
ISSN 2304 -6201 Вісник Харківського національного університету імені В. Н. Каразіна

 серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи управління», випуск 67, 2025 45

DOI: https://doi.org/10.26565/2304-6201-2025-67-04

__

© Horenko D., Kotvytskiy A., 2025
 This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0.

УДК (UDC) 621.382.002:621.381.821

Horenko Daniiel Master student of the Institute of Computer Science and Artificial

Intelligence, V.N. Karazin Kharkiv National University, Svobody Square, 4,

Kharkiv, Ukraine, 61022

е-mail: horenko2020ku11@student.karazin.ua

https://orcid.org/0009-0004-6910-4622

Kotvytskiy Albert Candidate of Physical and Mathematical Sciences, Associate Professor,

V. N. Karazin Kharkiv National University 4, Svobody Sq.,

Kharkiv, 61022, Ukraine

Pavol Jozef Šafárik University in Košice, 2, Šrobárova, Kosice, 041 80,

Slovak Republic

е-mail: kotvytskiy@gmail.com;

https://orcid.org/0000-0001-8283-505X

Controlling LEDC timers of the ESP32 microcontroller using registers

Relevance. This paper examines precise generation and control of pulse-width modulation (PWM) signals using the LEDC

(LED PWM Controller) subsystem of the ESP32 microcontroller via direct register access. As embedded real-time systems

increasingly require fine timing control in LED drivers, motor control and power electronics, standard high-level driver APIs

can be insufficient. Direct register manipulation of LEDC enables more precise tuning of frequency, resolution and pulse timing,

which is critical for synchronization-sensitive applications.

Objective. To analyze the capabilities of ESP32 LEDC timers when configured through direct register writes, to experimentally

evaluate the accuracy and stability of generated PWM signals across representative configurations, and to provide practical

recommendations for optimizing LEDC parameters in applied embedded projects.

Methods. The investigation employed low-level register programming under Espressif’s ESP-IDF on an ESP32-DevKitC V4

(WROOM-32D). Time-domain characteristics of the PWM outputs were measured with a Logic Analyzer (24 MHz sampling, 8

channels). The study combined theoretical derivations of PWM frequency and period based on clock source, divider (DIV) and

counter resolution (RES) with implementation of direct register sequences to configure HSTIMER0 and HS channel 0, and

comparative measurements for eighteen distinct configurations covering multiple RES, DIV and DUTY values.

Results. The register-based control method enabled generation of high-frequency PWM in the MHz range with close agreement

between calculated and measured values. Across tested configurations the maximum relative deviation did not exceed ±0.03%

for frequency and period, and ±0.6% for pulse high-time (duty width). Increasing counter resolution improved duty-cycle

granularity, while the prescaler DIV produced a linear change in PWM frequency. The experimental limitations observed at the

highest frequencies are attributable to the finite sampling capability of the measurement equipment.

Conclusions. Direct register access to the LEDC allows for obtaining deterministic, high-precision PWM signals with minimal

parameter update latency, making them suitable for applications in robotics, power electronics, and other systems with high

synchronization requirements. Further research is recommended on the influence of alternative clock sources, low-speed LEDC

modes, integration with ISR/FreeRTOS, and extending the approach to other timers and channels.

Keywords: ATmega, ESP32, LEDC, PWM, register access, logic analyzer

How to quote: D. V. Horenko, and A. T. Kotvytskiy, “Controlling LEDC timers of the ESP32

microcontroller using registers” Bulletin of V. N. Karazin Kharkiv National University, series

Mathematical modelling. Information technology. Automated control systems, vol.67, pp. 45-55, 2025.

https://doi.org/10.26565/2304-6201-2024-64-01

Як цитувати: Horenko D. V., and Kotvytskiy A. T., Controlling LEDC timers of the ESP32

microcontroller using registers. Вісник Харківського національного університету імені

В. Н. Каразіна, серія Математичне моделювання. Інформаційні технології. Автоматизовані

системи управління. 2025. 67. С.45-55. https://doi.org/10.26565/2304-6201-2024-64-01

Introduction

In modern technological systems, embedded computing modules are becoming increasingly

important, providing intelligent process control, data acquisition, and communication between devices.

