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Latent diffusion model for speech signal processing 

Topicality. The development of generative models for audio synthesis, including text-to-speech (TTS), text-to-music, and text-

to-audio applications, largely depends on their ability to handle complex and varied input data. This paper centers on latent 

diffusion modeling, a versatile approach that leverages stochastic processes to generate high-quality audio outputs. 

Key goals. This study aims to evaluate the efficacy of latent diffusion modeling for TTS synthesis on the EmoV-DB dataset, 

which features multi-speaker recordings across five emotional states, and to contrast it with other generative techniques. 

Research methods. We applied latent diffusion modeling to TTS synthesis specifically and evaluated its performance using 

metrics that assess intelligibility, speaker similarity, and emotion preservation in the generated audio signal. 

Results. The study reveals that while the proposed model demonstrates decent efficiency in maintaining speaker characteristics, 

it is outperformed by the discrete autoregressive model: xTTS v2 in all assessed metrics. Notably, the researched model exhibits 

deficiencies in emotional classification accuracy, suggesting potential misalignment between the emotional intents encoded by 

the embeddings and those expressed in the speech output. 

Conclusions. The findings suggest that further refinement of the encoder's ability to process and integrate emotional data could 

enhance the performance of the latent diffusion model. Future research should focus on optimizing the balance between speaker 

and emotion characteristics in TTS models to achieve a more holistic and effective synthesis of human-like speech. 
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 1. Introduction 

The pursuit of sophisticated generative models has invariably involved the integration of robust 

frameworks that underpin the generation process. At the heart of our study is the development of a model 

designed to cater specifically to the complexities inherent in generating realistic and nuanced audio 

outputs. This model is not only pivotal for understanding the theoretical underpinnings of audio synthesis 

but also serves as the backbone for practical applications in various audio generation tasks, including 

Text-to-Speech (TTS) systems. 

TTS technology, which converts text into spoken voice output, has seen significant advancements 

through the adoption of deep learning models that improve naturalness and intelligibility. To enhance our 

model’s capabilities within the TTS domain, we align our objectives with those of existing 

implementations that leverage similar neural architectures. Notably, the implementation of the Audio 

Latent Diffusion Model 2 (Audio LDM2) provides a basis for its innovative approach to audio synthesis. 

This model, known for its effectiveness in handling high-dimensional audio data through a diffusion-

based process, aligns closely with our goals. 

The existence of such a model as Audio LDM2 offers an opportunity to not only refine our approach 

by tuning our model based on this established framework but also to rigorously compare its performance 

against current competitive models like xTTS v2. This comparative analysis aims to highlight the 

limitations and potential our approach brings to the TTS research field, potentially setting new 

benchmarks for audio quality. 
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2. Related Work 

Text-to-speech (TTS) synthesis has seen significant advancements due to the adoption of deep 

learning techniques, which have greatly improved the naturalness and expressiveness of synthesized 

speech. This section reviews several key methodologies in TTS that share, particularly focusing on 

models that integrate advanced neural network architectures and embeddings to enhance speech quality 

and emotional expressivity. 

Tacotron models. One of the foundational models in modern TTS is Tacotron, which uses a sequence-

to-sequence framework with attention to convert text directly into speech [1]. This model laid the 

groundwork for further developments in end-to-end speech synthesis. Following Tacotron, Tacotron 2 

integrated WaveNet, a deep generative model of raw audio waveforms, to improve the naturalness of the 

speech output [2]. 

Embedding-Based Models. Significant similarities can be drawn with models that utilize embeddings 

to capture speaker characteristics and emotional states. For instance, VoiceLoop uses a phoneme-level 

language model to generate speech from text while preserving the speaker’s voice by incorporating 

speaker-specific embeddings [3]. Similarly, Emotional TTS systems often rely on emotion embeddings 

to modulate the speech output to convey different emotional tones [4]. 

Contrastive Learning. The use of contrastive learning, as seen in Contrastive Language-Audio 

Pretraining (CLAP) [5], is a relatively new trend. Models like HuBERT and WavLM have shown that 

pretraining audio models on largescale unlabeled data using contrastive tasks can significantly improve 

the model’s performance on downstream speech tasks [6; 7] by providing useful compressed latent 

representation which is easier to model than raw waveforms or spectrograms. 

