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Latent diffusion model for speech signal processing

Topicality. The development of generative models for audio synthesis, including text-to-speech (TTS), text-to-music, and text-
to-audio applications, largely depends on their ability to handle complex and varied input data. This paper centers on latent
diffusion modeling, a versatile approach that leverages stochastic processes to generate high-quality audio outputs.

Key goals. This study aims to evaluate the efficacy of latent diffusion modeling for TTS synthesis on the EmoV-DB dataset,
which features multi-speaker recordings across five emotional states, and to contrast it with other generative techniques.
Research methods. We applied latent diffusion modeling to TTS synthesis specifically and evaluated its performance using
metrics that assess intelligibility, speaker similarity, and emotion preservation in the generated audio signal.

Results. The study reveals that while the proposed model demonstrates decent efficiency in maintaining speaker characteristics,
it is outperformed by the discrete autoregressive model: XTTS v2 in all assessed metrics. Notably, the researched model exhibits
deficiencies in emotional classification accuracy, suggesting potential misalignment between the emotional intents encoded by
the embeddings and those expressed in the speech output.

Conclusions. The findings suggest that further refinement of the encoder's ability to process and integrate emotional data could
enhance the performance of the latent diffusion model. Future research should focus on optimizing the balance between speaker
and emotion characteristics in TTS models to achieve a more holistic and effective synthesis of human-like speech.
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1. Introduction

The pursuit of sophisticated generative models has invariably involved the integration of robust
frameworks that underpin the generation process. At the heart of our study is the development of a model
designed to cater specifically to the complexities inherent in generating realistic and nuanced audio
outputs. This model is not only pivotal for understanding the theoretical underpinnings of audio synthesis
but also serves as the backbone for practical applications in various audio generation tasks, including
Text-to-Speech (TTS) systems.

TTS technology, which converts text into spoken voice output, has seen significant advancements
through the adoption of deep learning models that improve naturalness and intelligibility. To enhance our
model’s capabilities within the TTS domain, we align our objectives with those of existing
implementations that leverage similar neural architectures. Notably, the implementation of the Audio
Latent Diffusion Model 2 (Audio LDM2) provides a basis for its innovative approach to audio synthesis.
This model, known for its effectiveness in handling high-dimensional audio data through a diffusion-
based process, aligns closely with our goals.

The existence of such a model as Audio LDM2 offers an opportunity to not only refine our approach
by tuning our model based on this established framework but also to rigorously compare its performance
against current competitive models like xTTS v2. This comparative analysis aims to highlight the
limitations and potential our approach brings to the TTS research field, potentially setting new
benchmarks for audio quality.
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2. Related Work

Text-to-speech (TTS) synthesis has seen significant advancements due to the adoption of deep
learning techniques, which have greatly improved the naturalness and expressiveness of synthesized
speech. This section reviews several key methodologies in TTS that share, particularly focusing on
models that integrate advanced neural network architectures and embeddings to enhance speech quality
and emotional expressivity.

Tacotron models. One of the foundational models in modern TTS is Tacotron, which uses a sequence-
to-sequence framework with attention to convert text directly into speech [1]. This model laid the
groundwork for further developments in end-to-end speech synthesis. Following Tacotron, Tacotron 2
integrated WaveNet, a deep generative model of raw audio waveforms, to improve the naturalness of the
speech output [2].

Embedding-Based Models. Significant similarities can be drawn with models that utilize embeddings
to capture speaker characteristics and emotional states. For instance, VVoiceLoop uses a phoneme-level
language model to generate speech from text while preserving the speaker’s voice by incorporating
speaker-specific embeddings [3]. Similarly, Emotional TTS systems often rely on emotion embeddings
to modulate the speech output to convey different emotional tones [4].

Contrastive Learning. The use of contrastive learning, as seen in Contrastive Language-Audio
Pretraining (CLAP) [5], is a relatively new trend. Models like HUBERT and WavLM have shown that
pretraining audio models on largescale unlabeled data using contrastive tasks can significantly improve
the model’s performance on downstream speech tasks [6; 7] by providing useful compressed latent
representation which is easier to model than raw waveforms or spectrograms.

These related methodologies highlight the breadth of techniques employed in modern TTS systems,
from end-to-end models to sophisticated generative networks using embeddings and contrastive learning.
The convergence of these technologies represents a significant step forward in the quest for more natural
and expressive synthetic speech.

