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Про динамічну задачу оптимального розбиття множин з відшуканням 

координат центрів підмножин  

 

Актуальність. Оптимальне розбиття множин є однією з ключових проблем сучасної прикладної математики та теорії 

оптимізації, яка знаходить широке застосування в логістиці, інформатиці, біоінженерії, моделюванні складних систем 

та штучному інтелекті. Особливий інтерес становлять динамічні варіанти задач оптимального розбиття, коли умови 

задачі змінюються у часі, а розбиття має адаптуватися відповідно до динаміки системи. Оптимальне розбиття множин, 

в переважній більшості прикладних задач, безпосередньо пов’язано з мінімізацією цільового функціоналу, 

невід’ємною складовою якого є не тільки контури підмножин але й інші визначальні параметри, що є ключовими для 

шуканих підмножин. В класичних постановках такими параметрами є, наприклад, центри підмножин. Прикладне 

застосування задач в такій постановці знаходять своє застосування в економіці, логістиці, медицині, архітектурі та 

інших галузях. 

Мета. Основною метою роботи є постановка однопродуктової динамічної задачі оптимального розбиття множин з 

відшуканням координат центрів таких підмножин, розробка алгоритму розв’язання динамічної задачі, постановка 

чисельного експерименту та аналіз отриманих результатів з метою підтвердження їх достовірності. 

Методи дослідження. До основних методів дослідження роботи слід віднести методи теорії оптимізації, якісну 

теорію диференціальних рівнянь та чисельні методи розв’язання задач оптимізації. 

Результати. До основних результатів роботи віднесено постановка однопродуктової динамічної задачі оптимального 

розбиття множин з відшуканням координат центрів таких підмножин, розроблений алгоритм розв’язання задачі, 

результати чисельного експерименту та результати аналізу отриманих результатів.  

Висновки. В статті розглянута нова динамічна задача оптимального розбиття множин з відшуканням координат 

центрів, розроблено алгоритм розв’язання такої задачі, проведено чисельний експеримент за результатами якого 

можна вважати отримані результати достовірними та використати для розв’язання практичних задач. 

Ключові слова: динамічна задача, теорія оптимального розбиття множин, цільовий функціонал, фазова траєкторія, 

чисельні методи. 
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Вступ 

Проблематика оптимального розбиття множин належить до фундаментальних напрямів 

сучасної прикладної математики та теорії оптимізації, демонструючи високу прикладну 

значущість у сферах логістики, комп’ютерних наук, біоінженерії, системного моделювання та 

штучного інтелекту. Особливої актуальності набувають динамічні постановки задач такого типу, 

в яких параметри системи змінюються у часі, що зумовлює необхідність адаптивного оновлення 

розбиття відповідно до еволюції системного середовища. 

Динамічні задачі оптимального розбиття множин із варіативним розташуванням центрів 

постають у ситуаціях, коли об’єкти потребують не лише класифікації, а й просторової 
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локалізації. Типовим прикладом таких задач є моделювання конкурентної взаємодії мобільних 

торговельних точок у межах урбанізованого середовища. У подібних сценаріях, окрім 

запланованих змін цінової політики, пересувні магазини здатні змінювати своє географічне 

положення з метою підвищення привабливості для споживачів. Такі переміщення безпосередньо 

впливають на геометрію зон обслуговування. Відтак, зменшення вартості товарів не гарантує 

приросту клієнтської бази, так само як і підвищення цін не обов’язково спричиняє її скорочення. 

У даному дослідженні розглянуто спрощену модель динамічного розбиття множини з 

урахуванням часової варіації параметрів, таких як вартість транспортування одиниці продукції у 

контексті нескінченновимірної транспортної задачі. Запропонована модель дозволяє 

сформулювати узагальнені підходи до аналізу та побудови ефективних алгоритмічних рішень 

для широкого спектра складніших задач оптимального розбиття. Обґрунтовано доцільність 

застосування альтернативних (зокрема, гібридних) математичних методів, які поєднують 

аналітичні та чисельні складові, з метою підвищення ефективності розв’язання задач в умовах 

високої складності та структурної нестабільності. 

Ключова особливість задачі полягає в тому, що навіть при наявності спрощених припущень 

щодо геометрії множини та характеру змін її внутрішніх властивостей, оптимальне розбиття 

здатне проявляти складну топологічну організацію. Це зумовлює потребу в розробці 

спеціалізованих методів аналізу, спрямованих на виявлення умов існування, єдиності та 

стійкості розв’язків відносно малих збурень у вхідних параметрах. Зазначений підхід дозволяє, 

як поглиблено дослідити структурну поведінку систем зі змінною конфігурацією, так і 

сконструювати практично придатні алгоритмічні процедури з контрольованою обчислювальною 

складністю. 