These related methodologies highlight the breadth of techniques employed in modern TTS systems, 

from end-to-end models to sophisticated generative networks using embeddings and contrastive learning. 

The convergence of these technologies represents a significant step forward in the quest for more natural 

and expressive synthetic speech. 

Diffusion Models. Diffusion models have recently been explored as a powerful method for generating 

high-quality speech. These models, such as WaveGrad and DiffWave, use a gradual denoising process to 

synthesize speech, starting from noise and progressively refining the signal into intelligible speech [8; 9]. 

The process involves a learned reverse diffusion that transforms a Gaussian noise distribution into a 

complex signal [10]. Transformer-based Text-to-Speech Models. Transformer-based architectures have 

significantly influenced the development of TTS systems, offering substantial improvements over 

traditional methods. These models fall into two main categories: autoregressive and non-autoregressive 

models, each with unique attributes and applications in speech synthesis. Autoregressive Models: 

Autoregressive models, such as [11], generate signals sequentially, predicting one segment at a time based 

on all previously generated segments. This approach ensures high coherence and naturalness in the speech 

output. The transformer’s attention mechanism allows these models to capture long-range dependencies 

in text, crucial for prosody and intonation in speech. A typical example includes the original Transformer 

TTS, which utilizes a self-attention mechanism to model temporal sequences in a highly parallelizable 

manner: 

    𝑝(𝑦|𝑥; θ𝐴𝑅) = ∏ 𝑝(𝑦𝑡|𝑦<𝑡 , 𝑥; θ𝐴𝑅)𝑇
𝑡=0     (2.1) 

where 𝑦𝑡 is the predicted audio output at time 𝑡, and 𝑥𝑡 is the input phoneme or text sequence up to time t. 

Non-autoregressive Models: In contrast, non-autoregressive models such as FastSpeech [12] bypass 

the sequential dependency of autoregressive models, predicting all parts of the speech output 

simultaneously. This leads to significantly faster synthesis times and reduces latency, which is beneficial 

for real-time applications. FastSpeech and its successors, like FastSpeech 2 [13], improve on this 

approach by predicting duration, pitch, and energy explicitly, which are then used to modulate the speech 

synthesis process. 

�̂� = Parallel Decoder(Duration Predictor(𝑥))   (2.2) 

where �̂� represents the entire speech waveform generated in parallel, and x is the input phonetic/text 

representation. 

Both types of transformer-based TTS models have pushed the boundaries of speech synthesis, offering 

more natural, flexible, and efficient solutions. However, the choice between autoregressive and non-
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autoregressive approaches often depends on the specific requirements of latency, naturalness, output 

diversity and computational resources.  

 

3. Model description 

Masked Autoencoder for Feature Compression. The Masked Autoencoder (MAE) processes an input 

audio signal 𝑥 by first computing its log mel spectrogram 𝑋 ∈ 𝑅𝑇×𝐹, where 𝑇 indicates the time steps, 

and F represents the mel frequency bins. This spectrogram 𝑋 is analogized to an image and segmented 

into patches of size 𝑃 × 𝑃, where each patch size 𝑃 is a divisor of both 𝑇 and 𝐹. These patches are then 

input into the AudioMAE encoder. The encoder, a convolutional neural network, operates with a kernel 

and stride both set to P, producing an output with 𝐷 channels. Consequently, the encoder output is 𝐸 ∈

𝑅𝑇′×𝐹′×𝐷, where 𝑇′ =
𝑇

𝑃
 and, 𝐹′ =

𝐹

𝑃
 and 𝐷 is the dimension of the embedding produced by MAE. The 

encoded features E are treated as the latent representation for subsequent processing. 

