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XAI Optimization for Low-Latency Neural-Based Intrusion Detection 

Systems in Network Environments 

Relevance. In contemporary network environments, deep learning-based intrusion detection systems (IDS) provide significant 

improvements in detecting complex and evolving cyber threats. However, their practical deployment in real-time applications is 

severely limited by computational complexity, latency, and a lack of interpretability, commonly referred to as the "black-box" 

problem. Integrating eXplainable Artificial Intelligence (XAI) methods into IDS is crucial for enhancing the transparency, 

trustworthiness, and operational effectiveness of security systems. Goal. The aim of this research is to explore and optimize XAI 

methods to achieve low-latency, explainable neural-based intrusion detection systems suitable for real-time network traffic 

analysis, thus balancing interpretability with computational efficiency and detection accuracy. Research methods. The study 

conducted a systematic review and comparative analysis of existing deep learning (DL) models (CNN, LSTM, GRU, 

Autoencoders, CNN-LSTM hybrids) and prominent XAI techniques (SHAP, LIME, Integrated Gradients, DeepLIFT, Grad-

CAM, Anchors). Optimization strategies were proposed, including hardware acceleration, lightweight gradient-based attribution 

methods, hybrid architectures, and selective explanation strategies. Empirical validation was performed on standard datasets 

(CICIDS2017, NSL-KDD, UNSW-NB15). The results. The analysis revealed that gradient-based attribution methods 

(DeepLIFT, Integrated Gradients) are optimal for real-time IDS due to minimal latency and high fidelity. Hybrid explainable-

by-design frameworks, specifically CNN-LSTM models enhanced with attention mechanisms (ELAI framework), demonstrated 

significant performance gains with detection accuracy exceeding 98% and inference times below 10 ms. Optimized methods 

notably improved zero-day attack detection rates up to 91.6%. Conclusions. The research successfully demonstrated practical 

methods for integrating explainability into real-time neural-based IDS, significantly enhancing both detection performance and 

decision transparency. Future research should focus on standardizing evaluation metrics, refining attention-based models, and 

extending these optimization approaches to other cybersecurity applications.  

Keywords: cybersecurity, intrusion detection system, deep learning, explainable artificial intelligence, real-time detection, 

anomaly detection, neural networks, XAI optimization. 
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1. Introduction 

In the digital age, cybersecurity – the practice of protecting systems, networks, and confidential data 

that is coursing through them from unauthorized access, damage, and hijacking – has become an essential 

part of any organization’s security policy. As time progresses, the reliance of individuals, organizations, 

and governments on digital infrastructure increases. Consequently, it is crucial to ensure the 

confidentiality, integrity, and availability (CIA triad) of data. 
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To safeguard sensitive information from a rapidly expanding array of cyberattacks, including the most 

recent “zero-day” and “slow” attacks, it is imperative that each organization establish a multilayered 

cybersecurity system, which includes intrusion detection systems (IDS). An intrusion detection system 

(IDS) scans for malicious activity or unauthorized access through analysis of traffic dynamics, 

applications and session behavior, and signature-based features. By emphasizing anomalies and 

recognized attack patterns, IDS alerts help organizations promptly address possible security risks [1]. 

As the volume of network traffic increases and cyberattacks become more sophisticated, conventional 

IDS systems, including signature-based and anomaly-based mechanisms, become less effective in 

detecting intrusions. Currently, approximately 50% of startups disclose experiencing information theft, 

underscoring the urgency of robust IDS solutions in institutional security frameworks [2]. 

The integration of machine learning (ML) and deep learning (DL) technologies with IDS systems 

allows us to significantly enhance the efficiency and classification accuracy of security systems. By 

utilizing a wide range of ML and DL models with varying characteristics, cybersecurity personnel can 

create IDS systems that are unique in their ability to perform specific tasks and guarantee the highest 

level of data protection for each distinct network. 

In order to determine whether network traffic is normal or demonstrates indicators of potential 

malicious activity, machine learning techniques employ algorithms such as decision trees, K-nearest 

neighbors, and support vector machines (SVMs). These methods significantly enhanced detection rates 

in comparison to conventional solutions upon implementation; however, ML-based IDS systems were 

still incapable of managing high-dimensional and imbalanced data. Their reliance on centralized data 

storage and transmission has resulted in substantial privacy and security vulnerabilities. Two additional 

challenges to the development of effective ML solutions are the vast quantity of network information and 

the prevalence of imbalanced data sets. Minor but critical attack types are underrepresented and simply 

insufficient for proper training. While there are numerous preprocessing techniques, feature selection 

methods, and ensemble strategies available to improve performance, they are insufficient to guarantee 

highly accurate detection when it comes to capturing the complex patterns and relationships present in 

network traffic data. Therefore, researchers initiated the development of more complicated deep learning 

algorithms, which have demonstrated an exceptional ability to learn hierarchical representations from 

high-dimensional data [3, 4]. 

Artificial neural networks have recently garnered significant attention for their potential to improve 

IDS systems. For instance, convolutional neural networks (CNNs) performed exceptionally well in the 

identification of spatial features – correlations and relationships within data at a specific time. Conversely, 

recurrent neural networks (RNNs) had proven to be more adept at detecting temporal features – patterns 

and sequences across data over time. Several studies have illustrated the successful implementation of 

deep learning techniques in network intrusion detection, either independently or as part of ML/DL hybrid 

systems. More recently, researchers have examined the use of advanced deep learning architectures, 

including long short-term memory (LSTM) and gated recurrent unit (GRU) networks, for intrusion 

detection in network traffic data [5]. These models demonstrated a high level of ability to capture temporal 

dependencies in sequential data, which is particularly important when examining network traffic. 

Despite their numerous benefits, the DL technologies have significant issues that must be resolved 

before they can be widely implemented in IDS systems. The deployment of complex deep learning 

models, such as LSTM, is restricted in real-time or high-throughput environments, such as backbone 

networks, due to their resource-intensive and slow nature. In addition, they may be highly vulnerable to 

adversarial inputs, be challenging to scale, or require the implementation of specialized techniques to 

identify rare but critical attack patterns. DL IDS systems’ biggest shortcomings, however, are their high 

latency, low throughput, and inability to be explained [6]. 

Processing large-scale traffic flows, particularly in real-time operations, is restricted by the 

computational complexity and high resource consumption of DL architectures. DL-based IDS systems 

are frequently treated as “black boxes” by both developers and users due to their inability to clarify their 

inference processes and final results. This lack of transparency hinders forensic analysis, complicates 

auditing and compliance processes, and reduces the overall trust in automated security decisions made by 

DL models. 

eXplainable Artificial Intelligence (XAI) approaches can be integrated into the DL-based IDS 

frameworks to enhance transparency and interpretability and to facilitate a more comprehensive 

understanding of model decisions. Transparency helps build trust in AI-driven frameworks by explaining 

the logic behind some outcomes, which is essential for meeting legal and regulatory requirements [7]. 
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However, despite XAI technologies offering a promising solution to the explainability problem, the 

most popular methods, such as SHAP and LIME [8], are computationally expensive and not well-suited 

for real-time deployment. Their reliance on repeated model evaluations or surrogate approximations 

significantly increases latency, making them impractical for high-throughput environments where fast 

decision-making is critical. 