Diffusion Models. Diffusion models have recently been explored as a powerful method for generating
high-quality speech. These models, such as WaveGrad and DiffWave, use a gradual denoising process to
synthesize speech, starting from noise and progressively refining the signal into intelligible speech [8; 9].
The process involves a learned reverse diffusion that transforms a Gaussian noise distribution into a
complex signal [10]. Transformer-based Text-to-Speech Models. Transformer-based architectures have
significantly influenced the development of TTS systems, offering substantial improvements over
traditional methods. These models fall into two main categories: autoregressive and non-autoregressive
models, each with unique attributes and applications in speech synthesis. Autoregressive Models:
Autoregressive models, such as [11], generate signals sequentially, predicting one segment at a time based
on all previously generated segments. This approach ensures high coherence and naturalness in the speech
output. The transformer’s attention mechanism allows these models to capture long-range dependencies
in text, crucial for prosody and intonation in speech. A typical example includes the original Transformer
TTS, which utilizes a self-attention mechanism to model temporal sequences in a highly parallelizable
manner:

p(Ix; 84r) = HZ:OP()’tbkt'xi 04r) (2.1)

where y; is the predicted audio output at time t, and x; is the input phoneme or text sequence up to time t.

Non-autoregressive Models: In contrast, non-autoregressive models such as FastSpeech [12] bypass
the sequential dependency of autoregressive models, predicting all parts of the speech output
simultaneously. This leads to significantly faster synthesis times and reduces latency, which is beneficial
for real-time applications. FastSpeech and its successors, like FastSpeech 2 [13], improve on this
approach by predicting duration, pitch, and energy explicitly, which are then used to modulate the speech
synthesis process.

9 = Parallel Decoder(Duration Predictor(x)) (2.2)

where ¥y represents the entire speech waveform generated in parallel, and X is the input phonetic/text
representation.

Both types of transformer-based TTS models have pushed the boundaries of speech synthesis, offering
more natural, flexible, and efficient solutions. However, the choice between autoregressive and non-
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autoregressive approaches often depends on the specific requirements of latency, naturalness, output
diversity and computational resources.

3. Model description

Masked Autoencoder for Feature Compression. The Masked Autoencoder (MAE) processes an input
audio signal x by first computing its log mel spectrogram X € RT*F where T indicates the time steps,
and F represents the mel frequency bins. This spectrogram X is analogized to an image and segmented
into patches of size P x P, where each patch size P is a divisor of both T and F. These patches are then
input into the AudioMAE encoder. The encoder, a convolutional neural network, operates with a kernel
and stride both set to P, producing an output with D channels. Consequently, the encoder output is E €

RT'XF'XD \where T' = % and, F' = g and D is the dimension of the embedding produced by MAE. The

encoded features E are treated as the latent representation for subsequent processing.
To train the AudioMAE, a loss function is employed, specifically the Mean Squared Error (MSE) loss,
calculated over the masked patches to assess the reconstruction quality. The MSE loss is defined as:

Z?’:mlasked()’(\l _ Xl')z (31)

MSE Loss = —~
N

masked

where N,,4skeq 1S the number of masked patches, X; is the original patch, and X, is the reconstructed
patch output by the decoder of the MAE.

Conditioning Information C: Reference Audio and Text Phonemes. In the audio generation model, the
conditioning information C plays a crucial role in guiding the generative process by providing contextual
cues that influence the output. For this model, C is derived from two primary sources: reference audio
and text phonemes, each contributing unique aspects to the generation process.

CLAP Autoencoder for Conditioning. The CLAP autoencoder is designed to project both audio and
text into a unified multimodal space, enabling the effective use of this information as conditioning data.
Let Xa denote the processed audio, represented in a matrix X, € RF*T, where F is the number of spectral
components, such as Mel bins, and T is the number of time bins. Similarly, let X; denote the text
representation. Within a batch of N audio-text pairs, these are denoted as {X,, X; }.

The audio and text data are encoded via separate encoder functions, f,(-) and f;(-) respectively. For
a batch of N items, the encoded representations are given by:

Xo = faXa); Xi=fe(Xp) 3.2

where X, € RNV and X; € R¥*YV represent the dimensionalities V and U of the audio and text
representations, respectively.

To bring these representations into a joint multimodal space of dimension d, learnable linear
projections are applied:

Eq = La()/(;) (3:3)
where E,, E, € RV*4 are the projected embeddings for audio and text, and L, L, are the respective linear

projection functions.
The similarity between the audio and text embeddings is computed in the joint space as follows:

C=t-(E ED (3.5)

where 7 is a temperature parameter that scales the range of the logits. The similarity matrix C € RNV*N
includes correct pairs along the diagonal and incorrect pairs off the diagonal.

