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The Clustering of Lambda Terms by Using Embeddings

Relevance. The importance of optimizing compilers and interpreters for functional programming languages, mainly through
the lens of Lambda Calculus, is paramount in addressing the increasing complexity and performance requirements in software
engineering. The emphasis of this study lies in this critical area, aiming to leverage advanced machine learning techniques to
enhance identification and application of code reduction strategy.

Goal. The primary goal is to improve the performance and efficiency of compilers and interpreters by deepening the
understanding of program code reduction strategies within Lambda Calculus. The research is aimed at using machine learning
to convert lambda terms into feature vectors, facilitating the exploration of optimal reduction strategies.

Research methods. The study employs a comprehensive approach, generating a wide range of lambda terms for analysis. It
utilizes OpenAl's text embedding model to transform these terms into embedding vectors, employing clustering analyses
(DBSCAN with Euclidean measurements) and visualizations (PCA and t-SNE) to identify patterns and assess feature
separability. The research navigates the complexities of choosing between specific and universal reduction strategies.

The results. Findings have revealed clear distinctions among lambda term representations within the embedding vectors,
supporting the hypothesis that cluster analysis can uncover identifiable patterns. However, the challenges have been
encountered due to OpenAl Embeddings' training being generally focused on human-readable text and code, and that
complicates the precise representation of Lambda Calculus terms.

Conclusions. This exploration underscores the challenges in pinpointing the optimal reduction strategy for Lambda Calculus
terms, highlighting the limitations of current mathematical models and the need for tailored machine learning applications.
Despite the hurdles with the OpenAl Embeddings model's adaptability, the research offers significant insight into the potential
of machine learning to refine the optimization processes of compilers and interpreters in functional programming
environments.
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1. Introduction

In the modern world of software engineering, functional programming languages are pivotal,
providing sophisticated solutions to intricate challenges [1]. With escalating demands for enhanced
performance, the importance of optimizing compilers cannot be overstated. Our study focuses on
Lambda Calculus, an essential construct of functional programming languages, to achieve this
objective. The aim is to analyze software code to identify the most effective reduction strategy,
therefore improving the efficiency of both compilers and interpreters [2].

Lambda calculus is the main framework for our study, enabling the simulation of interpreters and
compilers in their task to find the best reduction strategies. By generating a broad spectrum of lambda
terms, we establish a solid testing environment to evaluate various methods to enhance normalization
quality [2, 3]. The intricate decision-making process, whether to develop the best strategies for each
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term or to adopt a universal strategy like "Rightmost Innermost,” demonstrates the nuanced
comprehension of its complexity.

The primary objective of this research is to enhance the functionality of interpreters and compilers
used in functional programming languages, specifically through a detailed examination of lambda
calculus. The focus is to increase our knowledge of reduction strategies and to improve the operational
efficiency of compilers and interpreters. A novel aspect of our scientific inquiry involves applying
advanced machine learning techniques to represent lambda terms as vectors of features; that includes
analyzing such vectors for their ability to be separated and comparing these separation methods against
a strategy prioritized for its efficiency.

Moreover, we encounter a computational dilemma: if it is better to continuously execute Lambda
term reduction using various strategies in parallel, selecting the most suitable one based on a specific
criterion, or transform a Lambda term into a more straightforward representation and input it into
artificial neural networks (ANNS), thereby determining the optimal strategy.

2. Literature Review and Problem Statement

The use of sophisticated machine learning methods to enhance the efficiency of programming
language compilers and interpreters is a concept that has been explored previously [4, 5]. CompilerGym
[6] provides a platform for broader compiler research, offering an environment for experimentation
without delving into specific optimizations. Most studies on optimizing compilers and interpreters focus
on the most widely used object-oriented programming languages [7, 8, 9]. The clustering to identify
similarities between functions have been utilized in [7]. The transforming program data by using PCA
for the LLVM compiler and implementing optimizations based on expert knowledge has been examined
in [8]. The iterative compilation method, testing a limited set of optimization possibilities and
demonstrating its effectiveness for optimizing code fragments has been adopted in [9]. Furthermore, the
application of reinforcement learning to compiler optimization, employing neural optimization agents to
support manually crafted optimization sequences has been explored in [10].

Optimizations for compilers of functional programming languages have been comparatively less
investigated. The heap profiling for a functional compiler using hand-crafted logic has been explored in
[11]. Similarly, custom optimizations have been applied in [12], focusing on a functional web
application. Furthermore, model functional languages have typically concentrated on specific reduction
strategies, such as Haskell's call-by-need and call-by-value with unique mechanisms and OCaml's call-
by-value.