This research attempts to come up with a proper solution for integrating explainable AI techniques 

into deep learning-based IDS models in a way that preserves low latency and high throughput while 

maintaining sufficient interpretability for real-time security decision-making. 

 

2. Objective of the study and research tasks 

The primary objective of this study is to explore and evaluate optimization strategies for integrating 

explainable artificial intelligence (XAI) into deep learning-based intrusion detection systems (IDS) 

operating in real-time network environments. The goal is to balance detection performance, 

computational efficiency, and interpretability to enhance trust and operational usability. 

To achieve this objective, the following research tasks are defined: 

- to review existing explainable AI methods (e.g., LIME, SHAP) and analyze their applicability to 

IDS; 

- to identify the main challenges of implementing XAI in low-latency, high-throughput intrusion 

detection systems; 

- to compare traditional (offline) and real-time XAI approaches in terms of performance, 

scalability, and explainability; 

- to investigate potential optimization strategies for deploying XAI in real-time DL-based IDS; 

- to propose conceptual guidelines for integrating interpretable components into deep IDS models 

without compromising detection speed and accuracy. 

 

3. Review of existing DL models and XAI methods suitable for real-time IDS systems 

 

3.1. Deep learning models for real-time intrusion detection 

DL technologies have the potential to significantly improve intrusion detection systems by removing 

the primary limitations of traditional methods. In contrast to signature-based IDS, which fail to identify 

emerging threats, deep neural networks automatically identify intricate patterns from raw network data, 

thereby capturing non-linear feature relationships without the need for manual feature engineering. This 

allows DL-based IDS systems to detect both known attack signatures and previously unseen or evolving 

attack patterns with greater accuracy and adaptability. Simply put, deep learning improves on previous 

methods' high false alarms and blind spots for novel attacks by enabling more precise, flexible, and 

comprehensive threat detection in IDS [4]. 

In order to effectively prevent the intrusion, it is crucial to immediately identify any potential 

anomalies and unusual behavioral changes in the network traffic. As a result, the faster the IDS system 

operates, the greater is the chance of stopping an attack before it fully corrupts the network. The most 

effective approach for the majority of contemporary networks is to implement real-time IDS systems that 

can immediately process traffic and identify changes in the present. 

Deploying an IDS in real-time operational networks imposes strict requirements on both the system 

and the DL models used in it. Key demands include the following: 

1. Low detection latency. The IDS system must analyze traffic and detect intrusions with minimal 

delay (near-instantaneously) to prevent or contain attacks as they occur. Real-time network applications 

require ultra-low latency processing; even minor delays in traffic analysis can degrade an IDS’s 

effectiveness [9]. 

2. High throughput and scalability. It is critical that the real-time IDS system be able to handle large 

volumes of continuous network data (high bandwidth traffic) without becoming a bottleneck. This implies 

that the detection DL model must be capable of scaling to high-speed networks and large data streams, 

processing events in milliseconds, and maintaining a pace with network line rates. As networks expand, 

the IDS system must ensure that it operates efficiently in heterogeneous or distributed environments. 

3. Computational efficiency. To operate in real time, the algorithms must be resource-efficient. Deep 

models with extremely high complexity (e.g., very deep CNNs or LSTMs) can require a large amount of 

computation time and may be too heavy for real-time use on limited hardware. Real-time IDS systems 

often require optimizing or simplifying their models (or utilizing hardware acceleration) to satisfy time 
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constraints. In particular, in IoT or edge scenarios, DL models must operate within limited CPU/memory, 

which is why lightweight or optimized models are preferred. 

 
Table 1. Comparison of deep learning models for intrusion detection in real time [11, 12] 

Таблиця 1. Порівняння моделей глибокого навчання для виявлення вторгнень у реальному часі [11, 12] 

Model Key Features Strengths Limitations Best Use Cases 

Convolutional 

Neural 

Networks 

(CNN) 

Employs 

convolutional 

layers to extract 

spatial patterns 

from fixed-length 

input vectors 

Fast inference; 

highly 

parallelizable; 

excellent at 

detecting known 

structured attack 

patterns; fast 

training 

Not suitable for 

time-series data or 

sequences 

Packet/flow-level 

intrusion detection 

in high-throughput 

environments 

Recurrent 

Neural 

Networks  

(RNN) 

Processes 

sequential data 

with memory 

connections 

Effective for 

detecting 

sequential attack 

behavior 

Suffers from 

vanishing 

gradients; less 

stable 

Network traffic 

behavior analysis 

Long Short-

Term Memory 

(LSTM) 

Enhanced RNN 

with long-term 

memory 

capability 

Handles long-

term 

dependencies; 

high detection 

rate for evolving 

threats 

Computationally 

intensive; slower 

training 

Detection of 

persistent threats 

and time-based 

anomalies 

Gated 

Recurrent Unit 

(GRU) 

Lightweight 

recurrent 

architecture that 

captures temporal 

dependencies 

using update and 

reset gates 

Faster, consumes 

fewer resources 

than LSTM, yet 

adapts well to 

sequence patterns 

Slightly less 

capable of 

modeling long-

term dependencies 

than LSTM 

Detecting time-

series anomalies, 

slow scans, and 

low-and-slow 

attacks in real 

time 

Autoencoder 

Unsupervised 

neural network to 

reconstruct 

normal behavior; 

anomalies result 

in high 

reconstruction 

loss 

Detects zero-day 

threats without 

labeled data; 

suitable for 

anomaly-based 

detection 

May misclassify if 

trained on noisy 

data; slower unless 

specifically 

optimized 

Zero-day attack 

detection and 

anomaly-based 

IDS systems 

Hybrid 

Lightweight 

1D CNN-

LSTM 

Combines spatial 

feature extraction 

of CNN with 

temporal pattern 

detection from 

LSTM 

Balances speed 

and accuracy; 

optimized 

variants can run 

in real time 

Requires careful 

optimization; 

heavier than purely 

CNN or GRU 

Attacks exhibiting 

both spatial and 

temporal 

characteristics, 

such as DDoS or 

multi-stage 

intrusions 

Deep Neural 

Networks 

(DNN) 

Simple fully 

connected 

feedforward 

networks 

Very fast 

inference; easy to 

implement and 

scale; low latency 

Limited feature 

extraction 

capability; may 

miss complex 

patterns 

General 

classification tasks 

in high-throughput 

IDS pipelines 

 

4. High detection accuracy. Even under speed constraints, a real-time IDS system is expected to 

accurately distinguish attacks from normal traffic. Reliability is crucial – high true positive rates and low 

false positives ensure the system’s rapid alerts are trustworthy. As a result, the DL model should strike a 
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balance between speed and accuracy, giving operators accurate and timely detection results without 

overloading them with false alarms. 