They are the basis of robotic systems, automated production lines, sensor networks, and consumer IoT

solutions. A high level of integration, compactness, and energy efficiency makes such systems a key

https://doi.org/10.26565/2304-6201-2025-67-04
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:horenko2020ku11@student.karazin.ua
https://orcid.org/0009-0004-6910-4622
mailto:kotvytskiy@gmail.com
https://orcid.org/0000-0001-8283-505X
https://doi.org/10.26565/2304-6201-2024-64-01
https://doi.org/10.26565/2304-6201-2024-64-01

ISSN 2304 -6201 Bulletin of V.N. Karazin Kharkiv National University
46 series Mathematical modeling. Information technology. Automated control systems issue 67, 2025

element of modern electronics [1], [2]. One of the fundamental tasks for embedded controllers remains

the precise generation and control of signals, particularly pulse-width modulated signals, which control

LEDs, motors, power switches, and other peripheral devices.

Traditionally, for educational and prototyping purposes, microcontrollers of the ATmega series,

particularly the ATmega328P and ATmega2560, which are the foundation of the Arduino Uno and

Arduino Mega platforms, are widely used. They are distinguished by their simple architecture, extensive

library support, and a user-friendly programming environment. However, the use of the high-level Wiring

language and the abstraction layers of the Arduino IDE significantly limits the possibilities for precise

configuration of timers and pulse-width modulation [3], [4]. In specialized developments, to achieve

maximum configuration flexibility, direct access to the microcontroller's registers is used, which allows

changing PWM parameters with minimal delay [5].

In recent years, ESP32 microcontrollers from Espressif Systems have become widespread, combining

high computational power, built-in Wi-Fi and Bluetooth interfaces, hardware timer modules, and

advanced PWM signal control capabilities.

In the microcontroller platform market, the most common boards are the Arduino UNO

(ATmega328P) and Arduino MEGA (ATmega2560), with official prices as of October 2025 of 29.30

EUR and 52.80 EUR, respectively, according to the Arduino Store [6], [7].

In contrast, the ESP32-DevKitC module, which is an official product of Espressif Systems, is available

in the manufacturer's official store on the AliExpress platform [8] for a price of 8–15 USD, which is

several times cheaper while offering significantly higher computing power and integrated wireless

interfaces (Wi-Fi, Bluetooth).

Thus, for a comparable price, the user gets a dual-core 32-bit processor with a clock speed of up to

240 MHz, 16 PWM channels, and an advanced clocking system. This makes the ESP32 a cost-effective

choice for developers of real-time systems and researchers in the field of precision electronics.

Software development for the ESP32 is possible both in the Arduino IDE environment and using ESP-

IDF – the official SDK from Espressif Systems. However, working through the Arduino layer, which is

built on the Wiring language, creates additional delays in function calls and conceals the low-level

mechanisms for accessing hardware [9]. That is why for tasks related to high-frequency processes, motor

control, or the study of timing characteristics, programming in C with direct writes to peripheral registers

is advisable, as it allows for achieving maximum performance and precision in signal control.

Among the peripheral subsystems of the ESP32, a special place is held by the LEDC (LED PWM

Controller) – a module for generating pulse-width modulated signals, capable of forming up to 16

independent PWM channels with support for high-speed (up to 40 MHz) and low-speed modes. PWM

modulation is a basic tool for controlling LEDs, electric motors, audio modules, and other loads, where

the stability and precision of the signal parameters determine the operational quality of the entire system:

 in LED drivers – regulating brightness without flickering;

 motor control systems – smoothness of rotation and torque precision;

 in digital audio interfaces – affecting the level of noise and harmonics;

 in synchronization generators – minimization of time fluctuations of the signal.

The use of standard APIs, particularly the ESP-IDF LEDC driver, significantly simplifies

programming but does not allow for full control over the timer registers. This limits the precision of

configuring the frequency, duty cycle, and the timing of the signal update. In specialized systems, such

as robotic controllers or precision power control circuits, such capabilities are insufficient. In these cases,

an effective solution is direct access to the LEDC registers, which allows for flexible modification of all

necessary parameters, eliminating the overhead of the driver layer.

The purpose of this study is to analyze the capabilities of controlling the LEDC timers of the ESP32

microcontroller through direct access to its registers, and to experimentally evaluate the accuracy and

stability of the generated PWM signals.