A symmetric cross-entropy loss is then computed over the similarity matrix to train the encoders and
their projections:

L=10.5" (liext(C) + lauaio(C)) (3.6)

where | = %Z?’:Olog(softmax(C)) along the text and audio axes, respectively. This loss function

facilitates the joint training of the audio and text encoders, enhancing their capability to encode relevant
features effectively for audio generation tasks.
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Text phoneme encoding: Text phonemes represent another vital component of the conditioning
information. Phonemes, the smallest units of sound in a language, are extracted from the input text and
encoded to capture the linguistic nuances and articulatory features necessary for generating coherent and
contextually appropriate audio. This encoding process transforms textual data into a sequence of phonetic
representations, Cphonemes: Which are then used to condition the audio generation, ensuring that the
produced audio matches the intended linguistic content and style dictated by the input text.

Together, these conditioning components C = {Cref, Cphonemes} iNtegrate multiple modalities—audio
and text—providing a comprehensive set of cues that enhance the model’s ability to generate high-fidelity
and contextually rich audio outputs.

Autoregressive Modeling for Intermediate Representation. This model component is responsible for
generating a latent representation from diverse conditioning information using an autoregressive
approach inspired by transformer-based models. The formulation of the autoregressive model My is given
by:

Y = My(0) (3.7)

where C represents conditioning information, and ¥ is the predicted latent representation. The model M,
parameterized by 0, predicts the next sequence element based on previous ones, maximizing the
probability distribution across the sequence:

argmaxg H%:l P(yi|Cref' Cphonemes' V1, Y2 s YVi-1; e) (38)

where L is the length of the latent sequence Y encoded by MAE, and y; are its components. Variational
Autoencoder (VAE) for Diffusion Modeling: A Variational Autoencoder (VAE) [14] primarily for feature
compression and to learn a compact audio representation, z, which is dimensionally much smaller than
the original audio signal, x.

The operation of the VAE can be expressed through the forward pass equation:

V:XzeX (3.9

where X represents the mel-spectrogram of the audio input x, and X is the reconstruction of X. This
reconstructed spectrogram, X, can subsequently be transformed back into the audio waveform % using a
pretrained HiFiGAN vocoder [15].

To optimize the parameters of the VAE, a reconstruction loss and a discriminative loss are computed
based on the comparison between X and X. Furthermore, the VAE architecture employs a regularization
strategy by computing the KullbackLeibler (KL) divergence between the latent representation z and a
standard Gaussian distribution with mean p = 0 and variance ¢ = 1:

KL Loss = Dy, (W' (z; pz, 02) 1| V(0,1)) (3.10)

This regularization helps to maintain the statistical properties of the latent space, ensuring that z
adheres closely to a Gaussian distribution, thereby stabilizing the generation process and enhancing the
quality of the reconstructed audio.

Latent diffusion model for audio synthesis. The audio synthesis is performed using a latent diffusion
model that operates within the latent space provided by the VAE autoencoder. This model is expressed
through a series of diffusion steps, starting with a latent representation z and gradually adding noise to
reach a diffusion state z;:

Ze =1 —=Bezeq + \/Eet (3.11)
where f; is a noise schedule parameter, and €; ~ NV'(0, 1) is Gaussian noise.
The reverse process involves a gradual denoising of z; to reconstruct the latent representation:

Zt1 = —Zi/_l—{%:t (3.12)
The optimization targets the minimization of the difference between the original and reconstructed
latent representations, defined by the loss function:

L($) = Ezyeneon,ellzo — Dec(ze; d)1?] (3.13)
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where ¢ are the parameters of the diffusion model, Dec denotes the decoding function of the diffusion
model, and z, is the original latent representation.

Adaptation of Pretrained Model Components. In the development of our model, we utilized
components from the pretrained Audio Latent Diffusion Model 2 (Audio LDMZ2). This approach allowed
us to leverage the robust foundations established by the existing model, particularly its effective handling
of complex audio data through diffusion processes. An important modification in our methodology
involved the adaptation of the conditioning mechanism used in Audio LDM2. Traditionally, Audio
LDM2 employs a conditioning vector C that incorporates CLAP-encoded text embeddings to guide the
audio synthesis process. In contrast, our model replaces these text embeddings with CLAP-encoded audio
embeddings which is intended to encode emotion and speaker information. This change aligns better with
our focus on enhancing audio quality and relevance in text-to-speech applications, where the direct
correlation between the input audio characteristics and the generated output is crucial.

Cref = fa(Xref) (3.14)

where C,. represents the new conditioning vector using audio embeddings, f,(-) is the CLAP audio
encoder, and X,..r is the referebce audio feature matrix.