To train the AudioMAE, a loss function is employed, specifically the Mean Squared Error (MSE) loss, 

calculated over the masked patches to assess the reconstruction quality. The MSE loss is defined as: 

MSE Loss =
1

𝑁masked
∑ (𝑋�̂� − 𝑋𝑖)

2𝑁masked
𝑖=1      (3.1) 

where 𝑁𝑚𝑎𝑠𝑘𝑒𝑑 is the number of masked patches, 𝑋𝑖 is the original patch, and 𝑋�̂� is the reconstructed 

patch output by the decoder of the MAE. 

Conditioning Information 𝐶: Reference Audio and Text Phonemes. In the audio generation model, the 

conditioning information 𝐶 plays a crucial role in guiding the generative process by providing contextual 

cues that influence the output. For this model, 𝐶 is derived from two primary sources: reference audio 

and text phonemes, each contributing unique aspects to the generation process. 

CLAP Autoencoder for Conditioning. The CLAP autoencoder is designed to project both audio and 

text into a unified multimodal space, enabling the effective use of this information as conditioning data. 

Let Xa denote the processed audio, represented in a matrix 𝑋𝑎 ∈ 𝑅𝐹×𝑇, where 𝐹 is the number of spectral 

components, such as Mel bins, and T is the number of time bins. Similarly, let 𝑋𝑡 denote the text 

representation. Within a batch of 𝑁 audio-text pairs, these are denoted as {𝑋𝑎 , 𝑋𝑡}. 

The audio and text data are encoded via separate encoder functions, 𝑓𝑎(⋅) and 𝑓𝑡(⋅) respectively. For 

a batch of 𝑁 items, the encoded representations are given by: 

𝑋�̂� = 𝑓𝑎(𝑋𝑎); 𝑋�̂� = 𝑓𝑡(𝑋𝑡)      (3.2) 

where 𝑋�̂� ∈ 𝑅𝑁×𝑉 and 𝑋�̂� ∈ 𝑅𝑁×𝑈 represent the dimensionalities 𝑉 and 𝑈 of the audio and text 

representations, respectively. 

To bring these representations into a joint multimodal space of dimension 𝑑, learnable linear 

projections are applied: 

𝐸𝑎 = 𝐿𝑎(𝑋�̂�)        (3.3) 

𝐸𝑡 = 𝐿𝑡(𝑋�̂�)        (3.4) 

where 𝐸𝑎 , 𝐸𝑡 ∈ 𝑅𝑁×𝑑 are the projected embeddings for audio and text, and 𝐿𝑎, 𝐿𝑡 are the respective linear 

projection functions. 

The similarity between the audio and text embeddings is computed in the joint space as follows: 

𝐶 = τ ⋅ (𝐸𝑡 ⋅ 𝐸𝑎
⊤)       (3.5) 

where τ is a temperature parameter that scales the range of the logits. The similarity matrix 𝐶 ∈ 𝑅𝑁×𝑁 

includes correct pairs along the diagonal and incorrect pairs off the diagonal. 

A symmetric cross-entropy loss is then computed over the similarity matrix to train the encoders and 

their projections: 

ℒ = 0.5 ⋅ (ltext(𝐶) + laudio(𝐶))      (3.6) 

where l =
1

𝑁
∑ log(softmax(𝐶))𝑁

𝑖=0  along the text and audio axes, respectively. This loss function 

facilitates the joint training of the audio and text encoders, enhancing their capability to encode relevant 

features effectively for audio generation tasks. 
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Text phoneme encoding: Text phonemes represent another vital component of the conditioning 

information. Phonemes, the smallest units of sound in a language, are extracted from the input text and 

encoded to capture the linguistic nuances and articulatory features necessary for generating coherent and 

contextually appropriate audio. This encoding process transforms textual data into a sequence of phonetic 

representations, 𝐶phonemes, which are then used to condition the audio generation, ensuring that the 

produced audio matches the intended linguistic content and style dictated by the input text. 

Together, these conditioning components 𝐶 = {𝐶ref, 𝐶phonemes} integrate multiple modalities—audio 

and text—providing a comprehensive set of cues that enhance the model’s ability to generate high-fidelity 

and contextually rich audio outputs. 