In order to meet these requirements, researchers implement streaming architectures and optimizations. 

For example, integrating DL models into frameworks such as Apache Spark Streaming or using a unified 

Kappa architecture [10] can enable continuous, low-latency processing of network data. In practice, real-

time IDS performance may be achieved through the use of model compression, parallel processing, or 

ensemble methods that enhance accuracy while maintaining a millisecond time budget. 

While numerous DL models have been integrated into IDS systems, only a small number are 

particularly well-suited for real-time detection due to their capacity to balance efficiency and speed. The 

main DL models and their attributes in an IDS context are summarized in Table 1 [12]. 

For real-time deployment, DL models must balance speed, throughput, and precision with operational 

constraints. 

CNNs offer rapid, parallelizable inference suitable for high-throughput detection of structured attack 

patterns, making them highly appropriate for real-time IDS, though lacking in temporal analysis. LSTMs 

excel at modeling temporal attack sequences, like slow-moving threats, but require considerable 

computational resources, limiting their real-time practicality unless optimized [11]. GRUs provide a 

computationally efficient alternative to LSTMs, capturing temporal dependencies effectively with lower 

latency, thus being more suitable for real-time IDS. CNN-LSTM hybrids achieve an optimal balance of 

spatial and temporal pattern recognition, delivering high accuracy and real-time deployment feasibility 

with minimal latency [12]. Autoencoders, capable of unsupervised anomaly detection, are beneficial in 

real-time IDS for identifying zero-day threats but may generate false alarms and lack detailed attack 

classification [11]. DNNs, although limited in complex feature detection, offer near-instantaneous 

inference suitable for initial screening in ultra-high-speed IDS pipelines [12]. 

The comparative analysis of DL models upon their integration into IDS systems is shown in Table 2 

[11]. There are advantages and disadvantages to each deep learning model in terms of complexity, 

accuracy, and speed. The most appropriate option frequently is determined depending on the deployment 

constraints and the prioritized attack characteristics that are intended to be countered. CNN-LSTM hybrid 

DL-based IDS have been demonstrated to enhance detection rates while maintaining real-time operation 

by employing streaming-friendly architectures and carefully balancing the workload. 

 
Table 2. Comparative analysis of deep learning models for intrusion detection [11] 

Таблиця 2. Порівняльний аналіз моделей глибокого навчання для виявлення вторгнень [11] 

Model Accuracy (%) Precision Recall Dataset Used 

CNN 96,8 0,95 0,94 CICIDS2017 

RNN 95,2 0,93 0,91 NSL-KDD 

LSTM 97,1 0,96 0,95 BoT-IoT 

Autoencoder 94,5 0,91 0,90 N-BaIoT 

Hybrid CNN-LSTM 98,3 0,97 0,96 Custom Mixed Dataset 

 

All the DL models mentioned have the potential to be integrated into real-time IDS systems, 

contingent upon the identification of the priorities and necessary characteristics of the systems. 

Nevertheless, some optimization may be necessary before that. 

 

3.2. Explainable AI methods and their potential to enhance trust in DL-based IDS systems 

Deep learning models pose one of the greatest challenges in deploying them in actual IDS use due to 

a lack of interpretability. IDS have to rely on deep learning algorithms that lack transparency despite their 

high accuracy, creating a “black box” effect that can hinder the analysts’ understanding of their decision-

making processes. Simply put, despite the high accuracy of detection, these systems provide little to no 

insight into why certain decisions were made. 

“Black-box” status of DL models means that security professionals struggle to understand the 

reasoning behind alerts, which is important to trust the system and respond appropriately. Uninterpretable 

IDS can lead to high false-alarm rates and missed threat patterns, since security teams cannot easily verify 

or refine the model’s decisions. 
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Explainable AI (XAI) addresses this challenge by making IDS decisions more auditable. XAI is a fast-

growing area of research with the goal to enhance the transparency and trustworthiness of AI systems. 

For IDS, XAI methods are being applied to yield: 

1. Decision-making process visualizations, which can assist security analysts in determining how an 

IDS model reached a specific decision. 

2. Feature importance analysis, which identifies which features (e.g., packet size, traffic volume) were 

most important for the model’s prediction. 

3. Interpretability models, e.g., decision trees or rule-based systems, that can provide explanations in 

a human-readable format [13, 14]. 

By providing human-understandable explanations for each detection, XAI enables analysts to see 

which features or behaviors influenced an alert, thereby enhancing trust and clarity in decision-making. 

For example, an XAI-enhanced IDS might show that an unusually high volume of traffic on a rare port 

was the key reason a session was classified as an attack. Such insights allow security teams to validate 

alerts, reduce false positives, and confidently act on the system’s recommendations. 

A range of XAI methodologies has been applied within IDS frameworks to enhance transparency, 

each offering distinct advantages and facing unique challenges. Among these, SHAP (Shapley Additive 

Explanations) and LIME (Local Interpretable Model-Agnostic Explanations) are widely regarded as 

effective post-hoc, model-agnostic techniques for elucidating complex models like deep neural networks 

[15]. 

 
Table 3. Comparison of XAI methods for real-time IDS suitability [15, 16, 18, 20, 21, 22] 

Таблиця 3. Порівняння методів XAI щодо придатності для IDS реального часу [15, 16, 

18, 20, 21, 22] 

 

 

XAI Method 
Explanation 

Type 

Model 

Agnostic/ 

Specific 

Key 

Advantages 
Limitations 

Suitability 

for Real-

Time IDS 

Shapley 

Additive 

Explanations 

(SHAP) 

Feature 

Attribution 

Model-

agnostic 

Consistent and 

fair attribution; 

local and 

global 

explanations 

High 

computational 

overhead 

Limited due 

to high 

latency 

Local 

Interpretable 

Model-Agnostic 

Explanations 

(LIME) 

Surrogate 

Model 

Model-

agnostic 

Intuitive, per-

instance 

explanations 

Local explanations 

may not generalize 

well 

Limited due 

to latency 

concerns 

Saliency Maps / 

Grad-CAM 

Gradient-

based 

Visualization 

Model-

specific 

Fast, intuitive 

visual 

explanations 

Require 

differentiable 

models; noisy 

outputs; no textual 

explanations 

Suitable due 

to low 

latency 

Integrated 

Gradients (IG) 