Given this context, the challenge of optimizing compilers and interpreters for functional
programming emerges as a significant area of interest. While machine learning techniques are
applicable in optimizing compilers for object-oriented languages, this work seeks to identify features
within functional code that could indicate the effectiveness of optimization strategies, using machine
learning as a tool for exploration.

In the previous work, we have used a similar approach to clustering analysis of terms by using a
large language model, Code BERT [13]. This research has shown us some possible ways of creating
meaningful vector representations of vector terms.

3. Research Goals and Objectives

To research further the inner structure of generated lambda terms space, the main aim of this study is
to enhance the performance of interpreters and compilers for functional programming languages, with a
special emphasis on Lambda Calculus. The primary objective is to deepen our comprehension of
program code reduction strategies and to improve the efficiency of both compilers and interpreters. The
scientific novelty of this research is utilizing of sophisticated machine learning methods to encode
lambda calculus terms into feature vectors, followed by an analysis of these vectors for separability and
a comparison of their separation to the prioritization of term strategies.

In line with the main goal, the specific objectives of this research are outlined as follows:

- To conduct a clustering analysis of the lambda terms dataset to identify patterns or potential for
data division.

- To evaluate the effectiveness of OpenAl's text embedding model in extracting features from
lambda terms.

- To investigate the relationships between the extracted features and the identified clusters.
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4. Materials and Methods of Research

The objective of this study is to refine the functionality of existing interpreters and compilers for
functional programming languages. Lambda Calculus has previously been recognized as a basic model
of functional programming languages [2, 3]. It facilitates the simulation of interpreters or compilers to
select the most effective reduction strategies. Moreover, it provides a way for the synthetic generation
of a wide array of lambda terms, enabling accurate evaluation of the strategies. Selecting an optimal
reduction strategy involves devising a unique strategy for each term or applying a specific strategy,
such as Rightmost Innermost, for the whole term reduction process. Both methodologies have been
explored. The former strategy allows for the creation of a greedy algorithm that selects the best redex
for reduction at any given moment. In this context, we have evaluated the disparity in redexes,
indicating the varying resources needed for their reduction, with computational complexity as the
measure of this disparity, gauged by the time taken per reduction step [3]. Additionally, our research
aimed to predict the number of lambda term reduction steps by using a particular strategy, employing a
simplified representation of terms that keeps only their tree structure, and excluding variable
information [14]. For this purpose, standard Artificial Neural Network (ANN) models commonly used
in Natural Language Processing have been applied to forecast the number of steps required for specific
strategies [14].

Through our experiments, we have observed that certain redexes suggest an inclination towards one
or another standard reduction strategy. Nonetheless, the mere presence of these redexes does not
guarantee that a term is best suited to be reduced by that strategy. It indicates a need for a deep analysis
of the term to determine if a redex indeed suggests a priority for reduction. Previous studies utilized a
simplified term representation [3, 14], which was found to lack a qualitative analysis of terms and
omitted critical information. Therefore, we have decided to analyze terms while preserving their
variable information, potentially enhancing the differentiation of terms according to their preferred
reduction strategy. This approach suggests the possibility of identifying terms that require fewer
reduction steps under a specific strategy without specifying the exact number of reductions. As one of
the most sophisticated and modern approaches to transforming text representations into vectors, we
have selected the text-embedding-ada-002 model of OpenAl embedding as one of the most stable and
the one that has shown promising results during our research. During our work, we also experimented
with other new OpenAl embedding models but focused on the one mentioned above.

4.1. Gathering Feature Representations

Our work focuses on OpenAl embeddings which are one of the most popular and easy-to-use. Such
an approach also significantly reduces computational requirements, as on our side we use a simple API
that allows us to input text representations of lambda terms and retrieve vectors as an output. All the
calculations are done on the OpenAl servers.

What are text embeddings? Text embeddings, as developed by OpenAl, evaluate how closely text
strings are related. Common uses for embeddings include:

- Search (ranking search results by how relevant they are to a search term);

- Clustering (grouping text strings based on how similar they are);

- Recommendations (suggesting items that have text closely related to each other);

- Anomaly detection (spotting text strings that do not fit in with the rest due to low relatedness);

- Measuring diversity (examining how varied the similarity among text strings is);

- Classification (assigning text strings to categories they closely align with); The distance between
their vectors gauges the degree of similarity between texts; shorter distances suggest more significant
similarity in content, while longer distances signify reduced similarity.

