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XAl Optimization for Low-Latency Neural-Based Intrusion Detection
Systems in Network Environments

Relevance. In contemporary network environments, deep learning-based intrusion detection systems (IDS) provide significant
improvements in detecting complex and evolving cyber threats. However, their practical deployment in real-time applications is
severely limited by computational complexity, latency, and a lack of interpretability, commonly referred to as the "black-box"
problem. Integrating eXplainable Artificial Intelligence (XAI) methods into IDS is crucial for enhancing the transparency,
trustworthiness, and operational effectiveness of security systems. Goal. The aim of this research is to explore and optimize XAl
methods to achieve low-latency, explainable neural-based intrusion detection systems suitable for real-time network traffic
analysis, thus balancing interpretability with computational efficiency and detection accuracy. Research methods. The study
conducted a systematic review and comparative analysis of existing deep learning (DL) models (CNN, LSTM, GRU,
Autoencoders, CNN-LSTM hybrids) and prominent XAl techniques (SHAP, LIME, Integrated Gradients, DeepLIFT, Grad-
CAM, Anchors). Optimization strategies were proposed, including hardware acceleration, lightweight gradient-based attribution
methods, hybrid architectures, and selective explanation strategies. Empirical validation was performed on standard datasets
(CICIDS2017, NSL-KDD, UNSW-NB15). The results. The analysis revealed that gradient-based attribution methods
(DeepLIFT, Integrated Gradients) are optimal for real-time IDS due to minimal latency and high fidelity. Hybrid explainable-
by-design frameworks, specifically CNN-LSTM models enhanced with attention mechanisms (ELAI framework), demonstrated
significant performance gains with detection accuracy exceeding 98% and inference times below 10 ms. Optimized methods
notably improved zero-day attack detection rates up to 91.6%. Conclusions. The research successfully demonstrated practical
methods for integrating explainability into real-time neural-based IDS, significantly enhancing both detection performance and
decision transparency. Future research should focus on standardizing evaluation metrics, refining attention-based models, and
extending these optimization approaches to other cybersecurity applications.

Keywords: cybersecurity, intrusion detection system, deep learning, explainable artificial intelligence, real-time detection,
anomaly detection, neural networks, XAl optimization.
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1. Introduction

In the digital age, cybersecurity — the practice of protecting systems, networks, and confidential data
that is coursing through them from unauthorized access, damage, and hijacking — has become an essential
part of any organization’s security policy. As time progresses, the reliance of individuals, organizations,
and governments on digital infrastructure increases. Consequently, it is crucial to ensure the
confidentiality, integrity, and availability (CIA triad) of data.
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To safeguard sensitive information from a rapidly expanding array of cyberattacks, including the most
recent “zero-day” and “slow” attacks, it is imperative that each organization establish a multilayered
cybersecurity system, which includes intrusion detection systems (IDS). An intrusion detection system
(IDS) scans for malicious activity or unauthorized access through analysis of traffic dynamics,
applications and session behavior, and signature-based features. By emphasizing anomalies and
recognized attack patterns, IDS alerts help organizations promptly address possible security risks [1].

As the volume of network traffic increases and cyberattacks become more sophisticated, conventional
IDS systems, including signature-based and anomaly-based mechanisms, become less effective in
detecting intrusions. Currently, approximately 50% of startups disclose experiencing information theft,
underscoring the urgency of robust IDS solutions in institutional security frameworks [2].

The integration of machine learning (ML) and deep learning (DL) technologies with IDS systems
allows us to significantly enhance the efficiency and classification accuracy of security systems. By
utilizing a wide range of ML and DL models with varying characteristics, cybersecurity personnel can
create IDS systems that are unique in their ability to perform specific tasks and guarantee the highest
level of data protection for each distinct network.

In order to determine whether network traffic is normal or demonstrates indicators of potential
malicious activity, machine learning techniques employ algorithms such as decision trees, K-nearest
neighbors, and support vector machines (SVMs). These methods significantly enhanced detection rates
in comparison to conventional solutions upon implementation; however, ML-based IDS systems were
still incapable of managing high-dimensional and imbalanced data. Their reliance on centralized data
storage and transmission has resulted in substantial privacy and security vulnerabilities. Two additional
challenges to the development of effective ML solutions are the vast quantity of network information and
the prevalence of imbalanced data sets. Minor but critical attack types are underrepresented and simply
insufficient for proper training. While there are numerous preprocessing techniques, feature selection
methods, and ensemble strategies available to improve performance, they are insufficient to guarantee
highly accurate detection when it comes to capturing the complex patterns and relationships present in
network traffic data. Therefore, researchers initiated the development of more complicated deep learning
algorithms, which have demonstrated an exceptional ability to learn hierarchical representations from
high-dimensional data [3, 4].

Acrtificial neural networks have recently garnered significant attention for their potential to improve
IDS systems. For instance, convolutional neural networks (CNNs) performed exceptionally well in the
identification of spatial features — correlations and relationships within data at a specific time. Conversely,
recurrent neural networks (RNNSs) had proven to be more adept at detecting temporal features — patterns
and sequences across data over time. Several studies have illustrated the successful implementation of
deep learning techniques in network intrusion detection, either independently or as part of ML/DL hybrid
systems. More recently, researchers have examined the use of advanced deep learning architectures,
including long short-term memory (LSTM) and gated recurrent unit (GRU) networks, for intrusion
detection in network traffic data [5]. These models demonstrated a high level of ability to capture temporal
dependencies in sequential data, which is particularly important when examining network traffic.

Despite their numerous benefits, the DL technologies have significant issues that must be resolved
before they can be widely implemented in IDS systems. The deployment of complex deep learning
models, such as LSTM, is restricted in real-time or high-throughput environments, such as backbone
networks, due to their resource-intensive and slow nature. In addition, they may be highly vulnerable to
adversarial inputs, be challenging to scale, or require the implementation of specialized techniques to
identify rare but critical attack patterns. DL IDS systems’ biggest shortcomings, however, are their high
latency, low throughput, and inability to be explained [6].