Отримані результати мають потенціал практичного застосування у формалізації моделей для 

задач кластеризації, оптимального розподілу ресурсів, мережевого планування та адаптивного 

керування в умовах невизначеності або змінних зовнішніх впливів. 

Огляд публікацій з тематики дослідження. 

Ключові теоретичні засади сучасної теорії оптимального розбиття множин у різноманітних 

постановках було закладено в численних дослідженнях професорки О.М. Кісельової та 

представників її наукової школи. Основу цих досліджень становлять строгі математичні 

формалізації задачі та аналітичні підходи до їх розв’язання, зокрема, детально висвітлені в 

працях [1], [7]. У зазначених роботах запропоновано чіткі постановки модельних задач, 

розроблено ефективні алгоритми їх розв’язання та наведено результати багаточисельних 

комп’ютерних експериментів, що підтверджують теоретичні висновки. 

У працях [2]–[5] здійснено системний аналіз глобальних аспектів задач теорії оптимального 

розбиття множин. У цих дослідженнях сформульовано та доведено низку принципових теорем, 

які, зокрема, дозволяють звести нескінченновимірні задачі до їх скінченновимірних аналогів, а 

також переходити від задач із обмеженнями до еквівалентних задач без обмежень. 

Особливу увагу приділено динамічним формулюванням задач, які розглядаються в роботі [3]. 

У ній проаналізовано специфіку постановки таких задач, розроблено алгоритмічне забезпечення 

для їх розв’язання та представлено чисельні результати, що ілюструють ефективність 

запропонованих методів. Значну увагу приділено прикладним аспектам, зокрема обмеженням, 

що виникають у реальних задачах, та методам наближеного розв’язання в разі відсутності 

точного аналітичного підходу. 

У роботах [4], [6], [8] досліджено неперервно-дискретні задачі, специфіка яких зумовлена 

наявністю додаткових умов як у самій постановці, так і в алгоритмах їх реалізації. Автори 

пропонують як універсальні, так і спеціалізовані підходи, які дозволяють одержувати чисельні 

або, в ряді випадків, аналітичні розв’язки задач даного класу. 

Серед праць зарубіжних дослідників, що здійснили вагомий внесок у формування 

фундаменту теорії оптимального розбиття множин, слід виокремити роботи G. Buttazzo, G. Dal 

Maso, F. Santambrogio, B. Bourdin. Зокрема, у дослідженні [9] оптимальні розбиття аналізуються 

в межах варіаційного підходу та теорії міри. У цій роботі сформульовано загальні умови 

існування оптимального розбиття в задачах мінімізації енергетичних функціоналів з 

урахуванням геометричних, об’ємних або мірових обмежень. 

У працях [10]–[11] розглянуто задачі мінімізації (максимізації) сум перших власних значень 

оператора Лапласа на підмножинах простору, що мають застосування в контексті моделей 

дифузії, фазових переходів і кластеризації. 
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Попри розвинену аналітичну базу, значна частина сучасних досліджень орієнтована на 

розробку чисельних методів розв’язання задач оптимального розбиття. Зокрема, у роботах [12]–

[13] запропоновано застосування методів рівневих множин, підходів топологічної оптимізації, а 

також релаксаційних і регуляризаційних технік. 

Неперервні задачі розбиття органічно вписуються в парадигму нескінченновимірного 

математичного програмування завдяки: варіаційному формулюванню функціоналів цілі; 

нескінченновимірним обмеженням (наприклад, умовам на міру, геометрію або крайові 

значення); застосуванню методів субдиференціального аналізу та узагальненого спряженого 

програмування [14]. 

Серед актуальних напрямів подальших досліджень у галузі теорії оптимального розбиття 

множин вирізняються: аналіз задач із нечітко визначеною геометрією або стохастичними 

параметрами; вивчення багатокритеріальних розбиттів, що виникають у прикладних задачах 

екології, медицини, кібербезпеки; а також розробка підходів до оптимізації функціоналів на 

просторах ймовірнісних мір у контексті машинного навчання [15]. 

Отже, на сучасному етапі теорія неперервних задач оптимального розбиття множин є 

інтегрованим напрямом нескінченновимірного програмування, який поєднує глибоку аналітичну 

складову, складність алгоритмічної реалізації та широку прикладну застосовність — від задач 

механіки до проблем штучного інтелекту. Подальший розвиток теорії потребує як розширення її 

фундаментальної основи (вивчення існування, стійкості, збіжності, похибок, складності), так і 

вдосконалення прикладних інструментів її чисельної реалізації. 