Gradient-

based 

Attribution 

Model-

specific 

Robust feature 

attribution, 

faithful 

explanations 

Requires model 

internals; less 

intuitive alone 

Highly 

suitable due 

to low 

latency 

DeepLIFT 

Gradient-

based 

Attribution 

Model-

specific 

High-fidelity, 

efficient, low 

complexity 

explanations 

Requires model 

internals; less 

intuitive alone 

Highly 

suitable due 

to low 

latency 

Anchors 
Rule-based 

Explanations 

Model-

agnostic 

Intuitive, high-

precision rules 

Computationally 

intensive to derive 

optimal rules 

Limited 

unless 

simplified 

rules are 

used 
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SHAP provides consistent and thorough feature attribution but its computational complexity limits its 

suitability for real-time IDS scenarios [15, 16]. LIME offers intuitive per-instance explanations beneficial 

for auditing individual alerts but is similarly constrained by computational latency [15, 18]. Saliency 

Maps and Grad-CAM are fast visual methods suited for real-time use due to their low computational 

overhead [20]. Integrated Gradients (IG) and DeepLIFT efficiently deliver faithful, low-latency 

explanations highly suitable for real-time IDS implementations. They are precise and are applicable to 

any differentiable DL-based IDS, but they require access to the neural model’s internals [21]. Anchors 

produce intuitive, high-precision rules but their computational cost in deriving optimal rules limits real-

time applicability unless simplified rules are used [22]. 

 

 
Fig. 1. Schematic representation of the SHAP value framework in a machine learning context [17] 

Рис. 1. Схематичне представлення структури фреймворку SHAP у контексті машинного навчання [17] 

 

When integrating XAI methods into a real-time IDS, several key criteria determine their suitability: 

1. Fidelity (Faithfulness). This refers to how accurately the explanation reflects the actual decision 

process of the original model. A high-fidelity explanation will highlight the truly important features in 

the model’s internal reasoning. For example, if the IDS’s DL model bases its decision mainly on feature 

X, a faithful XAI method should assign the highest importance to X in its explanation. Low-fidelity 

explanations can mislead analysts by emphasizing the wrong factors, so measuring an XAI technique’s 

fidelity to the DL model is crucial. Some studies quantify fidelity by checking how model predictions 

change when the top-ranked features from the explanation are removed or perturbed. In an IDS context, 

faithfulness ensures the explanations are truthful proxies of the complex model – a necessary condition 

for trust. 

2. Human Interpretability. Even if an explanation is faithful, it must be understandable to a human 

analyst. Interpretability involves the simplicity and clarity of the explanation – e.g., using a small number 

of features, natural language descriptions, or visual aids that a person can quickly grasp. A highly 

interpretable explanation might be a short rule or a concise list of the top 2 or 3 features influencing a 

decision, rather than a dense list of 20 parameters. For IDS analysts under time pressure, explanations 

should ideally be simple, clear, and domain-relevant. Techniques like Anchors and decision trees score 

well on human interpretability, since they produce “if-then” rules and clear decision paths, respectively, 

whereas something like a raw saliency map or a long list of Shapley values may need more interpretation 

[22]. In practice, usability studies have found that providing transparent and visual explanations, such as 

charts of feature contributions or highlighted traffic traces, improves analysts’ trust and speeds up their 

validation of alerts. 

3. Computational Overhead. The extra processing time and resources required to generate 

explanations are a major concern for real-time systems. Some XAI methods, especially post-hoc 

techniques, can be computationally intensive. For instance, SHAP often requires evaluating the model 

multiple times on various feature subsets or background samples, and LIME needs to generate many 

perturbed samples to fit a local surrogate. These methods can significantly slow down the alert pipeline 

if used on every single event. Overhead is typically measured in terms of added latency per prediction or 
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CPU/GPU usage. In a high-throughput IDS, an XAI method with heavy overhead might not be practical. 

Therefore, a suitable XAI for real-time IDS should minimize computation – using efficient algorithms, 

sampling strategies, or by leveraging hardware acceleration. Research in explainable IDS frequently 

emphasizes the need for lightweight explainability approaches that don’t degrade the system’s 

performance. 

4. Real-Time Feasibility. This criterion is related to overhead but focuses on whether the XAI method 

can deliver explanations within the time constraints of an operational environment. A real-time IDS may 

need to flag and explain an alert within milliseconds to seconds. Thus, methods that require lengthy 

processing or cannot keep up with streaming data are less feasible. Real-time feasibility also considers if 

the explanation can be generated on-the-fly for each alert or if it requires batch or offline processing. For 

example, a method that pre-trains an interpretable surrogate model might be feasible if that surrogate can 

then produce instant explanations during operation [15]. In contrast, an approach that must solve an 

optimization or search problem per event – as some anchor-based or perturbation methods do – might 

struggle in real time. Ultimately, achieving real-time explainability often involves a trade-off between the 

depth of the explanation and the speed of generation. Ensuring feasibility might involve simplifying the 

explanation, using approximate but faster algorithms, or only explaining a subset of events rather than 

everything. 

Not all explanation techniques are equally practical for a real-time DL-based IDS. Techniques that 

offer low latency and high clarity are generally more suitable. 

1. Gradient-Based Attributions methods – Saliency, Integrated Gradients, and DeepLIFT – are 

typically favored for real-time use because of their computational efficiency. They piggyback on the 

model’s own backpropagation, typically requiring only one pass through the neural network to calculate 

feature importances. For instance, computing an integrated gradient or a DeepLIFT attribution for an 

input can be done quickly on modern hardware [21]. 

In comparative evaluations on an LSTM-based IDS, gradient methods (especially DeepLIFT) 

produced explanations with lower complexity and higher fidelity than LIME or SHAP, indicating they 

capture the model’s behavior well without excessive computation. DeepLIFT in particular was found to 

give consistent and reliable explanations while being faster to compute, making it a strong candidate for 

real-time alert explanation. 

Gradient-based attributions methods work seamlessly with common DL models such as CNNs, RNNs 

and autoencoders, highlighting important features or time steps almost instantaneously. The trade-off is 

that gradient-based explanations might be less intuitive in isolation, but they can be combined with 

visualization or simple messaging to aid analysts. Overall, because of their high fidelity and low overhead, 

saliency and gradient techniques are well-suited to explain decisions on the fly in real-time IDS systems. 

2. Surrogate and Rule-Based Methods (Simplified Models) present another strategy for real-time 

explainability, namely to use an interpretable model alongside or in place of the DL for certain decisions. 

For example, a decision tree or a set of “if-then” rules can approximate the deep model’s behavior for 

explanation purposes. These surrogates can be pre-computed (offline) to mimic the DL model on training 

data then used to generate quick explanations during operation. Because a decision tree or rule set is fast 

to evaluate, the explanation is essentially instantaneous at run-time. Such hybrid approaches attempt to 

get the best of both worlds: the DL handles detection accuracy, while the surrogate offers human-readable 

logic as explanations [15]. 