Processing large-scale traffic flows, particularly in real-time operations, is restricted by the
computational complexity and high resource consumption of DL architectures. DL-based IDS systems
are frequently treated as “black boxes” by both developers and users due to their inability to clarify their
inference processes and final results. This lack of transparency hinders forensic analysis, complicates
auditing and compliance processes, and reduces the overall trust in automated security decisions made by
DL models.

eXplainable Artificial Intelligence (XAIl) approaches can be integrated into the DL-based IDS
frameworks to enhance transparency and interpretability and to facilitate a more comprehensive
understanding of model decisions. Transparency helps build trust in Al-driven frameworks by explaining
the logic behind some outcomes, which is essential for meeting legal and regulatory requirements [7].
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However, despite XAl technologies offering a promising solution to the explainability problem, the
most popular methods, such as SHAP and LIME [8], are computationally expensive and not well-suited
for real-time deployment. Their reliance on repeated model evaluations or surrogate approximations
significantly increases latency, making them impractical for high-throughput environments where fast
decision-making is critical.

This research attempts to come up with a proper solution for integrating explainable Al techniques
into deep learning-based IDS models in a way that preserves low latency and high throughput while
maintaining sufficient interpretability for real-time security decision-making.

2. Objective of the study and research tasks

The primary objective of this study is to explore and evaluate optimization strategies for integrating
explainable artificial intelligence (XAI) into deep learning-based intrusion detection systems (IDS)
operating in real-time network environments. The goal is to balance detection performance,
computational efficiency, and interpretability to enhance trust and operational usability.

To achieve this objective, the following research tasks are defined:

- toreview existing explainable Al methods (e.g., LIME, SHAP) and analyze their applicability to
IDS;

- to identify the main challenges of implementing XAl in low-latency, high-throughput intrusion
detection systems;

- to compare traditional (offline) and real-time XAl approaches in terms of performance,
scalability, and explainability;

- toinvestigate potential optimization strategies for deploying XAl in real-time DL-based IDS;

- to propose conceptual guidelines for integrating interpretable components into deep IDS models
without compromising detection speed and accuracy.

3. Review of existing DL models and XAl methods suitable for real-time IDS systems

3.1. Deep learning models for real-time intrusion detection

DL technologies have the potential to significantly improve intrusion detection systems by removing
the primary limitations of traditional methods. In contrast to signature-based IDS, which fail to identify
emerging threats, deep neural networks automatically identify intricate patterns from raw network data,
thereby capturing non-linear feature relationships without the need for manual feature engineering. This
allows DL-based IDS systems to detect both known attack signatures and previously unseen or evolving
attack patterns with greater accuracy and adaptability. Simply put, deep learning improves on previous
methods' high false alarms and blind spots for novel attacks by enabling more precise, flexible, and
comprehensive threat detection in IDS [4].

In order to effectively prevent the intrusion, it is crucial to immediately identify any potential
anomalies and unusual behavioral changes in the network traffic. As a result, the faster the IDS system
operates, the greater is the chance of stopping an attack before it fully corrupts the network. The most
effective approach for the majority of contemporary networks is to implement real-time DS systems that
can immediately process traffic and identify changes in the present.

Deploying an IDS in real-time operational networks imposes strict requirements on both the system
and the DL models used in it. Key demands include the following:

1. Low detection latency. The IDS system must analyze traffic and detect intrusions with minimal
delay (near-instantaneously) to prevent or contain attacks as they occur. Real-time network applications
require ultra-low latency processing; even minor delays in traffic analysis can degrade an IDS’s
effectiveness [9].

2. High throughput and scalability. It is critical that the real-time IDS system be able to handle large
volumes of continuous network data (high bandwidth traffic) without becoming a bottleneck. This implies
that the detection DL model must be capable of scaling to high-speed networks and large data streams,
processing events in milliseconds, and maintaining a pace with network line rates. As networks expand,
the IDS system must ensure that it operates efficiently in heterogeneous or distributed environments.

3. Computational efficiency. To operate in real time, the algorithms must be resource-efficient. Deep
models with extremely high complexity (e.g., very deep CNNs or LSTMS) can require a large amount of
computation time and may be too heavy for real-time use on limited hardware. Real-time IDS systems
often require optimizing or simplifying their models (or utilizing hardware acceleration) to satisfy time



ISSN 2304 -6201

Bulletin of V.N. Karazin Kharkiv National University
22 series Mathematical modeling. Information technology. Automated control systems issue 66, 2025

constraints. In particular, in 10T or edge scenarios, DL models must operate within limited CPU/memory,

which is why lightweight or optimized models are preferred.

Table 1. Comparison of deep learning models for intrusion detection in real time [11, 12]
Tabnuysa 1. lopigusanna mooenell 21ubOK020 HABYAHHSA OIS 8UABNICHHS 8MOPeHeHb y peanvhomy yaci [11, 12]
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4. High detection accuracy. Even under speed constraints, a real-time IDS system is expected to
accurately distinguish attacks from normal traffic. Reliability is crucial — high true positive rates and low
false positives ensure the system’s rapid alerts are trustworthy. As a result, the DL model should strike a
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balance between speed and accuracy, giving operators accurate and timely detection results without
overloading them with false alarms.

In order to meet these requirements, researchers implement streaming architectures and optimizations.
For example, integrating DL models into frameworks such as Apache Spark Streaming or using a unified
Kappa architecture [10] can enable continuous, low-latency processing of network data. In practice, real-
time IDS performance may be achieved through the use of model compression, parallel processing, or
ensemble methods that enhance accuracy while maintaining a millisecond time budget.

While numerous DL models have been integrated into IDS systems, only a small number are
particularly well-suited for real-time detection due to their capacity to balance efficiency and speed. The
main DL models and their attributes in an IDS context are summarized in Table 1 [12].

For real-time deployment, DL models must balance speed, throughput, and precision with operational
constraints.

CNNs offer rapid, parallelizable inference suitable for high-throughput detection of structured attack
patterns, making them highly appropriate for real-time IDS, though lacking in temporal analysis. LSTMs
excel at modeling temporal attack sequences, like slow-moving threats, but require considerable
computational resources, limiting their real-time practicality unless optimized [11]. GRUs provide a
computationally efficient alternative to LSTMs, capturing temporal dependencies effectively with lower
latency, thus being more suitable for real-time IDS. CNN-LSTM hybrids achieve an optimal balance of
spatial and temporal pattern recognition, delivering high accuracy and real-time deployment feasibility
with minimal latency [12]. Autoencoders, capable of unsupervised anomaly detection, are beneficial in
real-time IDS for identifying zero-day threats but may generate false alarms and lack detailed attack
classification [11]. DNNs, although limited in complex feature detection, offer near-instantaneous
inference suitable for initial screening in ultra-high-speed IDS pipelines [12].