Математична постановка однопродуктової динамічної задачі оптимального розбиття 

множин з відшуканням координат центрів підмножин.  

Розглянемо неперервну однопродуктову динамічну задачу оптимального розбиття множин з 

nE  без обмежень з відшуканням координат центрів підмножин у такому вигляді. 

Нехай   – обмежена замкнена вимірна за Лебегом множина в п–вимірному евклідовому 

просторі nE . Сукупність вимірних за Лебегом підмножин 1
,...,

N
   множини nE  (серед 

яких можуть бути і порожні) назвемо можливим розбиттям цієї множини, якщо 

1

,   mes( ) 0
N

i i j
i

     , , 1,...,i j N  ( )i j , де 0N   – задане натуральне число; 

mes( )  – міра Лебега. 

Позначимо через 
N


  клас всіх можливих розбиттів множини nE  на задану кількість N  

її вимірних за Лебегом підмножин: 

   
1

1

{ { ,..., } :  ,   mes( ) 0,

                                    , 1,...,  ( )}.

N
N N

N i i j
i

i j N i j




           

 

 

Далі, через  N ,...,1  позначимо сукупність деяких еталонних точок для підмножин 

1
,...,

N
   відповідно, які назвемо центрами цих підмножин: 

(1) ( )( ,..., ) ,  1,...,n

i i i i
i N      , 

і будемо вважати, що координати усіх центрів невідомими та такими, що підлягають 

знаходженню. 

Постановка задачі. Знайти розбиття 
1

{ ,..., } N

N 
     множини nE , векторну 

функцію 1 1( , , ) ( ( , , ),...,c x t c x t    ( , , ))N Nc x t , визначену м.в. для x , координати центрів 

1
{ ,..., } N

N
      та всіх [0,  ]t T , які забезпечують  

   )),,(,,(inf
]),0[(),,(;},...,{; 21


 



cF
TLc NN

N

N




   (1) 

де  

  
 



T N

i

iiii

i

dxdtxaxmtxccF
0 1

)(),(),,()),,(,,(    (2) 

за наявності умов 
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1

0 0

( , , )
( ( , , )),    0 ;

( , , ) ( , ),   1,..., ,

N
i i

ij j j j
j

i i i i

c x t
A f с x t t T

t

c x t c x i N



 
    



   


   (3) 

м.в. для x  та умови замкненості системи  

   
1

1,    1,...,
N

ij
i

A j N


  .      (4) 

Тут 
1

{ ,..., } N

N
      - шукані центри підмножин з координатами 

Nin

iii ,...,1,),...,( )()1(   ; ( , , ),  1,...,i ic x t i N  , – шукані дійсні функції, визначені на 

],0[ T , що є неперервно диференційованими за аргументом t  на відрізку [0, ]T  м.в. для 

(1) ( )( ,..., )пx х х  , обмежені та вимірні за аргументом x  на   для всіх [0,  ]t T ; ),( ixm  , 

),(0 ii xc   – задані дійсні функції, визначені на  , обмежені та вимірні за аргументом x  

(зокрема, ),( ixm   може відігравати роль метрики на  ); ( ( , , )), 1,...,i i if c x t i N  , – задані 

дійсні функції, неперервні та ліпшицеві в області свого визначення; )(x  – задана невід'ємна 

функція, обмежена та вимірна на  ; ,  1,...,іа i N , – задані, як правило, невід’ємні числа; 

10  ijA , Nji ,...,2,1,  , – задані числові параметри; 0T  та 0 [0, ]t T  задані. 

Тут та в подальшому інтеграли розуміються в сенсі Лебега. Будемо вважати, що міра 

множини межових точок підмножин 1
,...,

N
   дорівнює нулю.  

Трійку  ),,(,, *** txc  , що доставляє функціоналу (2) мінімальне значення на множині 

2 ( [0, ])N NL T    за умов (3), (4), назвемо оптимальним розв’язком задачі (1)–(4). При 

цьому розбиття 
1

{ ,..., } N

N

  


      назвемо оптимальним розбиттям множини nE  на 

N  підмножин, Nin

iii

N

N ,...,1),,...,(,},...,{ )*()1*(***

1

*    оптимальними центрами та 

їх координатами відповідно,  а векторну функцію 1 1( , , ) ( ( , , ),...,c x t c x t     

2( , , )) ( [0, ])N
N Nc x t L T     – оптимальною фазовою траєкторією динамічної системи в 

задачі (1)–(4). 