Embeddings can serve as versatile encoders for free-text features within machine learning models.
By integrating embeddings, the efficiency of any machine learning model can be significantly
enhanced, particularly when some of the input data includes free text. Additionally, embeddings can
encode categorical features in a machine learning framework. This is especially useful when dealing
with categorical variables that have meaningful and numerous names, like job titles, where similarity
embeddings tend to outperform search embeddings for such applications.

4.2. Analysis of Embeddings
For our analysis, we have utilized a collection of 4,000 artificially generated lambda terms. These
terms were produced using a method based on random recursion, ensuring a balanced distribution of



ISSN 2304 -6201 BicHuk XapkiBCbKkoro HawjioHanbHoro yHisepcuteTy imeHi B. H. KapasiHa
cepist «MaTemaTiHe MoaentoBaHHs. IHhopmaLliiHi TexHonorii. ABTOMaTM30BaHi cMCTEMM ynpaBniHHsY, Bunyck 59, 2023 19

Variables, Applications, and Abstractions throughout the structure of each term to include a wide
variety of term types. The specific method of generating these terms is described in [14]. These lambda
terms are represented as text, making them suitable for direct input into our chosen embedding model.

Hence, we have employed the OpenAl Embeddings model to transform lambda terms, including
variable data, into vectors that should represent their unique meaning. This model interprets the textual
representations of lambda terms, translating them into vectors.

The outcome, referred to as embeddings, captures the essence of the input text [15]. Then the
clustering algorithm processes these vectors. This approach is akin to the Word2Vec methodology [16],
which involves manipulating word embeddings (vectors representing the significance of words in a
multidimensional space) through operations like addition or subtraction, thus creating new embeddings
that retain the semantic value of the original word embeddings involved in the operation [16, 17].

4.3. Clustering Algorithms

During our previous work and analysis of the distribution patterns in the embedding space within
this particular research, we noticed that unsupervised learning techniques, especially clustering analysis,
are quite effective in distinguishing among the data. We have identified potential groupings with a
natural, logical structure by illustrating various strategy priorities on a graphical plot, indicating a viable
path for automated segmentation. It is essential to underline that our research aimed not to classify
strategies per se but to investigate how data is distributed and uncover significant trends using
unsupervised methods. Common methods for carrying out clustering analysis include K-means,
DBSCAN (Density-Based Spatial Clustering of Applications with Noise), the Gaussian Mixture Model
(GMM), and Agglomerative Clustering. Our study specifically has delved into the DBSCAN technique.

DBSCAN clusters data points based on proximity, effectively distinguishing between densely
populated and less dense regions. It defines clusters by identifying areas of high density separated by
regions of low density [18].

The DBSCAN algorithm uses common metrics such as Euclidean, cosine, L1, and L2. This
algorithm exhibits resilience against outliers and offers the flexibility of not needing a predetermined
number of clusters to operate effectively. It excels in identifying clusters of diverse shapes and sizes,
showcasing its versatility in cluster formation. However, the performance of DBSCAN is significantly
influenced by the selection of hyperparameters, and it may face challenges in accurately clustering data
with variable densities.

Taking into account our previous studies [13], in this research we have focused on one clustering
method: DBSCAN, with the Euclidean metric as one of the most promising. Since the chosen clustering
method depends on fine-tuning hyperparameters, selecting the proper ones is crucial. To determine the
most suitable hyperparameter set, we have evaluated the following metrics to assess the quality of
clustering:

- The Silhouette score [19] evaluates how well an object fits within its cluster compared to others. It
ranges from -1 to +1, where a higher score signifies better matching within the cluster and poorer
matching with adjacent clusters. Scores above 0.7 denote robust clustering, above 0.5 indicate
reasonable clustering, and above 0.25 suggest weak clustering. However, silhouette scores may
converge in high-dimensional clustering, making differentiation challenging. The Silhouette score
excels in assessing cluster quality for convex-shaped clusters but may falter with irregularly shaped or
variably sized data clusters. This score is adaptable to any metric.

- The Davies-Bouldin Index (DBI) [20] measures the average similarity of each cluster with its
closest cluster, based on the ratio of distances within the cluster to distances between clusters. Clusters
that are more separated and less scattered receive better scores. The best score is zero, and lower scores
signify superior clustering quality.

- The Calinski-Harabasz Index (CH Index) [21] is an internal metric that judges clustering quality
based solely on the dataset and clustering outcomes without reference to external truth labels. It
calculates the ratio of between-cluster dispersion to within-cluster dispersion, offering insight into
effectiveness of clustering.