The comparative analysis of DL models upon their integration into IDS systems is shown in Table 2
[11]. There are advantages and disadvantages to each deep learning model in terms of complexity,
accuracy, and speed. The most appropriate option frequently is determined depending on the deployment
constraints and the prioritized attack characteristics that are intended to be countered. CNN-LSTM hybrid
DL-based IDS have been demonstrated to enhance detection rates while maintaining real-time operation
by employing streaming-friendly architectures and carefully balancing the workload.

Table 2. Comparative analysis of deep learning models for intrusion detection [11]
Tabnuysa 2. lopisusanvruil ananiz mooenell 21uboK020 HABYAHHS Olisl UABNIEHHS mopeHens [11]

Model Accuracy (%) Precision Recall Dataset Used
CNN 96,8 0,95 0,94 CICIDS2017
RNN 95,2 0,93 0,91 NSL-KDD
LSTM 97,1 0,96 0,95 BoT-loT
Autoencoder 94,5 0,91 0,90 N-BaloT
Hybrid CNN-LSTM 98,3 0,97 0,96 | Custom Mixed Dataset

All the DL models mentioned have the potential to be integrated into real-time IDS systems,
contingent upon the identification of the priorities and necessary characteristics of the systems.
Nevertheless, some optimization may be necessary before that.

3.2. Explainable Al methods and their potential to enhance trust in DL-based IDS systems

Deep learning models pose one of the greatest challenges in deploying them in actual IDS use due to
a lack of interpretability. IDS have to rely on deep learning algorithms that lack transparency despite their
high accuracy, creating a “black box” effect that can hinder the analysts’ understanding of their decision-
making processes. Simply put, despite the high accuracy of detection, these systems provide little to no
insight into why certain decisions were made.

“Black-box™ status of DL models means that security professionals struggle to understand the
reasoning behind alerts, which is important to trust the system and respond appropriately. Uninterpretable
IDS can lead to high false-alarm rates and missed threat patterns, since security teams cannot easily verify
or refine the model’s decisions.
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Explainable Al (XAl) addresses this challenge by making IDS decisions more auditable. XAl is a fast-
growing area of research with the goal to enhance the transparency and trustworthiness of Al systems.
For IDS, XAl methods are being applied to yield:

1. Decision-making process visualizations, which can assist security analysts in determining how an
IDS model reached a specific decision.

2. Feature importance analysis, which identifies which features (e.g., packet size, traffic volume) were
most important for the model’s prediction.

3. Interpretability models, e.g., decision trees or rule-based systems, that can provide explanations in
a human-readable format [13, 14].

By providing human-understandable explanations for each detection, XAl enables analysts to see
which features or behaviors influenced an alert, thereby enhancing trust and clarity in decision-making.
For example, an XAl-enhanced IDS might show that an unusually high volume of traffic on a rare port
was the key reason a session was classified as an attack. Such insights allow security teams to validate
alerts, reduce false positives, and confidently act on the system’s recommendations.

A range of XAl methodologies has been applied within IDS frameworks to enhance transparency,
each offering distinct advantages and facing unique challenges. Among these, SHAP (Shapley Additive
Explanations) and LIME (Local Interpretable Model-Agnostic Explanations) are widely regarded as
effective post-hoc, model-agnostic techniques for elucidating complex models like deep neural networks
[15].

Table 3. Comparison of XAl methods for real-time IDS suitability [15, 16, 18, 20, 21, 22]
Tabnuysa 3. Hopigusanna memoodie XAl wooo npuoamuocmi ons |DS peanvnozo uacy [15, 16,
18, 20, 21, 22]
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SHAP provides consistent and thorough feature attribution but its computational complexity limits its
suitability for real-time IDS scenarios [15, 16]. LIME offers intuitive per-instance explanations beneficial
for auditing individual alerts but is similarly constrained by computational latency [15, 18]. Saliency
Maps and Grad-CAM are fast visual methods suited for real-time use due to their low computational
overhead [20]. Integrated Gradients (IG) and DeepLIFT efficiently deliver faithful, low-latency
explanations highly suitable for real-time IDS implementations. They are precise and are applicable to
any differentiable DL-based IDS, but they require access to the neural model’s internals [21]. Anchors
produce intuitive, high-precision rules but their computational cost in deriving optimal rules limits real-
time applicability unless simplified rules are used [22].
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Fig. 1. Schematic representation of the SHAP value framework in a machine learning context [17]
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When integrating XAl methods into a real-time IDS, several key criteria determine their suitability:

1. Fidelity (Faithfulness). This refers to how accurately the explanation reflects the actual decision
process of the original model. A high-fidelity explanation will highlight the truly important features in
the model’s internal reasoning. For example, if the IDS’s DL model bases its decision mainly on feature
X, a faithful XAl method should assign the highest importance to X in its explanation. Low-fidelity
explanations can mislead analysts by emphasizing the wrong factors, so measuring an XAl technique’s
fidelity to the DL model is crucial. Some studies quantify fidelity by checking how model predictions
change when the top-ranked features from the explanation are removed or perturbed. In an IDS context,
faithfulness ensures the explanations are truthful proxies of the complex model — a necessary condition
for trust.

2. Human Interpretability. Even if an explanation is faithful, it must be understandable to a human
analyst. Interpretability involves the simplicity and clarity of the explanation — e.g., using a small number
of features, natural language descriptions, or visual aids that a person can quickly grasp. A highly
interpretable explanation might be a short rule or a concise list of the top 2 or 3 features influencing a
decision, rather than a dense list of 20 parameters. For IDS analysts under time pressure, explanations
should ideally be simple, clear, and domain-relevant. Techniques like Anchors and decision trees score
well on human interpretability, since they produce “if-then” rules and clear decision paths, respectively,
whereas something like a raw saliency map or a long list of Shapley values may need more interpretation
[22]. In practice, usability studies have found that providing transparent and visual explanations, such as
charts of feature contributions or highlighted traffic traces, improves analysts’ trust and speeds up their
validation of alerts.

3. Computational Overhead. The extra processing time and resources required to generate
explanations are a major concern for real-time systems. Some XAl methods, especially post-hoc
techniques, can be computationally intensive. For instance, SHAP often requires evaluating the model
multiple times on various feature subsets or background samples, and LIME needs to generate many
perturbed samples to fit a local surrogate. These methods can significantly slow down the alert pipeline
if used on every single event. Overhead is typically measured in terms of added latency per prediction or
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CPU/GPU usage. In a high-throughput IDS, an XAl method with heavy overhead might not be practical.
Therefore, a suitable XAl for real-time IDS should minimize computation — using efficient algorithms,
sampling strategies, or by leveraging hardware acceleration. Research in explainable IDS frequently
emphasizes the need for lightweight explainability approaches that don’t degrade the system’s
performance.