This adaptation not only tailors the model to our specific use case more closely, but also optimizes the
interaction between the conditioning information and the generative components of the model. By
integrating audio embeddings directly, our model gains a more nuanced understanding of the audio
features, potentially leading to more accurate and lifelike audio generation in TTS systems.

4. Evaluation metrics
This section describes the evaluation process of our generative model.
The performance of the updated AudioLDM2 model is evaluated using several key metrics:

»  Speaker Similarity: Quantifies the ability of the TTS system to preserve the unique characteristics
of the speaker’s voice.

*  Emotion Classification Error: Measures the model’s accuracy in conveying the intended
emotional states in the synthesized speech.

»  Word Error Rate (WER) / Character Error Rate (CER): Assesses the intelligibility and accuracy
of the spoken output, comparing the transcribed text from the synthesized speech to the original input
text.

All metrics reported below were calculated using the Amphion software [16] - a toolkit library for
audio generation. These metrics provide a comprehensive framework for assessing the effectiveness of
the TTS system in producing high-quality, emotionally expressive, and speaker-specific speech.

5. Results and metrics description

Speaker Similarity Metric. To quantitatively assess the speaker similarity between the reference and
generated audio samples, we employed a speaker verification model based on WavLM, a state-of-the-art
audio processing model [7]. This model was pretrained using a contrastive loss, which optimizes the
embeddings to minimize the distance between similar pairs and maximize the distance for dissimilar
pairs, making it well-suited for speaker verification tasks.

The metric we report is the average cosine similarity between the embeddings of reference audio
samples and their corresponding generated samples. The embeddings are extracted using the WavLM
model, which captures speaker-specific characteristics. Cosine similarity measures the cosine of the angle
between two vectors in the embedding space, providing a scale from -1 (completely different) to 1
(identical), where higher values indicate greater speaker similarity. The formula for cosine similarity is
given by:

Y AiB;

n 2 n 2
1’21':1141' - JZi=1 B

where Ai and Bi are the components of the embeddings from the reference and generated audio samples,
respectively. This metric effectively quantifies how well the generated audio preserves the identity
characteristics of the speaker in the reference audio. The results are presented in Table 1

Cosine Similarity = (5.1)
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Table 1. Comparison of speaker similarity scores

Model Speaker similarity
Proposed model | 0.63
XTTS v2 0.9

Emotional Classification Accuracy. The accuracy of emotion recognition was evaluated using the
Emotion2Vec model [17], which predicted emotions for both the reference and the produced audios. This
measure reflects the model’s ability to encode and reproduce the emotional states intended by the original
speech. Results are tabulated in Table 2.

Table 2. Comparison of emotional classification accuracy

Model Emotion classification accuracy
Proposed model 0.035
XTTS v2 0.17

Metrics for measuring WER and CER were calculated using transcripts generated by a pre-trained
large Whisper [18] Automatic Speech Recognition (ASR) model, comparing these against the ground
truth transcripts.

WER is computed as the ratio of the total number of operations (insertions, deletions, and
substitutions) needed to convert the ASR-generated transcript into the ground truth transcript, divided by
the total number of words in the ground truth transcript. The formula for WER is given by:

WER = S+D+I

(5.2)

where S is the number of substitutions, D is the number of deletions, I is the number of insertions, and N
is the number of words in the ground truth transcript.

Similarly, CER is calculated by applying the same principle at the character level rather than the word
level. It measures the minimum number of insertions, deletions, and substitutions required to change the
ASR-generated transcript into the ground truth, normalized by the total number of characters in the
ground truth transcript. The formula for CER is:

s+d+i

CER = (5.3)

where s represents substitutions, d represents deletions, i represents insertions, and n is the total number
of characters in the ground truth transcript.

Both metrics provide crucial insights into the transcription accuracy of the generated speech, with
lower values indicating higher accuracy and better performance of the text-to-speech synthesis system.
The results are presented in Table 3.

Table 3. Comparison of Word error rate and Character error rate

Model Word error ratel Character error ratel
Proposed model 1.0 1.01
XTTS v2 0.21 0.02

5. Conclusions

This study provided the evaluation of the latent diffusion model, against the xTTS v2 model using a
set of rigorous metrics on the EmoV-DB dataset. The findings revealed some insights into the
performance of both models in terms of speaker similarity, emotional preservation, and intelligibility.