Autoregressive Modeling for Intermediate Representation. This model component is responsible for 

generating a latent representation from diverse conditioning information using an autoregressive 

approach inspired by transformer-based models. The formulation of the autoregressive model ℳθ is given 

by: 

�̂� = ℳθ(𝐶)       (3.7) 

where 𝐶 represents conditioning information, and �̂� is the predicted latent representation. The model ℳθ, 

parameterized by θ, predicts the next sequence element based on previous ones, maximizing the 

probability distribution across the sequence: 

argmaxθ ∏ 𝑃(𝑦𝑖|𝐶ref, 𝐶phonemes, 𝑦1, 𝑦2, … , 𝑦𝑖−1; θ)𝐿
𝑖=1    (3.8) 

where L is the length of the latent sequence Y encoded by MAE, and 𝑦𝑖 are its components. Variational 

Autoencoder (VAE) for Diffusion Modeling: A Variational Autoencoder (VAE) [14] primarily for feature 

compression and to learn a compact audio representation, z, which is dimensionally much smaller than 

the original audio signal, 𝑥. 

The operation of the VAE can be expressed through the forward pass equation: 

𝒱: 𝑋 ↦ 𝑧 ↦ �̂�        (3.9) 

where X represents the mel-spectrogram of the audio input 𝑥, and �̂� is the reconstruction of 𝑋. This 

reconstructed spectrogram, �̂�, can subsequently be transformed back into the audio waveform 𝑥 using a 

pretrained HiFiGAN vocoder [15]. 

To optimize the parameters of the VAE, a reconstruction loss and a discriminative loss are computed 

based on the comparison between 𝑋 and �̂�. Furthermore, the VAE architecture employs a regularization 

strategy by computing the KullbackLeibler (KL) divergence between the latent representation 𝑧 and a 

standard Gaussian distribution with mean μ =  0 and variance σ2 = 1: 

KL Loss = 𝐷KL(𝒩(𝑧; μ𝑧, σ𝑧
2) ∥ 𝒩(0,1))    (3.10) 

This regularization helps to maintain the statistical properties of the latent space, ensuring that 𝑧 

adheres closely to a Gaussian distribution, thereby stabilizing the generation process and enhancing the 

quality of the reconstructed audio. 

Latent diffusion model for audio synthesis. The audio synthesis is performed using a latent diffusion 

model that operates within the latent space provided by the VAE autoencoder. This model is expressed 

through a series of diffusion steps, starting with a latent representation z and gradually adding noise to 

reach a diffusion state 𝑧𝑇: 

𝑧𝑡 = √1 − β𝑡𝑧𝑡−1 + √β𝑡ϵ𝑡      (3.11) 

where 𝛽𝑡 is a noise schedule parameter, and ϵ𝑡 ∼ 𝒩(0, 𝐼) is Gaussian noise. 

The reverse process involves a gradual denoising of  𝑧𝑇 to reconstruct the latent representation: 

𝑧𝑡−1 =
𝑧𝑡−√β𝑡ϵ𝑡

√1−β𝑡
       (3.12) 

The optimization targets the minimization of the difference between the original and reconstructed 

latent representations, defined by the loss function: 

ℒ(ϕ) = 𝐸𝑧𝟘,ϵ∼ℕ(𝟘,𝐼),𝑡[|𝑧0 − Dec(𝑧𝑡; ϕ)|2]    (3.13) 
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where ϕ are the parameters of the diffusion model, Dec denotes the decoding function of the diffusion 

model, and 𝑧0 is the original latent representation. 

Adaptation of Pretrained Model Components. In the development of our model, we utilized 

components from the pretrained Audio Latent Diffusion Model 2 (Audio LDM2). This approach allowed 

us to leverage the robust foundations established by the existing model, particularly its effective handling 

of complex audio data through diffusion processes. An important modification in our methodology 

involved the adaptation of the conditioning mechanism used in Audio LDM2. Traditionally, Audio 

LDM2 employs a conditioning vector C that incorporates CLAP-encoded text embeddings to guide the 

audio synthesis process. In contrast, our model replaces these text embeddings with CLAP-encoded audio 

embeddings which is intended to encode emotion and speaker information. This change aligns better with 

our focus on enhancing audio quality and relevance in text-to-speech applications, where the direct 

correlation between the input audio characteristics and the generated output is crucial. 