4. Real-Time Feasibility. This criterion is related to overhead but focuses on whether the XAl method
can deliver explanations within the time constraints of an operational environment. A real-time IDS may
need to flag and explain an alert within milliseconds to seconds. Thus, methods that require lengthy
processing or cannot keep up with streaming data are less feasible. Real-time feasibility also considers if
the explanation can be generated on-the-fly for each alert or if it requires batch or offline processing. For
example, a method that pre-trains an interpretable surrogate model might be feasible if that surrogate can
then produce instant explanations during operation [15]. In contrast, an approach that must solve an
optimization or search problem per event — as some anchor-based or perturbation methods do — might
struggle in real time. Ultimately, achieving real-time explainability often involves a trade-off between the
depth of the explanation and the speed of generation. Ensuring feasibility might involve simplifying the
explanation, using approximate but faster algorithms, or only explaining a subset of events rather than
everything.

Not all explanation techniques are equally practical for a real-time DL-based IDS. Techniques that
offer low latency and high clarity are generally more suitable.

1. Gradient-Based Attributions methods — Saliency, Integrated Gradients, and DeepLIFT — are
typically favored for real-time use because of their computational efficiency. They piggyback on the
model’s own backpropagation, typically requiring only one pass through the neural network to calculate
feature importances. For instance, computing an integrated gradient or a DeepLIFT attribution for an
input can be done quickly on modern hardware [21].

In comparative evaluations on an LSTM-based IDS, gradient methods (especially DeepLIFT)
produced explanations with lower complexity and higher fidelity than LIME or SHAP, indicating they
capture the model’s behavior well without excessive computation. DeepLIFT in particular was found to
give consistent and reliable explanations while being faster to compute, making it a strong candidate for
real-time alert explanation.

Gradient-based attributions methods work seamlessly with common DL models such as CNNs, RNNs
and autoencoders, highlighting important features or time steps almost instantaneously. The trade-off is
that gradient-based explanations might be less intuitive in isolation, but they can be combined with
visualization or simple messaging to aid analysts. Overall, because of their high fidelity and low overhead,
saliency and gradient techniques are well-suited to explain decisions on the fly in real-time IDS systems.

2. Surrogate and Rule-Based Methods (Simplified Models) present another strategy for real-time
explainability, namely to use an interpretable model alongside or in place of the DL for certain decisions.
For example, a decision tree or a set of “if-then” rules can approximate the deep model’s behavior for
explanation purposes. These surrogates can be pre-computed (offline) to mimic the DL model on training
data then used to generate quick explanations during operation. Because a decision tree or rule set is fast
to evaluate, the explanation is essentially instantaneous at run-time. Such hybrid approaches attempt to
get the best of both worlds: the DL handles detection accuracy, while the surrogate offers human-readable
logic as explanations [15].

However, maintaining fidelity is a challenge — a too-simple surrogate might not capture complex
patterns the DL model uses. In real-time settings, one compromise is to deploy the interpretable model
for the majority of routine traffic and reserve the complex DL model with post-hoc explanations like
LIME/SHAP for more ambiguous or high-risk cases. This tiered approach can preserve performance and
provide transparency when most needed, at the cost of system complexity.

When using rule-based explainers like Anchors in real-time, scope is important: anchors can be
computed quickly if the feature space is small or if we only seek a rule for the most influential features.
They can succinctly explain an alert (e.g., “alert triggered because X and Y conditions were met”) without
overwhelming detail, which is ideal for an analyst’s quick decision cycle. The user must be cautious that
anchors — or any rule — remain accurate under evolving traffic conditions.

3. While LIME and SHAP are powerful and widely used, their direct application to every packet or
alert in a high-throughput IDS can be impractical due to their computational cost. SHAP, in particular,
though providing very insightful explanations, might take too long on complex models or large feature
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sets — potentially seconds per instance — which is untenable for systems that analyze hundreds of events
per second.

That said, there are scenarios where these methods can still contribute: for instance, TreeSHAP can
efficiently explain ensemble tree models — if an IDS uses a tree-based classifier — in real-time by
leveraging a closed-form solution. LIME can be sped up by reducing the number of perturbations or using
optimized surrogates, but it may still struggle as data dimensionality grows [15].

Therefore, in a real-time IDS, SHAP/LIME are often used selectively — for example, to explain a
handful of critical alerts or to perform periodic analysis on model behavior — rather than on every event.
They are extremely valuable in offline model evaluation or forensic analysis of incidents, helping to
understand global patterns (SHAP) and specific cases (LIME) with high interpretive richness.

The integration of XAl into IDS is critical for ensuring that cybersecurity systems are not only highly
accurate but also capable of providing explanations that human analysts can readily comprehend and act
upon. In summary, for the day-to-day, fast-paced detection, lighter methods such as gradients and simple
rules are preferable, whereas LIME or SHAP might support near-real-time workflows where a brief delay
is acceptable or as backup explainers for complex cases.

Integrating XAl into real-time DL-based IDS systems requires balancing explanation quality with
performance. Methods like integrated gradients, DeepLIFT, and saliency maps offer quick, faithful
insights into neural models’ decisions and are thus most promising for real-time IDS use. Rule-based
explanations and simplified surrogates provide human-friendly logic with negligible latency, which can
greatly aid analyst understanding when carefully aligned with the DL model. More computationally
intensive techniques like SHAP and LIME are effective in enhancing transparency and reducing false
positives, but they may need optimization or selective deployment to fit into high-speed environments.

3.3. Challenges of integrating XAl into real-time DL-based IDS systems

Real-time IDS systems face several obstacles when incorporating XAl methods. Key challenges
include computational overhead, scalability issues, accuracy-interpretability trade-offs, lack of standard
evaluation practices, and security implications of exposing model logic.

1. Latency and computational overhead is the first problem. As it had already been mentioned, many
popular XAl techniques, such as SHAP and LIME, are computationally intensive, often requiring
numerous model re-runs or complex calculations. In a real-time I1DS, generating an explanation for each
alert can introduce significant latency and CPU/GPU load. Studies confirm that post-hoc explainers like
LIME/SHAP add extra processing, which can slow down threat detection and response rates. In other
words, the IDS may become sluggish in high-speed networks because of the time spent computing
explanations. One survey notes that XAl-enhanced IDS often face “increased computational complexity
and potentially reduced performance due to the overhead of generating explanations [23].” Such latency
overhead is problematic in operational environments that demand swift decision-making to block attacks.