З предметної точки зору, незалежна змінна [0, ]t T  у наведеній математичній постановці 

динамічної задачі оптимального розбиття може відігравати роль часової змінної, а 0T  та 

0 [0, ]t T  – задані кінцевий та початковий моменти часу у досліджуваному динамічному 

процесі відповідно. Так, функції )),,(( txcf iii  , i = 1,2,…,N, у диференціальних зв’язках (3), що 

відображають динаміку цін на транспортування, можуть мати різний вигляд, в залежності від 

предметного змісту, який в неї вкладається, наприклад: моделі інфляції/дефляції; моделі 

односторонньої цінової регуляції; моделі двосторонньої цінової регуляції; моделі дотаційної 

односторонньої цінової регуляції. 

В якості базової в наступних пунктах буде використана модель інфляції/дефляції, для наочної 

демонстрації кращої оптимізації цільового функціоналу в однопродуктовій динамічній задачі 

оптимального розбиття множин з відшуканням координат центрів підмножин. 

Обґрунтування методу розв’язання 

Нехай 


N

N },...,{ 1  – деяке можливе розбиття вихідної замкненої обмеженої вимірної 

множини nE  на N  її вимірних за Лебегом підмножин, що не перетинаються. 

Введемо у розгляд на множині nE  характеристичні функції )(),...,(1 xx N  підмножин 

N ,...,1 відповідно:  

Ni
x

x
x

i

i

i ,...,1
,\,0

,,1
)( 








      (5) 
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і переформулюємо задачу (1)–(4) у термінах характеристичних функцій підмножин у більш 

зручному вигляді. Потрібно знайти векторні функції 
* * *

1( ) ( ( ),..., ( )), Nx x x x     , 

( , , )c x t   1 1( ( , , ),..., ( , , ))N Nc x t c x t   , x , [0,  ]t T  та координати центрів 

N

N  },...,{ **

1

*  , які забезпечують 

 
)),,(,),((inf

]),0[(),,(;},...,{; 211




cJ
TLc NN

N




   (6) 

де функціонал )),,(,),((  cJ   має вигляд 


 



T N

i

iiiii dxdtxxaxmtxccJ
0 1

)()()),(),,(()),,(,),((  , (7) 

}N,...,1,..10)(

;..1)(:))(),...,(()({
1

11



 


ixдлявмx

xдлявмxxxx

i

N

i

iN




 (8) 

за умов (3)-(4). Очевидно, що для функціонала )),,(,,( cF   виду (2) і функціонала 

)),,(,),((  cJ   виду (7) виконується рівність  )),,(,,()),,(,),((  cFcJ  . 

Далі від задачі (6)–(8) за умов (3)–(4) з булевими значеннями функцій Nii ,...1),(  , 

перейдемо до відповідної задачі зі значеннями Nii ,...1),(  , що змінюються на відрізку ]1,0[ . 

Задача. Знайти векторні функції 
* * *

1( ) ( ( ),..., ( )), Nx x x x      і 

1 1( , , ) ( ( , , ),..., ( , , ))N Nc x t c x t c x t      , x , 
1

{ ,..., } N

N
     , [0,  ]t T , які 

забезпечують 

 
)),,(,),((inf

]),0[(),,(;},...,{; 21




cJ
TLc NN

N




   (9) 

де функціонал ),,(,),((  cJ  має вигляд 

   
 



T N

i

iiiii dxdtxxaxmtxccJ
0 1

)()()),(),,(()),,(,),((  ,  (10) 

}N,...,1,..1)(0

;..1)(:))(),...,(()({
1

1



 


ixдлявмx

xдлявмxxxx

i

N

i

iN




 (11) 

за умов (3)-(4). 

Перша компонента ))(),...,(()( **

1

* xxx N   оптимального розв’язку такої задачі м.в. для 

x  і для кожного Ni ,...,1  має вигляд  






випадкуіншомув

умоваявиконуєтьсякщо
xi

,0

)13(,1
)(*    (12) 














 



T

kkkk

Nk

T

iiii dtxaxmtxcdtxaxmtxc
0,10

)()),(),,((min)()),(),,((
_____

  (13) 

при заданих 
_____

,  1,i i i N    

 

Алгоритм розв’язання однопродуктової динамічної задачі оптимального розбиття 

множин з розміщенням центрів підмножин. 