While the proposed model demonstrated decent efficiency in maintaining speaker characteristics, as
indicated by the speaker similarity score, it was outperformed by xTTS v2 in all assessed metrics.
Notably, our model exhibited considerable deficiencies in emotional classification accuracy, suggesting
that the audio CLAP embeddings it relies on may be more attuned to capturing speaker-related
information than the nuances of emotional expression. This observation was underscored by the model’s
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low emotion classification error rate, which points to a potential misalignment between the emotional
intents encoded by the embeddings and those expressed in the speech output. Also, pretrained dataset for
the CLAP component, which is a mix of speech and general audio and its corresponding captions, might
not be effective for speech synthesis, suggesting that pre-training on transcribed speech dataset may
improve generation quality.
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Mopeunb JiaTeHTHOI Au(y3ii 1151 00POOKH MOBHOIO CUTHAJTY

AKTyanbHicThb. Po3po0Kka TeHepaTHBHUX MOJIENEH JJIs CHHTE3y ayio, BKIIOYalUH TEKCT-y-MOBIEHHs (aHri. text-to-speech,
TTS), TekcT-y-My3HKY Ta TEKCT-y-ayAio 3aCTOCYBaHHs, 3HAYHOIO MIpOIO 3aJISKHUTh Bil iX 34aTHOCTI OOpOOIATH CKIamHI Ta
pi3HOMAaHITHI BXiAHI JaHi. B miit po6oTi Mu po3risiiaeMo JaTeHTHe AuQy3iiHe MOJCTIOBAaHHS - YHIBEepCATbHUN MigXif, SIKHHA
BUKOPHCTOBYE CTOXACTUYHI IPOLIECH AJIsI TeHEepallil BUCOKOSKICHUX ay/i0 CUTHAMIB.

Mera. Lle nocnimkeHHsS Ma€ Ha METi OLIHUTH €EeKTUBHICTH JIATEHTHOTO AU(Y31HOTO MOICTIOBAHHS Ul aydio CUHTE3y Ha
ocHOBI Habopy mannx EmoV-DB, sikuit MicTHTB 3amucH 3 6araTbMa MOBIUSIMY, 3 IT'SITbMa MOIIIHHIMY CTaHaMH, Ta TIOPIBHATH
HOT0 3 IHIIMM IreHepaTUBHUMHI METOJIOM.

MeTonu pocaimkeHHss. Mu 3acTocyBaiy JaTeHTHE AU y3iifHEe MOJICTIOBAHHS CICI[ialIbHO JJISI CHHTE3Y MOBJIICHHS Ta OI[IHWIN
HOro e(eKTHBHICTh 3a JOMOMOTOI0 METPHK, SIKi BH3HAYAIOTH 3PO3YMLTICTh, MOMIOHICTH TOJIOCY Ta 30E€pEeKEHHS EMOLii B
3reHepOBAaHOMY ay/Ii0 CHUTHAJIL.

PesyabTaTn. JlocmimkeHHS MOKa3ye, IO 3alpONOHOBAaHA MOJENb JEMOHCTPYE MPHCTOWHY €(QEKTHUBHICTH y 30epekeHHI
XapaKTEPHUCTHK TOJIOCY, ale MOCTYIAEThCs TUCKPETHIN aBToperpecuBHiil moaeni: XTTS v2 3a BciMa OLIHCHUMH METPHKAMHU.
30KkpeMa, JOCIiKyBaHa MOJICTh BUSBIISE HEAOJIIKA B TOUHOCTI Kiacudikallii eMOIIii, 110 BKa3ye Ha MOXIIUBE HEBIIMOBIIHICTh
MK eMOIIIHHIMH HaMipaMH, 3aK0JJOBAHUMH Y BEKTOpPax, Ta THMH, III0 BUPAKEHI y 3reHepOBaHOMY CHUTHAII.

BucHoBku. PesynpTaTé BKasylOThb Ha Te, IO MOJANbIIe BIOCKOHAJICHHS 3JaTHOCTI HEHPOHHOI Mepeki KoayBaJbHHKA
00poONIATH Ta IHTErpyBaTH eMOLilHI JaHi IMOKpanlye epeKTHBHICTh JaTeHTHOI andy3iiiHoi Mozmeni. B Hammx momanpmmx
JOCTIDKEHHAX MH IUIAHYEMO 30CEPEOUTUCS Ha ONTHMi3amii OamaHCcy MK XapaKTePUCTHKAMH MOBIS Ta EMOUIHHHIMHU
xapaktepucTukamu B TTS Moaensx ajst JOCSATHEHHs OUIBII HiTiCHOTO Ta €PEKTUBHOTO CHHTE3Y JIOICHKOTO MOBJICHHS.

Kniouoei cnosa: aydio Mooenoants, wimyyHi HeUPOHHI MEPeXNCl, CUHME3 MOBIIEHHSL.

Hagiiwna y nepuin pegakuii 02.03.2024, B octanHiit - 11.04.2024.
The first version has been received on 02.03.2024, the final version - on 11.04.2024.
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