2 Architecture and Operating Principle of the ESP32 LEDC

In classic microcontrollers of the ATmega family (specifically, ATmega328P, ATmega2560), the

implementation of pulse-width modulation (PWM) is based on linking each timer to strictly defined

output channels and pins of the chip [10]. For example, Timer0 in the ATmega328P serves only the

OC0A and OC0B outputs, and these pins are hardware-fixed. This approach simplifies the hardware logic

but significantly limits the flexibility of channel allocation when designing complex control systems [11].

ISSN 2304 -6201 Вісник Харківського національного університету імені В. Н. Каразіна

 серія Математичне моделювання. Інформаційні технології. Автоматизовані системи управління, випуск 67, 2025 47

In contrast, the ESP32 microcontroller implements the principle of hardware decoupling between the

timer, the channel, and the GPIO output. Each of the 16 channels of the LEDC subsystem can be

independently assigned to any of the four available timers and, in turn, routed to any available pin of the

microcontroller. This architecture provides exceptional flexibility when implementing complex control

systems, such as multi-channel motor drivers, RGB matrices, or power management systems, where not

only timing precision but also the efficient use of GPIOs is critical.

Thus, the ESP32 allows for the programmatic reconfiguration of the logical mapping between

channels and timers without hardware changes, which significantly expands design possibilities.

Furthermore, unlike in AVR, the LEDC features a separation between the logical control level (channel)

and the periodicity generator (timer).

 The timer determines the frequency and resolution of the PWM signal.

 The channel is responsible for the duty cycle and the connection to a specific GPIO.

This allows a single timer to be used for multiple channels that will have the same frequency but

different duty cycles. Unlike classic AVRs, where the pulse typically begins upon a counter reset, the

LEDC architecture allows setting an arbitrary pulse start time using the special HPOINT register,

providing flexible control over the phase shift between channels.

2.1 Brief Hardware Context of the ESP32

The ESP32 [12] microcontroller, developed by Espressif Systems, is a high-performance integrated

platform for building embedded systems with support for wireless technologies. Its core is a dual-core

Tensilica Xtensa LX6 processor, which operates at a clock frequency of up to 240 MHz. The processing

cores feature an advanced power-saving system, allowing for dynamic performance adjustments based

on the application's needs.

Fig. 1 ESP32 model Wroom-32D

Рис. 1 ESP32 моделі Wroom-32D

The ESP32 is distinguished by a rich set of peripheral modules, including:

 Communication interfaces (UART, SPI, I²C, I²S, CAN),

 Analog-to-digital (ADC) and digital-to-analog (DAC) conversion blocks,

 General-purpose hardware timers,

 Cryptographic accelerators,

 Specialized modules for signal control.

2.2 Structure of the LEDC Subsystem

LEDC is a hardware PWM controller with 16 independent channels that can generate PWM signals

of various frequencies and duty cycles. Key features of the LEDC include:

ISSN 2304 -6201 Bulletin of V.N. Karazin Kharkiv National University
48 series Mathematical modeling. Information technology. Automated control systems issue 67, 2025

 Support for high-speed and low-speed modes

 High precision (fractional frequency division)

 Fading (automatic duty cycle change)

LEDC has two logical classes of channels:

High-Speed (HS) — 8 channels designed for high-speed PWM generation (using timers

HSTIMER0..3);

Low-Speed (LS) — 8 channels oriented towards low-frequency or power-saving modes (using timers

LSTIMER0..3).

Fig. 2 LED_PWM architecture

Рис. 2 LED_PWM архітектура

As you can see, each output channel (signal), for example h_chn, can operate from any HSTIMERx

timer.

2.3 LEDC Registers

The LEDC subsystem of the ESP32 microcontroller manages the pulse-width modulation channels

through a set of specialized registers. It is the manipulation at this register level that provides maximum

flexibility in configuring signal parameters and minimizing delays.

Let's examine the structure of the high-speed timer and channel.

Fig. 3 LED_PWM High-Speed Channel Diagram

Рис. 3 LED_PWM Діаграма високошвидкісного каналу

From this structure, it is clear that the following need to be configured:

1. The h_timerx timer,

2. The h_chn channel,

ISSN 2304 -6201 Вісник Харківського національного університету імені В. Н. Каразіна

 серія Математичне моделювання. Інформаційні технології. Автоматизовані системи управління, випуск 67, 2025 49

3. The link between the channel and the timer.

The LEDC_HSTIMERx_CONF_REG register is responsible for configuring the parameters of the

high-speed timer and has the following structure:

Fig. 4 Structure of the LEDC_HSTIMERx_CONF_REG register

Рис. 4 Структура регістру LEDC_HSTIMERx_CONF_REG

LEDC_TICK_SEL_HSTIMERx (bit 25) This bit is used to select the clock source for high-speed

timer x, either APB_CLK or REF_TICK.