Запропонований алгоритм однопродуктової динамічної задачі оптимального розбиття 

множин з розміщенням центрів підмножин базується на одному з варіантів методу загального 

градієнтного спуску з розтягненням простору в напрямку різниці двох послідовних загальних 

градієнтів (r-алгоритм), спрямований в загальному випадку на пошук локальних мінімумів 

недиференційованої багатоекстремальної цільової функції 
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1,2,...,
0

( ) inf ( ( , ) ( , ) ) ( ) inf

i

T

i k k
k N

G c x t m x a p x dxdt 




      

...N

n n

N

E E      

Необхідно визначити і-ту компоненту вектора субградієнту 

1( ) ( ( ),..., ( ),..., ( ))i N

G G G Gg g g g
       функції 

  





T

nn

G

n

ii

nn

i
Ni

n

NN

n

ii

n

dtdxdxxxxxmtxxc

G

0

)()1()()1()()1()()1()()1(

,...,1

)()1()()1()(

1

)1(

1

...),...,(),...,;,...,();,...,(inf

),...,;...;,...,;...;,...,(





 

в точці  
(1) ( )

1( ,..., )n

N    наступним чином: 

 

(1) ( ) (1) ( ) (1) ( ) (1) ( )

1

0

(1) ( ) (1) ( ) (1) ( )

( ) ( ,..., ) ( ,..., ; ) ( ,..., ; ,..., )

( ,..., ) ( ,..., ) ... , 1,2,...

i i i

T

n n n n

G G N i m i i

G

n n n

i

g g c x x t g x x

x x p x x dx dx dt i N

      



   

  

 
 (14) 

де  ( , )i

mg x
  - і-та компонента N – мірного вектора субградієнту ( , )Mg x  функції ( , )іm x  в 

точці 1( ,..., ,..., )і N    . 

Для розв’язання задачі r-алгоритмом у В-формі включаємо область   у n-вимірний 

паралелепіпед П, сторони якого паралельні осям декартової системи координат. Для простоти 

вважатимемо ( ) 1p x   для \x П  . Паралелепіпед П покриваємо прямокутною сіткою та 

переходимо до основного етапу. 

Основний етап 

Крок 1. Обираємо початкове наближення 
(0)   та коефіцієнт розтягу простору 1  . 

Покласти 0 nB I  . 

Крок 2. Задаємо значення функцій 0 ( ), 1,...,ic x i N , з початкових умов (3) в вузлах сітки, та 

покриваємо відрізок ],0[ T  сіткою з кроком  th . 

Крок 3. Для кожного вузла сітки розв’язуємо задачу Коші для системи ЗДР (3) на часовому 

відрізку ],0[ T  та знаходимо функції 
( ) ( , ), 1,...,k
іc x t i N . 

Крок 4. Обчислюємо значення 
( ) ( )k x  вузлах сітки за формулами (5) коли 

( )k  . 

Крок 5. Обчислюємо ( )Gg   – за формулою (14) коли 
( )( ) ( )kx x  ,

( )k  . 

Крок 6. Обчислюємо k

  за формулою 
( ) ( )

( ) ( )

T

k G
k T

k G

B g

B g










   при 

( )k  . 

Крок 7. Розраховуємо 
( 1)k    за формулою 

1 ( )k k

П k k kР h B       

де ПР - оператор проектування на П. 

Крок 8. Для кожного вузла сітки розв’язуємо задачу Коші для системи ЗДР (3) на часовому 

відрізку ],0[ T  та знаходимо функції 
( 1) ( , ), 1,...,k
іc x t i N  . 

Крок 9. Обчислюємо значення 
( 1) ( )k x 

 вузлах сітки за формулами (5)  коли 
( 1)k   . 

Крок 10. Обчислюємо ( )Gg   – за формулою (14) коли 
( 1)( ) ( )kx x   ,

( 1)k   . 
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Крок 11. Обчислити 

( 1) ( )( )
, ( ) ( )

( )

T
k kk k

k k G GT

k k

B r
r g g

B r

 
 

 
      

1
( ) ( 1) ( ) , 1T

k n k kR I  

     


      

1 ( )k k kB B R 

    

Крок 12. Якщо умова 

1 , 0k k              (15) 

не виконується, вважаємо k:=k+1 і переходимо до кроку 6, в іншому випадку переходимо до 

кроку 13. 

Крок 13. Вважаємо 
( )

*( ) ( )nx x  ,
( )

*( , ) ( , )nc x t c x t , 
( )

*

n  , де n – номер ітерації на 

якій виконалась умова (15). 