2. Scalability and deployment constraints are the second major issue. The heavy resource requirements
of both DL models and XAl methods pose scalability issues. Many advanced DL-based IDS models, for
example, transformers or deep CNNs, need powerful hardware acceleration, which is unsuitable for edge
deployments with limited resources [23]. Pushing complex models or their explainers to low-power
network devices can be infeasible due to memory, CPU, or energy constraints. Additionally, high-
throughput network traffic magnifies the problem — explaining every flagged event in a busy network can
overwhelm the system. Even cloud-based IDS setups struggle, as constant communication for
explanations adds network latency. Researchers highlight that real-time IDS performance suffers in high-
traffic environments when burdened with current XAl computations. In summary, without careful
optimization, XAl may not scale well to the volume and speed of data in modern networks.

3. The next concern of real-time DL-based IDS is to find balance between accuracy and
interpretability. There is an inherent trade-off between model complexity, which often yields higher
accuracy, and its interpretability. State-of-the-art IDS models like DNN or ensemble methods achieve
superior detection rates but operate as “black boxes” with opaque logic. By contrast, simpler models like
decision trees or rule-based classifiers are transparent but tend to miss subtle or sophisticated attacks.
This gap is well documented — high-performing DL models regularly forgo interpretability for greater
predictive power, whereas overly simple models can undermine detection accuracy. In practice, forcing
a complex model to be more explainable, for example, by approximating it with an interpretable
surrogate, may degrade its performance on edge-case intrusions. Studies have noted that decision-tree-
based IDS, while easy to explain, “frequently miss subtle danger behaviors, which lowers the accuracy
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of detection [24].” Balancing these concerns is difficult: analysts need to trust and understand the IDS
decisions, but not at the cost of allowing attacks to slip through due to an oversimplified model.

4. Another significant challenge is the lack of standardized XAl evaluation. There is no consensus on
how to evaluate and compare XAl methods in the IDS domain. Unlike accuracy or false-alarm rate, which
have clear metrics, “explainability” lacks a unified quantitative framework in cybersecurity contexts.
Researchers point out that without standard interpretability metrics, it is difficult to judge whether one
explanation method truly outperforms another or adequately meets analysts’ needs. This gap means each
study often uses its criteria (e.g., subjective user feedback or ad-hoc measures of explanation quality),
making it difficult to benchmark XAl techniques across different IDS implementations. The literature
emphasizes that consistent evaluation standards — such as agreed-upon interpretability scores or time-to-
insight measurements — are needed to fairly assess XAl in IDS [15]. Until such frameworks mature,
deploying XAl will involve uncertainty about how much it actually improves analyst understanding or
trust in a real-time setting.

5. The security and privacy implications should be addressed too. Integrating XAl into IDS can
inadvertently introduce security risks. Detailed explanations reveal which features or patterns led the
model to flag an attack; if such information is accessible to adversaries, they might exploit it to evade
detection. In essence, an explanation interface could become a leakage point — giving attackers insight
into the IDS’s “secrets”. For example, if an explanation consistently highlights a specific packet header
field as suspicious, a savvy attacker may alter that field in future exploits to fly under the radar. Moreover,
there are privacy concerns when explanations expose sensitive attributes of network traffic or user data.
Some XAl outputs might inadvertently disclose personal or proprietary information, contravening data
protection principles.

This is especially relevant under regulations like the General Data Protection Regulation (GDPR),
which require careful handling of any user-related data. Therefore, designers must ensure that adding
explainability does not open new attack vectors or privacy leaks. Research in this area suggests employing
privacy-preserving XAl techniques and restricting how much internal detail is shared so that trust is
improved for defenders without equipping attackers with a roadmap to bypass the IDS.

Given the above challenges, experts acknowledge the need for more efficient and tailored XAl
approaches in real-time IDS. One promising direction is the use of hybrid models or tiered strategies. For
instance, a simpler interpretable model could handle the bulk of low-risk traffic, with a complex DL-XAI
module reserved for only the most suspicious events — thereby limiting the overhead to where it’s truly
needed [15].

Another approach is to design or choose algorithms that are interpretable by design, reducing reliance
on expensive post-hoc explainers. Techniques like attention mechanisms in neural networks can highlight
important features as part of the prediction process, effectively providing an explanation with minimal
extra cost. In fact, recent IDS frameworks, such as attention-based CNN-LSTM architecture, demonstrate
that it’s possible to achieve high speed and integrate feature attribution (heatmaps) directly into the
model’s operation.

Researchers also suggest optimizing existing XAl methods — for example, using faster approximation
algorithms for SHAP/LIME or pre-computing explanation components — to fit the real-time requirements.

Overall, there is a clear consensus that new lightweight XAI solutions are required to balance
transparency with performance. Many researches stress developing explainability techniques that incur
minimal delay and can scale so that future IDS can be both highly accurate and explainable without
sacrificing low latency [15].

4. XAl optimization strategies for low-latency IDS systems

Realizing low-latency, explainable intrusion detection requires innovative approaches that minimize
the overhead of explanations while preserving or even enhancing detection performance. Researchers
have focused on two complementary directions: accelerating existing XAl techniques to fit real-time
needs and developing hybrid or explainable-by-design models that inherently provide insights with
minimal extra cost. In parallel, practical deployment strategies — from hardware acceleration to selective
explanation — ensure these techniques scale to high-speed network environments. To formalize this trade-
off, an optimization objective (4.1) that balances latency, explainability cost, and detection accuracy had
been defined:

F(0,0)=a-Lat(6)+ B-CompXAl ()—y- Acc(8,®)— min (4.1)
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where @ are parameters of the deep learning model (e.g., number of layers, neurons, architecture of
CNN-LSTM); @ are parameters of the explainable Al method (e.g., attribution depth in DeepLIFT);

Lat(@) is the latency of the IDS decision in milliseconds; CompXAl (a)) is the computational cost of

the XAl method (e.g., DeepLIFT), measured in processing time or compute resources (CPU/GPU);
Acc(@, a)) is the classification accuracy of the IDS (e.g., detection rate of anomalies); «, 5,y are

weighting coefficients reflecting the priority of each optimization objective (set based on system-specific
constraints or expert judgment).