1: APB_CLK (80 MHz) This is the main peripheral bus of the ESP32. Selecting APB_CLK is typical

for tasks requiring the generation of high-frequency PWM signals.

0: REF_TICK (1 MHz) This is a stable but slower reference clock source. REF_TICK is ideal for low-

frequency applications.

LEDC_HSTIMERx_RST (bit 24) This bit is used to reset high-speed timer x. The counter value will

be "zero" after the reset.

LEDC_HSTIMERx_PAUSE (bit 23) This bit is used to pause the counter in high-speed timer x.

LEDC_CLK_DIV_NUM_HSTIMERx (bits 22–5) This field is used to configure the division factor

for the clock divider in high-speed timer x.

The upper 10 bits (22–13): Define the integer part of the divider.

The lower 8 bits (12–5): Define the fractional part of the divider (with a precision of 1/256).

LEDC_HSTIMERx_DUTY_RES (bits 4–0) This field is used to define the bit-width of the counter

(from 1 to 20 bits), which is the number of steps in the PWM period for high-speed timer x.

The choice of bit resolution is a trade-off: higher resolution provides smoother control (e.g., of an

LED's brightness) but lowers the maximum possible PWM frequency, and vice versa. This relationship

is clearly demonstrated by formula (2.1), which integrates all the parameters discussed.

The PWM frequency is calculated by the formula:

𝑓𝑃𝑊𝑀 =
𝑓𝐶𝐿𝐾

𝐷𝐼𝑉∙2𝑅𝐸𝑆 (2.1)

where 𝑓𝐶𝑅𝐾 – is the clock source (APB_CLK або REF_TICK),

DIV – is the divider,

RES – is the counter resolution.

After configuring the HSTIMER0 timer, the output channel must be configured. The parameters for

an individual channel of a high-speed timer x are defined by the LEDC_HSCHn_CONF0_REG register.

ISSN 2304 -6201 Bulletin of V.N. Karazin Kharkiv National University
50 series Mathematical modeling. Information technology. Automated control systems issue 67, 2025

Fig. 5 Structure of the LEDC_HSCHn_CONF0_REG register

Рис. 5 Структура регістру LEDC HSCHn_CONF0_REG

The register has the following fields:

LEDC_IDLE_LV_HSCHn (bit 3) – determines the signal level on the output when the channel is

inactive.

0 — The output is LOW (0 V).

1 — The output is HIGH (3.3 V).

LEDC_SIG_OUT_EN_HSCHn (bit 2) — enables the signal output to the GPIO.

0 — Disables the PWM output (regardless of the timer's operation).

1 — Enables the PWM output (if the timer is running).

LEDC_TIMER_SEL_HSCHn (bits 0-1) — determines which timer controls the PWM channel. The

ESP32 has 4 high-speed timers (HSTIMER0 – HSTIMER3).

To describe the relationship between the channel and the timer, it is first necessary to understand how

PWM works. The signal is generated as follows:

Fig. 6 Diagram of the output PWM signal

Рис. 6 Діаграма вихідного ШІМ сигналу

Each PWM channel receives a 20-bit value from the counter associated with the selected high-speed

timer. This value is compared with two registers to generate the signal:

1. LEDC_HPOINT_HSCHn — when the counter reaches this value, the PWM output signal goes

HIGH.

2. LEDC_HPOINT_HSCHn + LEDC_DUTY_HSCHn[24:4] — when the counter reaches this sum,

the PWM signal returns to LOW.

Thus, HPOINT defines the start time of the pulse, and DUTY sets the duration of the HIGH level,

forming the desired duty cycle.

To set the HPOINT value, the LEDC_HSCHn_HPOINT_REG register is used.