Крок 14. Розраховуємо оптимальне значення цільового функціоналу по формулі  

1,2,...,
0

( ) inf ( ( , ) ( , ) ) ( )

T

i i i
i N

G c x t m x a p x dxdt 




     

при *   

Алгоритм розв’язання неперервної однопродуктової динамічної задачі оптимального 

розбиття множин з nE  без обмежень з розміщенням центрів підмножин описаний. 

 

Розв’язання модельних задач та оцінка чисельних результатів 

Описана вище неперервна однопродуктова динамічна задача оптимального розбиття множин 

з nE  без обмежень з відшуканням кординат центрів підмножин з моделлю інфляції/дефляції у 

якості базової була розв’язана для різних модельних задач, для яких виконується обмеження (4), 

та початкові умови системи диференціальних рівнянь (3). Модельні задачі є 

нескінченновимірними задачами розбиття заданої області з відшуканням кординат центрів 

виробництва/постачання, що виробляють однорідну продукцію для розподілення в цій області із 

заданою щільністю споживачів. 

Модельна задача 1. 

Споживачі деякої однорідної продукції, що виробляється двома підприємствами, неперервно 

розподілені в області 
(1) (2) (1) (2){ ( , ): 0 1; 0 1}x x x x x      , кількість підприємств 

постачання продукції дорівнює 2, координати оптимального розміщення підприємств 21,  

невідомі та підлягають визначенню. Для двох підприємств задана система відповідно до якої 

змінюється ціна на транспортування одиниці продукції на одиницю відстані
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,  (16) 

з початковими умовами 

20

1 с , 10

1 с       (17) 

В цій та наступних модельних задачах у якості ),( ixm   використана евклідова метрика. 

Розв’язок задачі (16)-(17) описує вартість транспортування  одиниці продукції з i-го 

підприємства до споживача з координатами ),( yx . Відомий попит ),( yx  на продукцію для 
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кожного пункту споживання з координатами ),( yx . Для простоти вважається 

 xyx ,1),( .  

Множину споживачів можна розбити на зони обслуговування 2,1,  ii  споживачів i-им 

пунктом виробництва так, щоб  

2,1,,0)(,
2

1

 



kimes kiki

i

i    (18) 

Для випадку 2N  формулу (18) можна було б записати в більш простому вигляді, проте у 

наступних модельних задачах значення N  прийматиме значення >2, а відповідні умови 

залишатимуться у наведеному аналітичному вигляді. Зазначимо, що потужність i-го 

підприємства 2,1i  дорівнює сумарному попиту споживачів, що належать i , і=1,2. 

Необхідно розбити множину споживачів   так, що б мінімізувати функціонал (1), (2), (6) 

сумарних витрат на виробництво продукції та її доставку до споживача при умовах (3), (4) та 

2N . 

Для розв’язання сформульованої задачі область   була покрита прямокутною сіткою з 

вузлами ),( ji , 101,...,1i , 101,...,1j . Було отримано чисельний розв’язок системи (16), для 

якого був використаний метод Рунге-Кути 4-го порядку. Пошук розв’язку системи (16) було 

здійснено при th =0,001, а для отриманих точок фазової траєкторії при ]10;5;3;2;5,1;1;5,0[T  

було розраховано вартість транспортування від кожного вузла ),( ji  області   до центрів 1 , 

2 . Виходячи з критерію мінімальної вартості вузол ),( ji  був віднесений до областей 1  та 2  

відповідно. Результати чисельного експерименту наведені на рис.1 (а-ж). 

 

    
а)   б)   в)   г) 

    
д)    е)     ж) 

Рис.1 – Результати розбиття множини  , що має форму квадрата зі стороною 1, на дві 

підмножини з початковими центрами )25,0;5,0(0

1 , )75,0;5,0(0

2 , 01,0 yx , 5,02211  AA , 

11 d ,
 

5,12 d  та а) 5,0T , б) 1T , в) 5,1T , г) 2T , д) 3T , е) 5T , ж) 10T  та 

іншими параметрами наведеними в таблиці 1. 