Recent peer-reviewed studies cited in this work validate these optimizations on standard cybersecurity
datasets, demonstrating that it is feasible to achieve both millisecond-level detection times and
meaningful explanations in IDS. Both the methodological innovations and implementation considerations
for XAl in real-time neural-based IDS are illustrated below.

4.1. Accelerating XAl techniques for real-time efficiency

A primary challenge is the computational cost of popular post-hoc explainers like SHAP and LIME,
which can be too slow for streaming data. To address this, researchers are optimizing these algorithms
and leveraging hardware acceleration. For instance, using GPU-accelerated libraries — NVIDIA’s
RAPIDS or PyTorch CUDA extensions — can speed up SHAP computations significantly, enabling
feature attribution on large traffic samples in near real-time. Algorithmic improvements such as sampling-
based SHAP or lightweight surrogate models have also been explored to approximate explanations faster.
A recent survey stresses that making SHAP/LIME faster or more lightweight is crucial for practical
deployment in high-speed IDS [15]. By reducing the number of model evaluations or focusing on top
features, these optimized explainers shrink the latency they introduce.

Another effective tactic is to favor inherently efficient XAl methods. Gradient-based attribution
techniques, such as saliency maps, Integrated Gradients, and DeepLIFT, require only a single backward
pass through the neural network, offering explanations with minimal overhead. An evaluation of
explanations for an LSTM-based IDS found that DeepLIFT consistently outperformed LIME and SHAP
in producing high-fidelity, low-complexity explanations [21]. Because these methods directly leverage
the model’s internal gradients, they generate attributions in milliseconds, making them well-suited for
real-time alert explanation. In practice, integrated gradient or saliency results can be visualized as
heatmaps almost instantly, highlighting which features — specific packet bytes or timing features —
influenced the decision. By adopting such low-cost XAl methods, an IDS can deliver basic reasoning for
each alert on the fly without becoming a bottleneck.

4.2. Hybrid and explainable-by-design model approaches

Beyond speeding up post-hoc tools, a promising avenue is to embed interpretability into the IDS
models themselves. Researchers are creating hybrid architectures that combine the accuracy of deep
learning with the transparency of simpler models or built-in explanation mechanisms. One strategy is to
attach an interpretable component — a rule-based or tree-based layer — to a neural network. For example,
a decision tree or rule set can act as a front-end filter or a parallel explainer to the deep model, providing
human-readable logic for its predictions. This two-tier design lets the system enjoy the nuance of a neural
detector while yielding an immediate explanation — the triggered rule or path in the tree — for most
decisions. Recent studies emphasizes such hybrid models as a way to balance accuracy and transparency:
for instance, by combining a shallow decision tree with a back-end deep classifier, the IDS can handle
complex patterns but still explain detections in simple terms [15]. In this work, existing experimental
results are referenced to illustrate that such prototypes enable many alerts to be accurately handled by the
interpretable component alone, with the deep model invoked only for uncertain cases—substantially
reducing the average explanation cost.

Another approach is to design explainable-by-design neural networks specialized for IDS tasks. One
cutting-edge example is the Explainable Lightweight Al (ELAI) framework, which uses a streamlined
CNN-LSTM architecture augmented with an attention mechanism. The attention layers highlight
important features in each input, such as specific flow characteristics or time steps, effectively producing
an explanation as a by-product of the prediction. Because this occurs during the model’s forward pass,
there is negligible latency overhead. According to prior evaluations, the ELAI framework demonstrated
that such integration can significantly improve both speed and transparency: it achieved an inference time
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of ~8.3 ms per sample — over 60% faster than a standard deep IDS — while providing visual “‘attention
heatmaps” to analysts. Importantly, the model’s output is not a black box; it leverages SHAP-based
feature importance and attention weights to make each decision interpretable and more trustworthy for
security operators [25]. This indicates that carefully architected networks, like lightweight CNN-LSTM
with built-in attention, can meet real-time demands without sacrificing interpretability.

Researchers are also exploring model compression and knowledge distillation as avenues for XAl
optimization. The idea is to train a compact “student” model to mimic a larger deep model’s behavior,
thereby retaining high accuracy on attacks but with far fewer parameters and simpler decision logic.
Compressed models naturally run faster and can be easier to interpret or to explain post-hoc due to their
reduced complexity. A recent study using knowledge distillation for an 10T IDS showed the student
network ran approximately 15-25% faster in inference than its complex teacher, with negligible accuracy
loss [25]. The distilled model could even retain transparency by highlighting key features in its decisions,
courtesy of an integrated attribution mechanism.

Similarly, hybrid frameworks like Lightweight, Efficient, and Non-intrusive System for eXplainable
Artificial Intelligence (LENS-XAI) combine a variational autoencoder for unsupervised anomaly
detection with a distilled lightweight classifier, explicitly aiming to balance performance and
transparency for scalable intrusion detection. By validating these frameworks on multiple datasets such
as NSL-KDD, Edge-lloT, and UNSW-NB15, it was shown that state-of-the-art detection rates can be
achieved alongside built-in explainability and efficiency [26].

In summary, new architectural innovations — from attention-based deep models to distilled ensembles
—are enabling IDS that are both fast and explainable by design. These hybrid approaches reduce reliance
on expensive after-the-fact explanations, since much of the reasoning is either inherent in the model’s
structure or handled by a lightweight interpretable component.

4.3. Deployment considerations and empirical validation

Implementing explainable IDS in real networks requires not just clever algorithms but also strategic
system design to handle high data volumes. One key is to integrate the above methods into streaming data
pipelines and optimize the end-to-end flow. Researchers have suggested deploying real-time IDS within
frameworks like Apache Spark Streaming or a Kappa architecture, which can distribute the workload of
traffic capture, detection, and explanation across multiple nodes for scalability [15]. In practice, this
means explanations should be generated in parallel with detection or during off-peak cycles. For example,
an IDS could immediately flag a likely attack using a fast, simplified model, then invoke a more detailed
XAl analysis on a separate thread or machine learning accelerator. By asynchronously handling
explanations, the system ensures that alert latency remains low.

Moreover, hardware acceleration — Graphics Processing Units (GPUs) or Tensor Processing Units
(TPUs) — can be dedicated to XAl computations so that even if a complex method like SHAP is needed
for a particularly critical alert, it can be computed in a fraction of the time it would take on a CPU. These
engineering strategies ensure that adding explainability doesn’t turn into a throughput bottleneck.