ISSN 2304 -6201 Вісник Харківського національного університету імені В. Н. Каразіна

 серія Математичне моделювання. Інформаційні технології. Автоматизовані системи управління, випуск 67, 2025 51

Fig. 7 Structure of the LEDC_HSCHn_HPOINT_REG register

Рис. 7 Структура регістру LEDC_HSCHn_HPOINT_REG

The LEDC_HPOINT_HSCHn field (bits 19 - 0) defines the condition under which the output signal

will switch to 1 (HIGH).

This happens when the value of the timer counter, LEDC_HSTIMERx_CNT in the

LEDC_HSTIMERx_VALUE_REG register, matches the value of LEDC_HPOINT_HSCHn in the

LEDC_HSCHn_HPOINT_REG register. At this moment, a logical one (HIGH) is set on the

corresponding PWM output.

To set the DUTY value, the LEDC_HSCHn_DUTY_REG register is used.

Fig. 8 Structure of the LEDC_HSCHn_DUTY_REG register

Рис. 8 Структура регістру LEDC_HSCHn_DUTY_REG

LEDC_DUTY_HSCHn (bits 24 - 0) defines how long the signal remains high (HIGH) during one

PWM period.

When the counter of the hstimerx timer, which is linked to channel n, reaches the value

LEDC_LPOINT_HSCHn, the PWM output signal is set to LOW (0).

The duration of the signal's high state is measured in timer ticks. The value of

LEDC_LPOINT_HSCHn is calculated by the formula:

𝐿𝐸𝐷𝐶_𝐿𝑃𝑂𝐼𝑁𝑇_𝐻𝑆𝐶𝐻𝑛 = 𝐿𝐸𝐷𝐶_𝐻𝑃𝑂𝐼𝑁𝑇_𝐻𝑆𝐶𝐻𝑛1 + 𝐿𝐸𝐷𝐶_𝐷𝑈𝑇𝑌_𝐻𝑆𝐶𝐻𝑛2 (2.2)

or

𝐿𝐸𝐷𝐶_𝐿𝑃𝑂𝐼𝑁𝑇_𝐻𝑆𝐶𝐻𝑛 = 𝐿𝐸𝐷𝐶_𝐻𝑃𝑂𝐼𝑁𝑇_𝐻𝑆𝐶𝐻𝑛1 + 𝐿𝐸𝐷𝐶_𝐷𝑈𝑇𝑌_𝐻𝑆𝐶𝐻𝑛2 + 1 (2.3)

depending on the settings. The key point is that the lower 4 bits of the DUTY field are not used

The program implements the enabling of the LEDC clock, the configuration of the HSTIMER0 timer

and the HSCH0 channel, as well as outputting the signal to GPIO2:

ISSN 2304 -6201 Bulletin of V.N. Karazin Kharkiv National University
52 series Mathematical modeling. Information technology. Automated control systems issue 67, 2025

3 Testing Methodology

3.1 General Methodology

For this research, the ESP32-DevKitC V4 hardware platform, based on the ESP32-WROOM-32D

module, was utilized. A Logic Analyzer 24 MHz 8CH served as the measurement tool, allowing for the

examination of the timing parameters of pulse signals. Additionally, software control of the ESP32

peripheral clock signal was implemented through the DPORT module, which handles clock

enabling/disabling for the LEDC [13].

Timer management was performed via direct access to the microcontroller's registers, using the ESP-

IDF libraries:

Fig. 9 ESP-IDF libraries

Рис. 9 Використані бібліотеки ESP-IDF

The program implements the enabling of the LEDC clock, the configuration of the HSTIMER0 timer

and the HSCH0 channel, as well as outputting the signal to GPIO2:

Fig. 10 Main program

Рис. 10 Основна програма

To adjust the configurations, line #19, LEDC_HSTIMER0_CONF_REG, was modified to set the

clock source, divider (DIV), and counter resolution (RES). The DUTY value was set in the

LEDC_HSCH0_DUTY_REG register on line 25.

During the experiments, the following PWM signal parameters were determined:

 The signal frequency, calculated by formula (2.1), with 𝑓𝐶𝐿𝐾 = 80 𝑀𝐻𝑧.
 The signal period was calculated by the formula:

𝑇𝑃𝑊𝑀 =
1

𝑓𝑃𝑊𝑀
 (3.1)

 The duration of the high level:

𝑡𝐻 =
𝐷𝑈𝑇𝑌

2𝑅𝐸𝑆 ∗ 𝑇𝑃𝑊𝑀 (3.2)

where 𝐷𝑈𝑇𝑌 is the duty cycle value,

 𝑅𝐸𝑆 is the counter resolution.