Fig. 1 – Results of partitioning a set   shaped as a square with a side length of 1 into two subsets with initial 

centers at )25,0;5,0(0

1 , )75,0;5,0(0

2 , 01,0 yx , 5,02211  AA , 11 d ,
 

5,12 d  and a) 

5,0T , b) 1T , c) 5,1T , d) 2T , e) 3T , f) 5T , g) 10T , and other parameters listed in 

Table 1. 
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Таблиця 1 – Розгорнуті параметри числового експерименту наведеного на рис.1 

Table 1 – Detailed parameters of the numerical experiment shown in Fig. 1 

Рис.1 Часовий 

проміжок 

Кількість 

ітерацій 

Значення цільового 

функціоналу 
Оптимальні координати центрів i  

підмножин i  

а) [0; 0,5] 24 0,2321 τ1 = (0,5; 0,134); τ2 = (0,5; 0,596) 

 

б) [0; 1] 38 0,5613 τ1 = (0,236; 0,22); τ2 = (0,585; 0,591) 

 

в) [0; 1,5] 28 1,0484 τ1 = (0,5; 0,189); τ2 = (0,5; 0,684) 

 

г) [0; 2] 31 1,6763 τ1 = (0,5; 0,2); τ2 = (0,5; 0,7) 

 

д) [0; 3] 0 3,5395 τ1 = (0,5; 0,25); τ2 = (0,5; 0,75) 

 

е) [0; 5] 29 11,4382 τ1 = (0,487; 0,309); τ2 = (0,523; 0,806) 

 

ж) [0; 10] 29 112,7064 τ1 = (0,51; 0,368); τ2 = (0,468; 0,857) 

 

 

Кожне з наведених на рис.1 а)-ж) розбиття ілюструє оптимальне розміщення центрів при 

заданих параметрах моделі та значеннях вартості перевезення одиниці продукції для кожного з 

центрів i . Як бачимо, навіть при симетричній формі області   розміщення центрів не завжди є 

симетричним відповідно одне одного. У випадку рис.1-а) вартість транспортування для центру 

21  , що вдвічі більше вартості для центру 2 . Це зумовлює нерівномірний розподіл 

споживачів між двома центрами. Проте, варто зазначити, що початкові координати центрів для 

першого ж кроку розв’язку системи (3) набули скорегованих значень τ1 = (0,5; 0,1337); τ2 = (0,5; 

0,5956). Результати такого корегування суттєвим чином вплинули на значення цільового 

функціоналу. В абсолютних значеннях така відмінність не відчутна, проте, у відносних 

показниках значення цільового функціоналу зменшилось більш ніж на 5%.  

 

Модельна задача 2. 

Вхідні дані аналогічні модельній задачі 1, за винятком того, що кількість центрів обрана 

рівними трьом, а їх взаємне розташування є відносно симетричним відносно меж області   

)5,0;2,0(0

1 , )7,0;5,0(0

2 , )85,0;85,0(0

3 . Крім того, крок прямокутної сітки встановлено на рівні 

0,01, що, зокрема, позитивно впливає на точність обчисленого розв’язку. Параметри 

3;2;1 321  ddd  підібрані таким чином, що, на відміну від попередньої модельної задачі, 

зменшується відносна різниця у швидкості зміни вартості транспортування. Проте при цьому 

вартість транспортування для третього центру вже втричі перевищує відповідну вартість для 

першого. Така конфігурація параметрів зумовлює швидше відхилення фазової траєкторії від 

стаціонарної точки початку координат, і вже при 2T   чітко простежується перевага першого 

центру порівняно з центрами 2  та 3 . 
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а)    б)     в) 

   
г)    д)     е) 

Рис.2 Результати розбиття множини  , що має форму квадрата зі стороною 1, на три 

підмножини з початковими центрами )5,0;2,0(0

1 , )7,0;5,0(0

2 , )85,0;85,0(0

3 , 01,0 yx , 

1332211  AAA , 11 d , 22 d , 33 d  та а) 5,0T , б) 1T , в) 5,1T , г) 2T , д) 

3T , е) 5T  та іншими параметрами наведеними в таблиці 3.7. 

 

Fig. 2 – Results of partitioning a set shaped as a square with a side length of 1 into three subsets with initial 

centers at )5,0;2,0(0

1 , )7,0;5,0(0

2 , )85,0;85,0(0

3 , 01,0 yx , 1332211  AAA , 11 d , 

22 d , 33 d  and a) 5,0T , b) 1T , c) 5,1T , d) 2T , e) 3T , f) 5T , and other 

parameters listed in Table 2. 