Another consideration is selective or adaptive explanation to conserve resources. Not every benign
flow or low-risk event may require a full explanation; the system can be tuned to provide detailed
interpretability for the most suspicious or impactful alerts. Recent proposals even suggest adaptive XAl
levels — giving a high-level reason for routine detections but a thorough, multi-faceted explanation for
complex or severe incidents [15]. This adaptive approach aligns with operational needs, focusing analyst
attention where it’s needed most and trimming unnecessary computation. Crucially, any introduction of
XAl must be evaluated not only for speed but also for analytical value: security teams should gain insight
without being overwhelmed. Visualization tools, for example, feature importance bar charts or traffic
heatmaps, should be integrated into the IDS dashboard to present the explanations clearly and quickly.
Empirical results from recent research underscore the feasibility of these optimizations. In prior studies,
the ELAI framework, for instance, was evaluated on standard benchmarks sych as CICIDS2017 and
UNSW-NBL15, achieving over 98% detection accuracy with a compact model size under 50 MB [25].
Due to its architectural optimizations, ELAI was shown to process each network sample in just a few
milliseconds — approximately 2.5 times faster than a typical deep IDS — while still producing human-
interpretable feature attributions for every alert.

Likewise, the LENS-XAI student model was validated across diverse datasets — from classic NSL-
KDD to modern loT traffic — and maintained high fidelity to the teacher model’s predictions, but with
significantly lower latency and complexity [26].
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These case studies confirm that the trade-off between speed and explainability can be managed
effectively. In fact, making the model more efficient often goes hand-in-hand with better clarity: focusing
on fewer, most informative features tends to improve both runtime and the quality of explanations.

Finally, it is important to assess the optimized XAl IDS in real-world conditions. Beyond lab datasets,
deployment in live network environments such as enterprise LANs or 10T networks is needed to ensure
the system handles traffic bursts, novel attack patterns, and concept drift over time. The explainability
component should be stress-tested for worst-case scenarios — for example, verifying that an explanation
can still be produced within a strict time budget during a distributed attack or that the XAl does not expose
sensitive information inadvertently.

Early adaptive IDS prototypes show promise in detecting zero-day attacks while keeping analysts
informed: in one evaluation, an explainable IDS detected over 91% of zero-day attacks in an loT setting,
significantly outperforming a non-XAl baseline, thanks to its robust feature insights guiding the detection
[25]. The results of said evaluation are shown in Table 3.

Table 4. Comparative analysis of ELAI with existing IDS models
Tabnuys 4. Hopiensnvnui ananiz ELAN 3 icuyrouumu mooensimu 1DS
Model Comp_u_tatlonal
Efficiency

Zero-Day Attack Detection

Explainability (%)

CNN'L.STM Moderate Low 74.3

((CESEI)
ResNet-50 IDS Low Very Low 79.8
Transfolrgse r-Based Very Low Very Low 82.5
ELAI High High 91.6

This highlights that XAl optimization is not just an academic exercise but a practical enhancement to
security: a well-designed explainable model can catch stealthy threats more reliably by focusing on
telltale anomalies and immediately justify the alerts, enabling quicker and more confident responses.

In summary, the core of recent research on “XAl optimization for low-latency neural IDS” converges
on a clear message: it is possible to build IDS solutions that are both fast and transparent. By streamlining
XAl algorithms, fusing interpretable logic into deep models, and thoughtfully engineering the
deployment, security teams can obtain real-time intrusion alerts with the much-needed context.

Ongoing studies continue to refine these approaches — from standardized interpretability metrics to
domain-specific explanation techniques — but the trajectory is set. The future of intrusion detection will
likely see lightweight, explainable Al at its heart, providing strong defense capabilities that are no longer
a “black box” to the people they protect.

5. Conclusions

In this work, a comprehensive investigation was conducted on optimizing eXplainable Artificial
Intelligence (XAI) methods for DL-based intrusion detection systems (IDS) operating in real-time
network environments. The primary scientific novelty of the study lies in the in-depth analysis of various
XAl approaches, leading to practical recommendations and the conceptual integration of multiple
explainability strategies into a unified, low-latency DL-based IDS framework suitable for high-speed
network infrastructures.

The key scientific results of this study include:

1. Systematic analysis and critical evaluation of existing XAl methods (SHAP, LIME, Integrated
Gradients, DeepLIFT, Anchors, Grad-CAM), highlighting their practical applicability limits in real-time
network environments, particularly their significant computational overhead.

2. Justification of gradient-based attribution methods (Integrated Gradients, DeepLIFT) as highly
promising for real-time applications due to their ability to produce high-quality explanations with
minimal latency overhead.

3. Proposal of hybrid explainable-by-design architectures, including CNN-LSTM with attention
mechanisms (e.g., ELAI) and LENS-XAI, which effectively combine high detection accuracy with built-
in interpretability without imposing substantial computational costs.
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4. Development of practical deployment guidelines and strategies for explainable IDS, including the
use of hardware acceleration (GPU/TPU), adaptive explanation generation strategies, and optimized
streaming architectures (Kappa architecture, Apache Spark Streaming).

5.Empirical results from existing studies demonstrate that optimized XAl models — particularly the
ELAI and LENS-XAI architectures — achieve significant improvements in zero-day attack detection rates
(up to 91.6%) and substantially lower explanation generation times (below 10 ms), thereby confirming
their practical viability for integration into real-time IDS in high-speed network environments.

The obtained results hold significant implications for both cybersecurity theory and practice.
Theoretical significance involves advancing the understanding of the balance between explainability and
performance in neural IDS models deployed under real-time conditions. This insight provides a solid
foundation for future research on integrating XAl with deep IDS architectures. Practical significance is
demonstrated through the applicability of the proposed methods to real-world information security
systems, including large enterprise networks, 10T infrastructure, and national-level network systems.
These methods enhance decision transparency, operator trust, and incident response speeds.

Prospective future research directions include:

1. Developing standardized metrics and benchmarks for evaluating XAl explainability, enabling
objective comparison of various XAl techniques and approaches.

2. Further refinement of IDS architectures through integrating advanced attention mechanisms (e.qg.,
transformer-based attention), thereby improving explanation quality and granularity.

3. Investigating the impact of explainability on cybersecurity operators' performance (human-in-the-
loop scenarios), including developing intuitive interfaces for presenting explanations in real time.

4. Conducting long-term field studies of explainable IDS deployments in operational networks,
enabling the identification of practical constraints and optimization requirements.