𝐶ref = 𝑓𝑎(𝑋𝑟𝑒𝑓)      (3.14) 

where 𝐶𝑟𝑒𝑓 represents the new conditioning vector using audio embeddings, 𝑓𝑎(⋅) is the CLAP audio 

encoder, and 𝑋𝑟𝑒𝑓 is the referebce audio feature matrix. 

This adaptation not only tailors the model to our specific use case more closely, but also optimizes the 

interaction between the conditioning information and the generative components of the model. By 

integrating audio embeddings directly, our model gains a more nuanced understanding of the audio 

features, potentially leading to more accurate and lifelike audio generation in TTS systems. 

 

4. Evaluation metrics 

This section describes the evaluation process of our generative model. 

The performance of the updated AudioLDM2 model is evaluated using several key metrics: 

• Speaker Similarity: Quantifies the ability of the TTS system to preserve the unique characteristics 

of the speaker’s voice. 

• Emotion Classification Error: Measures the model’s accuracy in conveying the intended 

emotional states in the synthesized speech. 

• Word Error Rate (WER) / Character Error Rate (CER): Assesses the intelligibility and accuracy 

of the spoken output, comparing the transcribed text from the synthesized speech to the original input 

text. 

All metrics reported below were calculated using the Amphion software [16] - a toolkit library for 

audio generation. These metrics provide a comprehensive framework for assessing the effectiveness of 

the TTS system in producing high-quality, emotionally expressive, and speaker-specific speech. 

 

5. Results and metrics description 

Speaker Similarity Metric. To quantitatively assess the speaker similarity between the reference and 

generated audio samples, we employed a speaker verification model based on WavLM, a state-of-the-art 

audio processing model [7]. This model was pretrained using a contrastive loss, which optimizes the 

embeddings to minimize the distance between similar pairs and maximize the distance for dissimilar 

pairs, making it well-suited for speaker verification tasks. 

The metric we report is the average cosine similarity between the embeddings of reference audio 

samples and their corresponding generated samples. The embeddings are extracted using the WavLM 

model, which captures speaker-specific characteristics. Cosine similarity measures the cosine of the angle 

between two vectors in the embedding space, providing a scale from -1 (completely different) to 1 

(identical), where higher values indicate greater speaker similarity. The formula for cosine similarity is 

given by: 

Cosine Similarity =
∑ 𝐴𝑖

𝑛
𝑖=1 ⋅𝐵𝑖

√∑ 𝐴𝑖
2𝑛

𝑖=1 ⋅√∑ 𝐵𝑖
2𝑛

𝑖=1

     (5.1) 

where Ai and Bi are the components of the embeddings from the reference and generated audio samples, 

respectively. This metric effectively quantifies how well the generated audio preserves the identity 

characteristics of the speaker in the reference audio. The results are presented in Table 1 
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Table 1. Comparison of speaker similarity scores 

Model Speaker similarity 

Proposed model 0.63 

xTTS v2 0.9 

 

Emotional Classification Accuracy. The accuracy of emotion recognition was evaluated using the 

Emotion2Vec model [17], which predicted emotions for both the reference and the produced audios. This 

measure reflects the model’s ability to encode and reproduce the emotional states intended by the original 

speech. Results are tabulated in Table 2. 

 
 

Table 2. Comparison of emotional classification accuracy 

Model Emotion classification accuracy 

Proposed model 0.035 

xTTS v2 0.17 

 

Metrics for measuring WER and CER were calculated using transcripts generated by a pre-trained 

large Whisper [18] Automatic Speech Recognition (ASR) model, comparing these against the ground 

truth transcripts. 

WER is computed as the ratio of the total number of operations (insertions, deletions, and 

substitutions) needed to convert the ASR-generated transcript into the ground truth transcript, divided by 

the total number of words in the ground truth transcript. The formula for WER is given by: 

WER =
𝑆+𝐷+𝐼

𝑁
       (5.2) 

where S is the number of substitutions, D is the number of deletions, I is the number of insertions, and N 

is the number of words in the ground truth transcript. 