However, maintaining fidelity is a challenge – a too-simple surrogate might not capture complex 

patterns the DL model uses. In real-time settings, one compromise is to deploy the interpretable model 

for the majority of routine traffic and reserve the complex DL model with post-hoc explanations like 

LIME/SHAP for more ambiguous or high-risk cases. This tiered approach can preserve performance and 

provide transparency when most needed, at the cost of system complexity. 

When using rule-based explainers like Anchors in real-time, scope is important: anchors can be 

computed quickly if the feature space is small or if we only seek a rule for the most influential features. 

They can succinctly explain an alert (e.g., “alert triggered because X and Y conditions were met”) without 

overwhelming detail, which is ideal for an analyst’s quick decision cycle. The user must be cautious that 

anchors – or any rule – remain accurate under evolving traffic conditions. 

3. While LIME and SHAP are powerful and widely used, their direct application to every packet or 

alert in a high-throughput IDS can be impractical due to their computational cost. SHAP, in particular, 

though providing very insightful explanations, might take too long on complex models or large feature 
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sets – potentially seconds per instance – which is untenable for systems that analyze hundreds of events 

per second. 

That said, there are scenarios where these methods can still contribute: for instance, TreeSHAP can 

efficiently explain ensemble tree models – if an IDS uses a tree-based classifier – in real-time by 

leveraging a closed-form solution. LIME can be sped up by reducing the number of perturbations or using 

optimized surrogates, but it may still struggle as data dimensionality grows [15]. 

Therefore, in a real-time IDS, SHAP/LIME are often used selectively – for example, to explain a 

handful of critical alerts or to perform periodic analysis on model behavior – rather than on every event. 

They are extremely valuable in offline model evaluation or forensic analysis of incidents, helping to 

understand global patterns (SHAP) and specific cases (LIME) with high interpretive richness. 

The integration of XAI into IDS is critical for ensuring that cybersecurity systems are not only highly 

accurate but also capable of providing explanations that human analysts can readily comprehend and act 

upon. In summary, for the day-to-day, fast-paced detection, lighter methods such as gradients and simple 

rules are preferable, whereas LIME or SHAP might support near-real-time workflows where a brief delay 

is acceptable or as backup explainers for complex cases. 

Integrating XAI into real-time DL-based IDS systems requires balancing explanation quality with 

performance. Methods like integrated gradients, DeepLIFT, and saliency maps offer quick, faithful 

insights into neural models’ decisions and are thus most promising for real-time IDS use. Rule-based 

explanations and simplified surrogates provide human-friendly logic with negligible latency, which can 

greatly aid analyst understanding when carefully aligned with the DL model. More computationally 

intensive techniques like SHAP and LIME are effective in enhancing transparency and reducing false 

positives, but they may need optimization or selective deployment to fit into high-speed environments. 

 

3.3. Challenges of integrating XAI into real-time DL-based IDS systems 

Real-time IDS systems face several obstacles when incorporating XAI methods. Key challenges 

include computational overhead, scalability issues, accuracy-interpretability trade-offs, lack of standard 

evaluation practices, and security implications of exposing model logic. 

1. Latency and computational overhead is the first problem. As it had already been mentioned, many 

popular XAI techniques, such as SHAP and LIME, are computationally intensive, often requiring 

numerous model re-runs or complex calculations. In a real-time IDS, generating an explanation for each 

alert can introduce significant latency and CPU/GPU load. Studies confirm that post-hoc explainers like 

LIME/SHAP add extra processing, which can slow down threat detection and response rates. In other 

words, the IDS may become sluggish in high-speed networks because of the time spent computing 

explanations. One survey notes that XAI-enhanced IDS often face “increased computational complexity 

and potentially reduced performance due to the overhead of generating explanations [23].” Such latency 

overhead is problematic in operational environments that demand swift decision-making to block attacks. 

2. Scalability and deployment constraints are the second major issue. The heavy resource requirements 

of both DL models and XAI methods pose scalability issues. Many advanced DL-based IDS models, for 

example, transformers or deep CNNs, need powerful hardware acceleration, which is unsuitable for edge 

deployments with limited resources [23]. Pushing complex models or their explainers to low-power 

network devices can be infeasible due to memory, CPU, or energy constraints. Additionally, high-

throughput network traffic magnifies the problem – explaining every flagged event in a busy network can 

overwhelm the system. Even cloud-based IDS setups struggle, as constant communication for 

explanations adds network latency. Researchers highlight that real-time IDS performance suffers in high-

traffic environments when burdened with current XAI computations. In summary, without careful 

optimization, XAI may not scale well to the volume and speed of data in modern networks. 

3. The next concern of real-time DL-based IDS is to find balance between accuracy and 

interpretability. There is an inherent trade-off between model complexity, which often yields higher 

accuracy, and its interpretability. State-of-the-art IDS models like DNN or ensemble methods achieve 

superior detection rates but operate as “black boxes” with opaque logic. By contrast, simpler models like 

decision trees or rule-based classifiers are transparent but tend to miss subtle or sophisticated attacks. 

This gap is well documented – high-performing DL models regularly forgo interpretability for greater 

predictive power, whereas overly simple models can undermine detection accuracy. In practice, forcing 

a complex model to be more explainable, for example, by approximating it with an interpretable 

surrogate, may degrade its performance on edge-case intrusions. Studies have noted that decision-tree-

based IDS, while easy to explain, “frequently miss subtle danger behaviors, which lowers the accuracy 
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of detection [24].” Balancing these concerns is difficult: analysts need to trust and understand the IDS 

decisions, but not at the cost of allowing attacks to slip through due to an oversimplified model. 

4. Another significant challenge is the lack of standardized XAI evaluation. There is no consensus on 

how to evaluate and compare XAI methods in the IDS domain. Unlike accuracy or false-alarm rate, which 

have clear metrics, “explainability” lacks a unified quantitative framework in cybersecurity contexts. 

Researchers point out that without standard interpretability metrics, it is difficult to judge whether one 

explanation method truly outperforms another or adequately meets analysts’ needs. This gap means each 

study often uses its criteria (e.g., subjective user feedback or ad-hoc measures of explanation quality), 

making it difficult to benchmark XAI techniques across different IDS implementations. The literature 

emphasizes that consistent evaluation standards – such as agreed-upon interpretability scores or time-to-

insight measurements – are needed to fairly assess XAI in IDS [15]. Until such frameworks mature, 

deploying XAI will involve uncertainty about how much it actually improves analyst understanding or 

trust in a real-time setting. 