5. Exploring adaptation possibilities of the presented approaches and architectures to other critical
cybersecurity tasks, such as traffic obfuscation detection, covert channel identification, and recognition
of complex multi-vector attacks.

In conclusion, the research provides a robust foundation for the theoretical advancement and practical
implementation of explainable Al in intrusion detection systems. It paves the way for developing
transparent, reliable, and high-performance next-generation IDS solutions.
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Onrumizanisa XAl pis mBUAKOAIHHUX HelipoMepeKeBUX CUCTEM BUSIBJICHHS
a”HomaJIiil y Tpagiky

AKTyalIbHICTB. Y CyJ9acHHX MEPEXEBHX CEpeOBHUIAX CUCTEMHU BHABIEHHS BToprHeHs (IDS), mo 6a3yroThes Ha TEXHOJOTINX
TIMOOKOT0 HaBYaHHS, IEMOHCTPYIOTh 3Ha4YHI IIepeBaru y BUSBJICHHI CKIQIHUX 1 AMHAMIYHHUX KiOep3arpos. OmHak ix mmpoke
NpPaKTHYHE 3aCTOCYBaHHSA CYTTEBO OOMEXKEHE OOYMCIIOBAIBHOK CKIANHICTIO, BHCOKMMH 3aTPUMKaMH Ta HH3BKOIO
IHTEPIPETOBAHICTIO yXBaJCHUX pillleHb, BIIOMOIO SIK IMpobieMa «JOpHOI CKPUHBKH». IHTErpariisi METOMiB IMOSICHIOBAHOTO
wtyqHoro inTenekty (XAl) y Helipomepesxesi cuctemu IDS € HeoOXiaHO YMOBOIO [is 3a0e3MeueH s IPO30POCTi YXBaICHHS
pileHs, TOBipH ONEpaTopiB Ta eheKTUBHOCTI ONEPATUBHOTO pearyBaHHs Ha KiOEpIHIIUIACHTH B PEKUMI pEalbHOTO qacy.
MeTta. OCHOBHOIO METOIO JIOCIII/KEHHS € po3po0JieHHs Ta onTuMizanis MeToaiB XAl Ui HelpoMepekeBHX CHCTEM BHUSIBICHHS
aHOMaJIiil y MepexeBoMy Tpadiky, o 3aaTHI QYHKIIOHYBaTH 3 HU3BKMMH 3aTPUMKaMH B peajJbHOMY 4Yaci, 3a0e3neduyroun
GanaHc MiX MPO30PICTIO YXBaJICHHUX PillleHb, 00YHCITIOBAIBHOIO e()eKTHBHICTIO Ta TOYHICTIO Kiacudikarii 3arpos.

Metonu gocaixkeHns. Y podoTi 31iHCHEHO CHCTEMHHH OTIIA] 1 MOPIBHAJIBHUI aHANI3 CydacHUX MOAEel rTHO0KOro HaBuyaHHs
(CNN, LSTM, GRU, aBroeukozaepu, ribpuani mogeni CNN-LSTM) Ta Haii6insm mommpenux meroauk XAl (SHAP, LIME,
Integrated Gradients, DeepLIFT, Grad-CAM, Anchors). Po3po6ieHo onrumizamiiini Mmiaxoaud, ski BKIOYAIOTH araparHe
MPUCKOPEHHS, 3aCTOCYBaHHS CIIPOINEHHX METOMIB IMOSICHEHHS Ha OCHOBI TPaJi€HTIB, CTBOPEHHS TIOpHUIHUX apXiTEKTyp i3
BOyIOBaHMMH MeXxaHizMamu iHTepnperaii (Hanpuknax, CNN-LSTM i3 MmexaHi3mMaMu yBaru) Ta BUOIpKOBE ITOSICHEHHS PillICHb.
Emnipnyna mepeBipka 3anpoNOHOBaHUX PillleHb NTPOBEAEHA Ha 3arajbHoBimoMux Habopax manux (CICIDS2017, NSL-KDD,
UNSW-NB15).

Pe3ynbraTi. 3a pe3ynbraTaMy aHalli3y BCTAHOBIEHO, IO rpamieHtHi meroau mnoscHenns (Integrated Gradients, DeepLIFT)
HAWOLIBII TpUAATHI st iHTerpamii y BucokomBHAKicHI |DS 3aBasku MiHIManpHOMY YacCy reHepallii MOSCHEHb i BHCOKIH
touHocti. [iOpuani apxiTekTypu 3 BOymoBanuMmu Mexanismamu moscuends (ELAI framework wa ocroBi CNN-LSTM i3
MEXaHi3MaMH yBaru) IpOAEMOHCTPYBAII BHCOKY €()eKTHBHICTh: TOUHICTh BHSIBICHHS nepeuimmaa 98%, a dac mpHHATTS
pimeHHs He nepeBunryBaB 10 Mc. ONTHMI30BaHiI METOJUKH TO3BOJIIIM ICTOTHO ITiIBUIIUTH €()EKTUBHICTH BUSBICHHS aTaK THUITY
«HYJTBOBOTO JTHS» 10 piBHSA 91,6%.

BucHoBkH. Y pe3ynbTaTi IPOBEACHOTO AOCIIIKCHHS 3aPOMOHOBAHO MPAKTUYHI MiXOIH MO0 IHTErPaIlil MOsSCHIOBAHOCTI B
HelipoMepexeBi cuctemu IDS, ki QYHKIIOHYIOTh Y PEKUMI PEAbHOTO Yacy, HIO JO3BOJIAE CYTTEBO IMiJBHIIUTU SKiCTh
BUSIBJIGHHSI 3arpo3, NMPO30pICTh pillieHb Ta JOBIpy 10 cHCTeM 3 OOKy omepaTopiB KibepOesmeku. [lepcriekTHBY MOAabIINX
JIOCTIKEHb TOB’s13aH1 31 CTAaHIAPTH3AIIEI0 OLIHIOBAHHS MOSCHIOBAHOCTI, BIOCKOHAJICHHSIM apXiTEKTyp Ha OCHOBI MEXaHi3MiB
yBard Ta po3MHNPEHHSM WX MiIX0/AiB Ha 1HIII 3aBIaHHS KiOepOe3neKH.

Kniouogi cnosa: xibepbesnexka, cucmemu 6UsGIEHHS 6MOPSHEHb, 2IUOOKe HAGUAHHS, NOACHIOBAHUL WMYYHUL iHmMeneKm,
BUABNIEHHA AHOMANIN, HellpouHi mepedxci, onmumizayia XAl.
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