Similarly, CER is calculated by applying the same principle at the character level rather than the word 

level. It measures the minimum number of insertions, deletions, and substitutions required to change the 

ASR-generated transcript into the ground truth, normalized by the total number of characters in the 

ground truth transcript. The formula for CER is: 

CER =
𝑠+𝑑+𝑖

𝑛
       (5.3) 

where s represents substitutions, d represents deletions, 𝑖 represents insertions, and 𝑛 is the total number 

of characters in the ground truth transcript. 

Both metrics provide crucial insights into the transcription accuracy of the generated speech, with 

lower values indicating higher accuracy and better performance of the text-to-speech synthesis system. 

The results are presented in Table 3. 

 
 

Table 3. Comparison of Word error rate and Character error rate 

 

Model Word error rate↓ Character error rate↓ 

Proposed model 1.0 1.01 

xTTS v2 0.21 0.02 

 

5. Conclusions 

This study provided the evaluation of the latent diffusion model, against the xTTS v2 model using a 

set of rigorous metrics on the EmoV-DB dataset. The findings revealed some insights into the 

performance of both models in terms of speaker similarity, emotional preservation, and intelligibility. 

While the proposed model demonstrated decent efficiency in maintaining speaker characteristics, as 

indicated by the speaker similarity score, it was outperformed by xTTS v2 in all assessed metrics. 

Notably, our model exhibited considerable deficiencies in emotional classification accuracy, suggesting 

that the audio CLAP embeddings it relies on may be more attuned to capturing speaker-related 

information than the nuances of emotional expression. This observation was underscored by the model’s 
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low emotion classification error rate, which points to a potential misalignment between the emotional 

intents encoded by the embeddings and those expressed in the speech output. Also, pretrained dataset for 

the CLAP component, which is a mix of speech and general audio and its corresponding captions, might 

not be effective for speech synthesis, suggesting that pre-training on transcribed speech dataset may 

improve generation quality. 
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Модель латентної дифузії для обробки мовного сигналу 

 

Актуальність. Розробка генеративних моделей для синтезу аудіо, включаючи текст-у-мовлення (англ. text-to-speech, 

TTS), текст-у-музику та текст-у-аудіо застосування, значною мірою залежить від їх здатності обробляти складні та 

різноманітні вхідні дані. В цій роботі ми розглядаємо латентне дифузійне моделювання - універсальний підхід, який 

використовує стохастичні процеси для генерації високоякісних аудіо сигналів. 

Мета. Це дослідження має на меті оцінити ефективність латентного дифузійного моделювання для аудіо синтезу на 

основі набору даних EmoV-DB, який містить записи з багатьма мовцями, з п'ятьма емоційними станами, та порівняти 

його з іншим генеративними методом. 

Методи дослідження. Ми застосували латентне дифузійне моделювання спеціально для синтезу мовлення та оцінили 

його ефективність за допомогою метрик, які визначають зрозумілість, подібність голосу та збереження емоцій в 

згенерованому аудіо сигналі. 

Результати. Дослідження показує, що запропонована модель демонструє пристойну ефективність у збереженні 

характеристик голосу, але поступається дискретній авторегресивній моделі: xTTS v2 за всіма оціненими метриками. 

Зокрема, досліджувана модель виявляє недоліки в точності класифікації емоцій, що вказує на можливе невідповідність 

між емоційними намірами, закодованими у векторах, та тими, що виражені у згенерованому сигналі. 

Висновки. Результати вказують на те, що подальше вдосконалення здатності нейронної мережі кодувальника 

обробляти та інтегрувати емоційні дані покращує ефективність латентної дифузійної моделі. В наших подальших 

дослідженнях ми плануємо зосередитися на оптимізації балансу між характеристиками мовця та емоційними 

характеристиками в TTS моделях для досягнення більш цілісного та ефективного синтезу людського мовлення. 

 

Ключові слова: аудіо моделювання, штучні нейронні мережі, синтез мовлення. 
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