5. The security and privacy implications should be addressed too. Integrating XAI into IDS can 

inadvertently introduce security risks. Detailed explanations reveal which features or patterns led the 

model to flag an attack; if such information is accessible to adversaries, they might exploit it to evade 

detection. In essence, an explanation interface could become a leakage point – giving attackers insight 

into the IDS’s “secrets”. For example, if an explanation consistently highlights a specific packet header 

field as suspicious, a savvy attacker may alter that field in future exploits to fly under the radar. Moreover, 

there are privacy concerns when explanations expose sensitive attributes of network traffic or user data. 

Some XAI outputs might inadvertently disclose personal or proprietary information, contravening data 

protection principles. 

This is especially relevant under regulations like the General Data Protection Regulation (GDPR), 

which require careful handling of any user-related data. Therefore, designers must ensure that adding 

explainability does not open new attack vectors or privacy leaks. Research in this area suggests employing 

privacy-preserving XAI techniques and restricting how much internal detail is shared so that trust is 

improved for defenders without equipping attackers with a roadmap to bypass the IDS. 

Given the above challenges, experts acknowledge the need for more efficient and tailored XAI 

approaches in real-time IDS. One promising direction is the use of hybrid models or tiered strategies. For 

instance, a simpler interpretable model could handle the bulk of low-risk traffic, with a complex DL-XAI 

module reserved for only the most suspicious events – thereby limiting the overhead to where it’s truly 

needed [15]. 

Another approach is to design or choose algorithms that are interpretable by design, reducing reliance 

on expensive post-hoc explainers. Techniques like attention mechanisms in neural networks can highlight 

important features as part of the prediction process, effectively providing an explanation with minimal 

extra cost. In fact, recent IDS frameworks, such as attention-based CNN-LSTM architecture, demonstrate 

that it’s possible to achieve high speed and integrate feature attribution (heatmaps) directly into the 

model’s operation. 

Researchers also suggest optimizing existing XAI methods – for example, using faster approximation 

algorithms for SHAP/LIME or pre-computing explanation components – to fit the real-time requirements. 

Overall, there is a clear consensus that new lightweight XAI solutions are required to balance 

transparency with performance. Many researches stress developing explainability techniques that incur 

minimal delay and can scale so that future IDS can be both highly accurate and explainable without 

sacrificing low latency [15]. 

 

4. XAI optimization strategies for low-latency IDS systems 

Realizing low-latency, explainable intrusion detection requires innovative approaches that minimize 

the overhead of explanations while preserving or even enhancing detection performance. Researchers 

have focused on two complementary directions: accelerating existing XAI techniques to fit real-time 

needs and developing hybrid or explainable-by-design models that inherently provide insights with 

minimal extra cost. In parallel, practical deployment strategies – from hardware acceleration to selective 

explanation – ensure these techniques scale to high-speed network environments. To formalize this trade-

off, an optimization objective (4.1) that balances latency, explainability cost, and detection accuracy had 

been defined:  

        , , minF Lat CompXAI Acc                (4.1) 
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where   are parameters of the deep learning model (e.g., number of layers, neurons, architecture of 

CNN-LSTM);   are parameters of the explainable AI method (e.g., attribution depth in DeepLIFT); 

 Lat   is the latency of the IDS decision in milliseconds;  CompXAI   is the computational cost of 

the XAI method (e.g., DeepLIFT), measured in processing time or compute resources (CPU/GPU); 

 ,Acc    is the classification accuracy of the IDS (e.g., detection rate of anomalies); , ,    are 

weighting coefficients reflecting the priority of each optimization objective (set based on system-specific 

constraints or expert judgment). 

Recent peer-reviewed studies cited in this work validate these optimizations on standard cybersecurity 

datasets, demonstrating that it is feasible to achieve both millisecond-level detection times and 

meaningful explanations in IDS. Both the methodological innovations and implementation considerations 

for XAI in real-time neural-based IDS are illustrated below. 

 

4.1. Accelerating XAI techniques for real-time efficiency 

A primary challenge is the computational cost of popular post-hoc explainers like SHAP and LIME, 

which can be too slow for streaming data. To address this, researchers are optimizing these algorithms 

and leveraging hardware acceleration. For instance, using GPU-accelerated libraries – NVIDIA’s 

RAPIDS or PyTorch CUDA extensions – can speed up SHAP computations significantly, enabling 

feature attribution on large traffic samples in near real-time. Algorithmic improvements such as sampling-

based SHAP or lightweight surrogate models have also been explored to approximate explanations faster. 

A recent survey stresses that making SHAP/LIME faster or more lightweight is crucial for practical 

deployment in high-speed IDS [15]. By reducing the number of model evaluations or focusing on top 

features, these optimized explainers shrink the latency they introduce. 

Another effective tactic is to favor inherently efficient XAI methods. Gradient-based attribution 

techniques, such as saliency maps, Integrated Gradients, and DeepLIFT, require only a single backward 

pass through the neural network, offering explanations with minimal overhead. An evaluation of 

explanations for an LSTM-based IDS found that DeepLIFT consistently outperformed LIME and SHAP 

in producing high-fidelity, low-complexity explanations [21]. Because these methods directly leverage 

the model’s internal gradients, they generate attributions in milliseconds, making them well-suited for 

real-time alert explanation. In practice, integrated gradient or saliency results can be visualized as 

heatmaps almost instantly, highlighting which features – specific packet bytes or timing features – 

influenced the decision. By adopting such low-cost XAI methods, an IDS can deliver basic reasoning for 

each alert on the fly without becoming a bottleneck. 

 

4.2. Hybrid and explainable-by-design model approaches 

Beyond speeding up post-hoc tools, a promising avenue is to embed interpretability into the IDS 

models themselves. Researchers are creating hybrid architectures that combine the accuracy of deep 

learning with the transparency of simpler models or built-in explanation mechanisms. One strategy is to 

attach an interpretable component – a rule-based or tree-based layer – to a neural network. For example, 

a decision tree or rule set can act as a front-end filter or a parallel explainer to the deep model, providing 

human-readable logic for its predictions. This two-tier design lets the system enjoy the nuance of a neural 

detector while yielding an immediate explanation – the triggered rule or path in the tree – for most 

decisions. Recent studies emphasizes such hybrid models as a way to balance accuracy and transparency: 

for instance, by combining a shallow decision tree with a back-end deep classifier, the IDS can handle 

complex patterns but still explain detections in simple terms [15]. In this work, existing experimental 

results are referenced to illustrate that such prototypes enable many alerts to be accurately handled by the 

interpretable component alone, with the deep model invoked only for uncertain cases—substantially 

reducing the average explanation cost. 