3.2 Example of Configuration Analysis

To illustrate the methodology in more detail, let's consider configuration 9 with the following

parameters:

ISSN 2304 -6201 Вісник Харківського національного університету імені В. Н. Каразіна

 серія Математичне моделювання. Інформаційні технології. Автоматизовані системи управління, випуск 67, 2025 53

RES = 5 bits, DIV = 2, DUTY = 10

In this configuration, the clock frequency of the LEDC subsystem is 𝑓𝐶𝐿𝐾 = 80 𝑀𝐻𝑧.. The theoretical

frequency is calculated using formula (2.1) and is:

𝑓𝑃𝑊𝑀 =
𝑓𝐶𝐿𝐾

𝐷𝐼𝑉 ∙ 2𝑅𝐸𝑆
=

80 ∗ 106Гц

2 ∗ 25
= 1.25 𝑀𝐻𝑧.

The signal period is calculated by formula (3.1), and is:

𝑇𝑃𝑊𝑀 =
1

𝑓𝑃𝑊𝑀
=

1

1.25 ∗ 106
= 0.8 µ𝑠.

The duration of the high level is calculated by formula (3.2), and is:

𝑡𝐻 =
𝐷𝑈𝑇𝑌

2𝑅𝐸𝑆
∗ 𝑇𝑃𝑊𝑀 =

10

25
∗ 0.8 ∗ 10−6 = 0.25 µ𝑠

Practical results were obtained using a logic analyzer. [14].

Fig. 11 Logic analyzer readings

Рис. 11 Покази логічного аналізатора

The average values of the indicators were calculated over a signal duration of 0.5 seconds and entered

into the table.

Table. 1 Configuration 9 Calculations

Табл. 1 Розрахунки конфігурації 9

Configuration 9

 Frequency, Hz Period, s 𝑡𝐻, s

Theoretical 1250000 0.0000008 0.00000025

Practical 1249593.227 0.00000080026 0.0000002495

Error relative to theory -0.03% 0.03% -0.18%

The practical results, obtained from the logic analyzer, showed a frequency of 1.2496 MHz, a period

of 0.80026 µs, and a high-level duration of 0.2495 µs.

The relative error does not exceed -0.03% for the frequency, 0.03% for the period, and ±0.18% for

𝑡𝐻, which indicates the high accuracy of the implemented register-level control.

4 Results and Analysis

During the experiments, 18 configurations of the LEDC timers were tested with various parameters

of resolution (RES = 4, 5, 6 bits), divider (DIV = 1, 2, 4), and duty cycle (DUTY = 10, 33%, 50%). For

each configuration, theoretical values of frequency, period, and high-level signal duration were

determined, and practical measurements were performed using a logic analyzer. The obtained data

demonstrated a high correspondence between the calculations and the experiment, with the maximum

error not exceeding ±0.03% for the frequency and period, and ±0.6% for the high-level signal duration.

Analysis of the results showed that as the resolution (RES) increases, the precision of the duty cycle

adjustment improves, whereas the PWM frequency is predominantly determined by the value of the

divider (DIV).

An increase in DIV inversely proportionally reduces the signal frequency and linearly increases its

period. The DUTY parameter directly affects the duration of the high level, 𝑡𝐻, and it was for this

indicator that the largest relative deviations were recorded. However, these deviations remain within an

acceptable margin of error for practical applications.

5 Conclusions

This work demonstrates the capabilities of direct software control over the registers of the ESP32's

LEDC subsystem to generate ultra-high-speed PWM signals. The research confirmed that the signal

frequency is inversely proportional to the prescaler value. At the same time, the ratio of the pulse duration

ISSN 2304 -6201 Bulletin of V.N. Karazin Kharkiv National University
54 series Mathematical modeling. Information technology. Automated control systems issue 67, 2025

to the period (the duty cycle) remains constant if the DUTY value and the resolution are not changed.

Direct register access significantly reduces delays in updating the duty cycle, ensuring more deterministic

and stable signal generation, which is crucial for tasks with high requirements for synchronization and

error minimization.