 

 
Таблиця 2 – Розгорнуті параметри числового експерименту наведеного на рис.2 

Table 2 – Detailed parameters of the numerical experiment shown in Fig. 2 

Рис.2 Часовий 

проміжок 

Кількість 

ітерацій 

Значення цільового 

функціоналу 
Оптимальні координати центрів i  

підмножин i  

а) [0;0,5] 38 0,239 τ1 = (0,5; 0,223); τ2 = (0,234; 0,709); 

τ3 = (0,766; 0,709) 

б) [0;1] 38 0,742 τ1 = (0,525; 0,302); 

τ2 = (0,274; 0,778); τ3 = (0,81; 0,81) 

в) [0;1,5] 39 1,677 τ1 = (0,46; 0,401); τ2 = (0,567; 0,856); 

τ3 = (0,9; 0,85) 

г) [0;2] 37 3,042 τ1 = (0,46; 0,454); τ2 = (0,809; 0,843); 

τ3 = (0,85; 0,95) 

д) [0;3] 30 8,136 τ1 = (0,485; 0,477); τ2 = (0,7; 0,9); 

τ3 = (0,85; 0,85) 

е) [0;5] 20 39,972 τ1 = (0,496; 0,496); τ2 = (0,5; 0,7); 

τ3 = (0,85; 0,85) 
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На відміну від попередньої модельної задачі в модельній задачі 2 кількість центрів дорівнює 

трьом. Початкове розміщення центрів підмножин не є симетричним відносно меж області  , 

проте є достатньо рівномірним відносно одне одного. Як бачимо на рис.2 а)-е) таке взаємо 

розміщення центрів не зберігається та обумовлено, та обумовлює мінімальне значення цільового 

функціоналу.  

 

Висновки 

У роботі сформульовано та досліджено безперервну однопродуктову динамічну задачу 

оптимального розбиття множини без обмежень, з одночасним визначенням координат центрів 

підмножин. Проведено аналіз існуючих підходів, методів і алгоритмів, що застосовуються для 

розв’язання задач такого типу. Розглянуто математичні моделі, які можуть бути використані для 

формалізації правил зміни вартості транспортування, з наведенням відповідних прикладних 

обґрунтувань. Серед кількох можливих моделей було обрано найпростіший варіант – модель 

інфляції/дефляції, яка стала основою для побудови й аналізу двох модельних задач. Для кожної 

задачі отримано розв’язки систем диференціальних рівнянь, які були використані для 

обчислення вартості транспортування на різних часових інтервалах. Оптимальне розбиття 

здійснювалося за різної кількості центрів, з різним просторовим розташуванням як між собою, 

так і відносно меж заданої області. Результати чисельного експерименту мають виразне 

прикладне значення та отримали інтерпретацію в контексті практичних задач. Загалом, 

результати свідчать про високу адекватність запропонованої моделі. 

Подальші дослідження можуть бути зосереджені на розширенні підходу для використання 

інших базових моделей, а також на модифікації задачі з урахуванням обмежень на розміщення 

центрів і їх пропускну здатність. 
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On the Dynamic Problem of Optimal Set Partitioning with Determination of 

Subset Center Coordinates 
 

Relevance. Optimal set partitioning is one of the key problems in modern applied mathematics and optimization theory, with 

wide-ranging applications in logistics, computer science, bioengineering, complex systems modeling, and artificial 

intelligence. Of particular interest are dynamic variants of set partitioning problems, where the conditions of the problem 

change over time, and the partitioning must adapt to the evolving system dynamics. In the vast majority of applied problems, 

optimal set partitioning is directly linked to the minimization of an objective functional, which inherently depends not only on 

the shapes or contours of the subsets but also on other defining parameters that are crucial for determining the desired subsets. 

In classical formulations, such parameters often include the centers of the subsets. Practical applications of problems in this 

form arise in economics, logistics, medicine, architecture, and other areas of human activity. 

Objective. The main goal of this study is to formulate a single-product dynamic optimal set partitioning problem with the 

determination of the coordinates of the centers of the resulting subsets, to develop an algorithm for solving the dynamic 

problem, to conduct a numerical experiment, and to analyze the obtained results in order to confirm their reliability. 

Methods. The primary research methods used in this work include optimization theory techniques, qualitative theory of 

differential equations, and numerical methods for solving optimization problems. 

Results. The main results of the study include the formulation of a single-product dynamic optimal set partitioning problem 

with determination of subset center coordinates, the development of a solution algorithm, the outcomes of the numerical 

experiment, and the analysis of the results obtained. 

Conclusions. This article presents a novel dynamic optimal set partitioning problem with determination of subset center 

coordinates. An algorithm for solving the problem is proposed, and a numerical experiment is conducted. The results confirm 

the validity of the proposed approach and demonstrate its potential applicability to solving real-world problems. 

Keywords: dynamic problem, optimal set partitioning theory, objective functional, phase trajectory, numerical methods. 
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