Another approach is to design explainable-by-design neural networks specialized for IDS tasks. One 

cutting-edge example is the Explainable Lightweight AI (ELAI) framework, which uses a streamlined 

CNN-LSTM architecture augmented with an attention mechanism. The attention layers highlight 

important features in each input, such as specific flow characteristics or time steps, effectively producing 

an explanation as a by-product of the prediction. Because this occurs during the model’s forward pass, 

there is negligible latency overhead. According to prior evaluations, the ELAI framework demonstrated 

that such integration can significantly improve both speed and transparency: it achieved an inference time 
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of ~8.3 ms per sample – over 60% faster than a standard deep IDS – while providing visual “attention 

heatmaps” to analysts. Importantly, the model’s output is not a black box; it leverages SHAP-based 

feature importance and attention weights to make each decision interpretable and more trustworthy for 

security operators [25]. This indicates that carefully architected networks, like lightweight CNN-LSTM 

with built-in attention, can meet real-time demands without sacrificing interpretability. 

Researchers are also exploring model compression and knowledge distillation as avenues for XAI 

optimization. The idea is to train a compact “student” model to mimic a larger deep model’s behavior, 

thereby retaining high accuracy on attacks but with far fewer parameters and simpler decision logic. 

Compressed models naturally run faster and can be easier to interpret or to explain post-hoc due to their 

reduced complexity. A recent study using knowledge distillation for an IoT IDS showed the student 

network ran approximately 15–25% faster in inference than its complex teacher, with negligible accuracy 

loss [25]. The distilled model could even retain transparency by highlighting key features in its decisions, 

courtesy of an integrated attribution mechanism. 

Similarly, hybrid frameworks like Lightweight, Efficient, and Non-intrusive System for eXplainable 

Artificial Intelligence (LENS-XAI) combine a variational autoencoder for unsupervised anomaly 

detection with a distilled lightweight classifier, explicitly aiming to balance performance and 

transparency for scalable intrusion detection. By validating these frameworks on multiple datasets such 

as NSL-KDD, Edge-IIoT, and UNSW-NB15, it was shown that state-of-the-art detection rates can be 

achieved alongside built-in explainability and efficiency [26]. 

In summary, new architectural innovations – from attention-based deep models to distilled ensembles 

– are enabling IDS that are both fast and explainable by design. These hybrid approaches reduce reliance 

on expensive after-the-fact explanations, since much of the reasoning is either inherent in the model’s 

structure or handled by a lightweight interpretable component. 

 

4.3. Deployment considerations and empirical validation 

Implementing explainable IDS in real networks requires not just clever algorithms but also strategic 

system design to handle high data volumes. One key is to integrate the above methods into streaming data 

pipelines and optimize the end-to-end flow. Researchers have suggested deploying real-time IDS within 

frameworks like Apache Spark Streaming or a Kappa architecture, which can distribute the workload of 

traffic capture, detection, and explanation across multiple nodes for scalability [15]. In practice, this 

means explanations should be generated in parallel with detection or during off-peak cycles. For example, 

an IDS could immediately flag a likely attack using a fast, simplified model, then invoke a more detailed 

XAI analysis on a separate thread or machine learning accelerator. By asynchronously handling 

explanations, the system ensures that alert latency remains low. 

Moreover, hardware acceleration – Graphics Processing Units (GPUs) or Tensor Processing Units 

(TPUs) – can be dedicated to XAI computations so that even if a complex method like SHAP is needed 

for a particularly critical alert, it can be computed in a fraction of the time it would take on a CPU. These 

engineering strategies ensure that adding explainability doesn’t turn into a throughput bottleneck. 

Another consideration is selective or adaptive explanation to conserve resources. Not every benign 

flow or low-risk event may require a full explanation; the system can be tuned to provide detailed 

interpretability for the most suspicious or impactful alerts. Recent proposals even suggest adaptive XAI 

levels – giving a high-level reason for routine detections but a thorough, multi-faceted explanation for 

complex or severe incidents [15]. This adaptive approach aligns with operational needs, focusing analyst 

attention where it’s needed most and trimming unnecessary computation. Crucially, any introduction of 

XAI must be evaluated not only for speed but also for analytical value: security teams should gain insight 

without being overwhelmed. Visualization tools, for example, feature importance bar charts or traffic 

heatmaps, should be integrated into the IDS dashboard to present the explanations clearly and quickly. 

Empirical results from recent research underscore the feasibility of these optimizations. In prior studies, 

the ELAI framework, for instance, was evaluated on standard benchmarks sych as CICIDS2017 and 

UNSW-NB15, achieving over 98% detection accuracy with a compact model size under 50 MB [25]. 

Due to its architectural optimizations, ELAI was shown to process each network sample in just a few 

milliseconds – approximately 2.5 times faster than a typical deep IDS – while still producing human-

interpretable feature attributions for every alert. 

Likewise, the LENS-XAI student model was validated across diverse datasets – from classic NSL-

KDD to modern IoT traffic – and maintained high fidelity to the teacher model’s predictions, but with 

significantly lower latency and complexity [26]. 
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These case studies confirm that the trade-off between speed and explainability can be managed 

effectively. In fact, making the model more efficient often goes hand-in-hand with better clarity: focusing 

on fewer, most informative features tends to improve both runtime and the quality of explanations. 

Finally, it is important to assess the optimized XAI IDS in real-world conditions. Beyond lab datasets, 

deployment in live network environments such as enterprise LANs or IoT networks is needed to ensure 

the system handles traffic bursts, novel attack patterns, and concept drift over time. The explainability 

component should be stress-tested for worst-case scenarios – for example, verifying that an explanation 

can still be produced within a strict time budget during a distributed attack or that the XAI does not expose 

sensitive information inadvertently. 

Early adaptive IDS prototypes show promise in detecting zero-day attacks while keeping analysts 

informed: in one evaluation, an explainable IDS detected over 91% of zero-day attacks in an IoT setting, 

significantly outperforming a non-XAI baseline, thanks to its robust feature insights guiding the detection 

[25]. The results of said evaluation are shown in Table 3. 

 
Table 4. Comparative analysis of ELAI with existing IDS models 

Таблиця 4. Порівняльний аналіз ELAI з існуючими моделями IDS 

Model 
Computational 

Efficiency 
Explainability 

Zero-Day Attack Detection 

(%) 

CNN-LSTM 

(Baseline) 
Moderate Low 74.3 

ResNet-50 IDS Low Very Low 79.8 

Transformer-Based 

IDS 
Very Low Very Low 82.5 

ELAI High High 91.6 

 

This highlights that XAI optimization is not just an academic exercise but a practical enhancement to 

security: a well-designed explainable model can catch stealthy threats more reliably by focusing on 

telltale anomalies and immediately justify the alerts, enabling quicker and more confident responses. 

In summary, the core of recent research on “XAI optimization for low-latency neural IDS” converges 

on a clear message: it is possible to build IDS solutions that are both fast and transparent. By streamlining 

XAI algorithms, fusing interpretable logic into deep models, and thoughtfully engineering the 

deployment, security teams can obtain real-time intrusion alerts with the much-needed context. 