The results of this work are of practical significance for embedded systems that require high-speed

and precisely regulated PWM signals, particularly in robotics and power electronics, and they also deepen

the understanding of the hardware limits of PWM in the ESP32. Further research could be directed

towards the application of direct register writes for other LEDC timers and channels, analyzing the impact

of different clock sources and low-speed modes on signal quality and power consumption, as well as on

the interaction with FreeRTOS cores and ISRs for the synchronous control of multiple channels.

In summary, this work investigated the LEDC architecture, developed an algorithm for the direct

configuration of the prescaler, counter resolution, and duty cycle via registers, and conducted a

comparative analysis of theoretical and practical calculations which showed a high degree of

correspondence. Thus, the scientific problem of controlling LEDC timers has been solved through the

development and experimental confirmation of a new approach, which opens up prospects for further

optimization and expansion of the ESP32's capabilities in high-speed PWM control.

Funding

This research was supported by the EU NextGenerationEU through the Recovery and Resilience Plan

for Slovakia under project No 09I03-03-V01-00119.

REFERENCES

1. Valvano J.W., Yerraballi R. (2014). Embedded Systems — Shape the World: A Cyber-Physical

Systems Approach [e-book]. Austin, TX: The University of Texas at Austin. Available at:

https://users.ece.utexas.edu/~valvano/Volume1/E-Book/

2. Barr M. (1999). Programming Embedded Systems in C and C++. O’Reilly. 174 p. Available at:

https://archive.org/details/programmingembed0000barr

3. Microchip Technology Inc. (2015). ATmega328P — 8-bit AVR Microcontroller with 32K Bytes

In-System Programmable Flash. Datasheet. [Electronic resource]. Available at:

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-

Microcontrollers-ATmega328P_Datasheet.pdf (accessed: 22.09.2025).

4. Microchip Technology Inc. (2014). ATmega640/1280/1281/2560/2561 — 8-bit AVR

Microcontroller. Datasheet. [Electronic resource]. Available at:

https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-

atmega640-1280-1281-2560-2561_datasheet.pdf (accessed: 22.09.2025).

5. Kotvytskyi, A. T. (2024). Intellectual capital as a basis for innovative development: robotic

systems. In Monographic series «European Science» (Book 28, Part 1). Karlsruhe:

ScientificWorld-NetAkhatAV. 168 p. ISBN 978-3-98924-041-4. DOI: 10.30890/2709-

2313.2024-28-01. Available at:

https://desymp.promonograph.org/index.php/sge/issue/view/sge28-01/sge28-01

6. Arduino Store (2025). Arduino UNO Rev3 – Official Product Page. Arduino AG, Italy.

[Electronic resource]. Available at: https://store.arduino.cc/collections/uno (accessed:

07.10.2025).

7. Arduino Store (2025). Arduino MEGA 2560 Rev3 – Official Product Page. Arduino AG, Italy.

[Electronic resource]. Available at: https://store.arduino.cc/collections/giga (accessed:

07.10.2025).

8. Espressif Systems Official Store (2025). Official Manufacturer Page on AliExpress. Espressif

Systems. [Electronic resource]. Available at: https://www.aliexpress.com/store/1100220184

(accessed: 07.10.2025).

9. Arduino (n.d.). Getting Started with Arduino — official documentation (Arduino Docs).

[Electronic resource]. Available at: https://docs.arduino.cc/learn/starting-guide/getting-started-

arduino/ (accessed: 01.10.2025).

10. All About Circuits (2021). Pulse-width Modulation (PWM) Timers in Microcontrollers.

[Electronic resource]. Available at: https://www.allaboutcircuits.com/technical-

articles/introduction-to-microcontroller-timers-pwm-timers/ (accessed: 01.10.2025).

https://users.ece.utexas.edu/~valvano/Volume1/E-Book/
https://archive.org/details/programmingembed0000barr
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-2549-8-bit-avr-microcontroller-atmega640-1280-1281-2560-2561_datasheet.pdf
https://desymp.promonograph.org/index.php/sge/issue/view/sge28-01/sge28-01
https://store.arduino.cc/collections/giga
https://www.aliexpress.com/store/1100220184
https://www.allaboutcircuits.com/technical-articles/introduction-to-microcontroller-timers-pwm-timers/
https://www.allaboutcircuits.com/technical-articles/introduction-to-microcontroller-timers-pwm-timers/

ISSN 2304 -6201 Вісник Харківського національного університету імені В. Н. Каразіна

 серія Математичне моделювання. Інформаційні технології. Автоматизовані системи управління, випуск 67, 2025 55

11. University of Washington (2010). Lecture 7: ATmega328 Timers and Interrupts (Course CSE

P567: Embedded Systems). Seattle: University of Washington. 32 p. Available at:

https://courses.cs.washington.edu/courses/csep567/10wi/lectures/Lecture7.pdf

12. Espressif Systems (2020). Technical Reference Manual for ESP32. Version 5.5. 661 p.

[Electronic resource]. Available at:

https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual

_en.pdf (accessed: 01.10.2025).

