu ESP32 wepe3 npsimuii 3amuc y perictpy,
EKCIIEPUMEHTAIBHO OI[IHUTH TOYHICTH Ta CTaOUIbHICTH chopmoBaHuXx PWM-currHamiB i psgy xKoHQIrypamii i po3pooutu
MPaKTHYHI peKOMEH I 010 ONITHUMI3aLlii ITapaMeTpiB.

MeToau mocaixKeHHs1. 3aCTOCOBaHO perictpoBe mporpamyBanHs B cepemoBuini ESP-IDF wa mmari ESP32-DevKitC V4
(WROOM-32D), ekcriepUMeHTaIbHI BUMIpIOBAHHS YaCOBHX XapaKTEPHUCTHK BHXiJHHX CHIHAJIB JIOTIYHHM aHAIN3aTOPOM
(Logic Analyzer, 24 MHz, 8ch), nopiBHJIbHHH aHai3 TEOPETHYHHX pPO3paxyHKIiB ((PopMysIH YacToTH, Hpeckeiepa,
PO3PSAIHOCTI TIYMIFHHUKA) Ta IPAaKTHYHUX BUMIpIOBaHb 1uist Habopa 3 18 koudirypauiit (RES, DIV, DUTY).

PesyasTaTi. Posrisinyro apxitektypy LEDC Ta cTpykTypy BiINOBiIHHX pericTpiB TaiiMepiB i KaHaIIB; peai30BaHO aJrOPUTM
HanmamtyBanHs HSTIMERO Tta HS-kanamy depe3 mpsiMe 3amuCyBaHHS B pericTpu 1 BuBeaeHHs curHary Ha GPIO.
ExcriepuMeHTaNbHO MiATBEPPKEHO BHCOKY BiITIOBIIHICTH PO3PAaXyHKIB 1 BHMIPIOBaHb: MaKCHMalbHa BiTHOCHAa IMOXHOKa
4acToTH 1 mepioxy He nepesumrysaia +0,03%, a TpuBanocTi BUCOKOTO piBHI — +0,6%.

BucnoBku. Ipsvuit pericrpoBuit moctyn mo LEDC nmo3Bomse oTpumati aerepMmiHOBaHi, BucokoTo4Hi HIIM-curramm 3
MiHIMaJIBHOO 3aTPUMKOIO OHOBJIICHHS ITapaMeTPiB, M0 € MPUAATHUMH JUIS 3aCTOCYBaHb Y pOOOTOTEXHIIIl, CHIIOBIH €eKTPOHII
Ta IHIIMX CHCTEMaxX 3 BHCOKMMH BHMOTaMH JI0 CHHXpOHi3alii. PEeKOMEH/IOBaHO MOJANbII JOCITI/KEHHS Ha TEMy BILIUBY
IBTEPHATUBHUX JUKEPEIN TaKTy, pexxuMiB Hu3bKo1 mBuakocti LEDC, interpauii 3 ISR/FreeRTOS Ta po3imupenHs miaxony Ha
iHIII TaliMepH # KaHaITH.

Knrouogi cnosa: ATmega, ESP32, LEDC, LIIIM, pecicmpoge kepysanus, no2iuHuii ananizamop
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