Ongoing studies continue to refine these approaches – from standardized interpretability metrics to 

domain-specific explanation techniques – but the trajectory is set. The future of intrusion detection will 

likely see lightweight, explainable AI at its heart, providing strong defense capabilities that are no longer 

a “black box” to the people they protect. 

 

5. Conclusions 

In this work, a comprehensive investigation was conducted on optimizing eXplainable Artificial 

Intelligence (XAI) methods for DL-based intrusion detection systems (IDS) operating in real-time 

network environments. The primary scientific novelty of the study lies in the in-depth analysis of various 

XAI approaches, leading to practical recommendations and the conceptual integration of multiple 

explainability strategies into a unified, low-latency DL-based IDS framework suitable for high-speed 

network infrastructures. 

The key scientific results of this study include: 

1. Systematic analysis and critical evaluation of existing XAI methods (SHAP, LIME, Integrated 

Gradients, DeepLIFT, Anchors, Grad-CAM), highlighting their practical applicability limits in real-time 

network environments, particularly their significant computational overhead. 

2. Justification of gradient-based attribution methods (Integrated Gradients, DeepLIFT) as highly 

promising for real-time applications due to their ability to produce high-quality explanations with 

minimal latency overhead. 

3. Proposal of hybrid explainable-by-design architectures, including CNN-LSTM with attention 

mechanisms (e.g., ELAI) and LENS-XAI, which effectively combine high detection accuracy with built-

in interpretability without imposing substantial computational costs. 
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4. Development of practical deployment guidelines and strategies for explainable IDS, including the 

use of hardware acceleration (GPU/TPU), adaptive explanation generation strategies, and optimized 

streaming architectures (Kappa architecture, Apache Spark Streaming). 

5.Empirical results from existing studies demonstrate that optimized XAI models – particularly the 

ELAI and LENS-XAI architectures – achieve significant improvements in zero-day attack detection rates 

(up to 91.6%) and substantially lower explanation generation times (below 10 ms), thereby confirming 

their practical viability for integration into real-time IDS in high-speed network environments. 

The obtained results hold significant implications for both cybersecurity theory and practice. 

Theoretical significance involves advancing the understanding of the balance between explainability and 

performance in neural IDS models deployed under real-time conditions. This insight provides a solid 

foundation for future research on integrating XAI with deep IDS architectures. Practical significance is 

demonstrated through the applicability of the proposed methods to real-world information security 

systems, including large enterprise networks, IoT infrastructure, and national-level network systems. 

These methods enhance decision transparency, operator trust, and incident response speeds. 

Prospective future research directions include: 

1. Developing standardized metrics and benchmarks for evaluating XAI explainability, enabling 

objective comparison of various XAI techniques and approaches. 

2. Further refinement of IDS architectures through integrating advanced attention mechanisms (e.g., 

transformer-based attention), thereby improving explanation quality and granularity. 

3. Investigating the impact of explainability on cybersecurity operators' performance (human-in-the-

loop scenarios), including developing intuitive interfaces for presenting explanations in real time. 

4. Conducting long-term field studies of explainable IDS deployments in operational networks, 

enabling the identification of practical constraints and optimization requirements. 

5. Exploring adaptation possibilities of the presented approaches and architectures to other critical 

cybersecurity tasks, such as traffic obfuscation detection, covert channel identification, and recognition 

of complex multi-vector attacks. 

In conclusion, the research provides a robust foundation for the theoretical advancement and practical 

implementation of explainable AI in intrusion detection systems. It paves the way for developing 

transparent, reliable, and high-performance next-generation IDS solutions. 
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Оптимізація XAI для швидкодійних нейромережевих систем виявлення 

аномалій у трафіку 
Актуальність. У сучасних мережевих середовищах системи виявлення вторгнень (IDS), що базуються на технологіях 

глибокого навчання, демонструють значні переваги у виявленні складних і динамічних кіберзагроз. Однак їх широке 

практичне застосування суттєво обмежене обчислювальною складністю, високими затримками та низькою 

інтерпретованістю ухвалених рішень, відомою як проблема «чорної скриньки». Інтеграція методів пояснюваного 

штучного інтелекту (XAI) у нейромережеві системи IDS є необхідною умовою для забезпечення прозорості ухвалення 

рішень, довіри операторів та ефективності оперативного реагування на кіберінциденти в режимі реального часу. 

Мета. Основною метою дослідження є розроблення та оптимізація методів XAI для нейромережевих систем виявлення 

аномалій у мережевому трафіку, що здатні функціонувати з низькими затримками в реальному часі, забезпечуючи 

баланс між прозорістю ухвалених рішень, обчислювальною ефективністю та точністю класифікації загроз. 

Методи дослідження. У роботі здійснено системний огляд і порівняльний аналіз сучасних моделей глибокого навчання 

(CNN, LSTM, GRU, автоенкодери, гібридні моделі CNN-LSTM) та найбільш поширених методик XAI (SHAP, LIME, 

Integrated Gradients, DeepLIFT, Grad-CAM, Anchors). Розроблено оптимізаційні підходи, які включають апаратне 

прискорення, застосування спрощених методів пояснення на основі градієнтів, створення гібридних архітектур із 

вбудованими механізмами інтерпретації (наприклад, CNN-LSTM із механізмами уваги) та вибіркове пояснення рішень. 

Емпірична перевірка запропонованих рішень проведена на загальновідомих наборах даних (CICIDS2017, NSL-KDD, 

UNSW-NB15). 

Результати. За результатами аналізу встановлено, що градієнтні методи пояснення (Integrated Gradients, DeepLIFT) 

найбільш придатні для інтеграції у високошвидкісні IDS завдяки мінімальному часу генерації пояснень і високій 

точності. Гібридні архітектури з вбудованими механізмами пояснення (ELAI framework на основі CNN-LSTM із 

механізмами уваги) продемонстрували високу ефективність: точність виявлення перевищила 98%, а час прийняття 

рішення не перевищував 10 мс. Оптимізовані методики дозволили істотно підвищити ефективність виявлення атак типу 

«нульового дня» до рівня 91,6%. 

Висновки. У результаті проведеного дослідження запропоновано практичні підходи щодо інтеграції пояснюваності в 

нейромережеві системи IDS, які функціонують у режимі реального часу, що дозволяє суттєво підвищити якість 

виявлення загроз, прозорість рішень та довіру до систем з боку операторів кібербезпеки. Перспективи подальших 

досліджень пов’язані зі стандартизацією оцінювання пояснюваності, вдосконаленням архітектур на основі механізмів 

уваги та розширенням цих підходів на інші завдання кібербезпеки. 

 

Ключові слова: кібербезпека, системи виявлення вторгнень, глибоке навчання, пояснюваний штучний інтелект, 

виявлення аномалій, нейронні мережі, оптимізація XAI. 
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