13. Espressif Systems (2024). LED Control (LEDC) – Programming Guide for ESP32. ESP-IDF

v5.5.1. [Electronic resource]. Available at: https://docs.espressif.com/projects/esp-

idf/en/stable/esp32/api-reference/peripherals/ledc.html (accessed: 01.10.2025).

14. Saleae Support (2025). Using Logic. [Electronic resource]. Available at:

https://support.saleae.com/user-guide/using-logic (accessed: 01.10.2025).

Горенко

Данієль

Васильович

Магістр ННІ комп’ютерних наук та штучного інтелекту,

Харківський національний університет імені В.Н. Каразіна, майдан

Свободи, 4, Харків, Україна, 61022

Котвицький

Альберт

Тадеушевич

Кандидат фізико-математичних наук, доцент, Харківський

національний університет імені В.Н. Каразіна, майдан

Свободи, 4, Харків, Україна, 61022

Pavol Jozef Šafárik University in Košice,

2, Šrobárova, Kosice, 041 80,

Slovak Republic

Керування LEDC таймерами мікроконтролера ESP32 за допомогою

регістрів

Актуальність. У статті розглядаються питання точного формування та керування широтно-імпульсними (ШІМ)

сигналами на базі підсистеми LEDC мікроконтролера ESP32 шляхом прямого доступу до регістрів. Через зростаючі

вимоги до точності таймінгу у світлодіодних драйверах, керуванні двигунами та силовій електроніці, а також

обмеження високорівневих драйверних інтерфейсів, дослідження є актуальним для розробників вбудованих реального-

часу систем.

Мета дослідження. Проаналізувати можливості керування LEDC-таймерами ESP32 через прямий запис у регістри,

експериментально оцінити точність та стабільність сформованих PWM-сигналів для ряду конфігурацій і розробити

практичні рекомендації щодо оптимізації параметрів.

Методи дослідження. Застосовано регістрове програмування в середовищі ESP-IDF на платі ESP32-DevKitC V4

(WROOM-32D), експериментальні вимірювання часових характеристик вихідних сигналів логічним аналізатором

(Logic Analyzer, 24 MHz, 8ch), порівняльний аналіз теоретичних розрахунків (формули частоти, прескейлера,

розрядності лічильника) та практичних вимірювань для набора з 18 конфігурацій (RES, DIV, DUTY).

Результати. Розглянуто архітектуру LEDC та структуру відповідних регістрів таймерів і каналів; реалізовано алгоритм

налаштування HSTIMER0 та HS-каналу через пряме записування в регістри і виведення сигналу на GPIO.

Експериментально підтверджено високу відповідність розрахунків і вимірювань: максимальна відносна похибка

частоти і періоду не перевищувала ±0,03%, а тривалості високого рівня — ±0,6%.

Висновки. Прямий регістровий доступ до LEDC дозволяє отримати детерміновані, високоточні ШІМ-сигнали з

мінімальною затримкою оновлення параметрів, що є придатними для застосувань у робототехніці, силовій електроніці

та інших системах з високими вимогами до синхронізації. Рекомендовано подальші дослідження на тему впливу

альтернативних джерел такту, режимів низької швидкості LEDC, інтеграції з ISR/FreeRTOS та розширення підходу на

інші таймери й канали.

Ключові слова: ATmega, ESP32, LEDC, ШІМ, регістрове керування, логічний аналізатор

Надійшла у першій редакції 02.09.2025, в останній - 05.10.2025.
The first version has been received on 02.09.2025, the final version – on 05.10.2025.

https://courses.cs.washington.edu/courses/csep567/10wi/lectures/Lecture7.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals/ledc.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals/ledc.html
https://support.saleae.com/user-guide/using-logic