- The Within-Cluster Sum of Squares (WCSS) [22] evaluates the cohesiveness of clusters, especially
in K-Means clustering. It totals the squared distances between each point in a cluster and its center,
providing a numeric value for the cluster compactness.
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Fig. 1. Tuning the DBSCAN epsilon hyperparameter with various metrics (Silhouette, DPI, CHI, WCSS) for the
Euclidean metric and estimating the number of outliers and clusters.

Collected mean embedding vectors can be visualized with Principal Component Analysis (PCA)
[23] and t-distributed Stochastic Neighbor Embedding (t-SNE) [24]. The results of such data
compression of the mean embeddings are shown in Fig. 2 for PCA and Fig. 3 for t-SNE.

5. Findings from Analyzing Lambda Terms

5.1. Collecting Embeddings

The mean embedding vectors, we have collected, can be graphically represented by using Principal
Component Analysis (PCA) [23] and t-distributed Stochastic Neighbor Embedding (t-SNE). The visual
compression of these mean embeddings through these techniques is presented in Fig. 2 for PCA and
Fig. 3 for t-SNE. As can be seen, some clusters can be visually distinguished, particularly in the t-SNE
plot. On the other hand, PCA does not show us such results; most clusters are visually interconnected
and cannot be easily separated.

5.2. Analysis of Clustering

In our evaluation by using the chosen clustering techniques and quality assessment metrics, we
initially sought to identify an optimal epsilon value for DBSCAN applied to the dataset of 4k
embeddings (illustrated in Fig. 1). The selection of the epsilon value has proved difficult for this
dataset, given the conflicting results from the clustering quality metrics and our aim to reduce the
number of outliers. Notably, the Elbow method did not apply to determining WCSS for clustering. We
aimed to achieve the highest possible Silhouette score and CH Index while aiming to lower the Davies-
Bouldin Index (DBI). Consequently, for DBSCAN, we have opted for an epsilon value of 0.125.

PCA results of # DBSCAN, Euclidean, eps=0.125, min_samples=10, n_clusters=6
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Fig. 2. Visualizing clustering results by using PCA dimension shrinking of embedding data with DBSCAN
clustering.
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t-SNE results of # DBSCAN, Euclidean, eps=0.125, min_samples=10, n_clusters=6
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Fig. 3. Visualizing clustering results by using t-SNE dimension shrinking of embedding data with DBSCAN
clustering.

6. Discussion of the results

In the discussion on the outcomes of our research, identifying the optimal strategy for term reduction
emerges as a complex challenge, fundamentally unsolvable through mathematical means, as indicated
by [2, 3, 14]. This complexity underscores the absence of a singular solution for optimal strategy
selection across all conceivable terms or a universal reduction strategy. Nevertheless, developing viable
methods remains feasible within certain constraints. Our approach, which involves generating lambda
terms as a cost-effective means of data collection, may not fully encapsulate the breadth or critical
characteristics of real-world terms. An additional challenge is the reliance on the OpenAl Embeddings
model, originally trained on human text and code but not specifically on lambda terms or similar
representations. That could potentially lead to inaccurate representations of lambda calculus terms in
embedding matrices. This misalignment also complicates the translation of these embeddings into a
universal format for subsequent analysis.

7. Summary of Findings

This research has transformed Lambda terms into embedding vectors with 1536 dimensions by
applying the OpenAl Embeddings model, as explained in section 5.1. Analysis by using PCA and t-
SNE to visualize these compressed mean vectors has revealed clear distinctions among Lambda term
representations in these embeddings, confirming our initial hypothesis that patterns could be recognized
through cluster analysis.

Then we have examined data cluster formation by using the DBSCAN technique with Euclidean
measurements as could be seen in section 5.2. This exploration highlighted the capacity of the OpenAl
Embeddings model to draw out significant attributes from Lambda terms. However, the broad training
of OpenAl Embeddings has not be done on lambda term representations explicitly, but mostly for
human-readable text and code, adding complexity to depicting Lambda calculus terms within
embedding matrices precisely.
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Kaacrepusauis JIsmo0aa Tepmis 3 Bukopuctanusam BoynyBanb

AKTyaJbHicTh. BaxnuBicTe onTuMizamii KOMIUIATOPIB Ta IHTEPHPETaTOpiB A (PYHKUIOHATHHUX MOB IPOTpaMyBaHHS,
30KpeMa yepe3 Mpu3My JsIMOAa-uiCIIeHHs, Ma€ MepIIoYeproBe 3HAYCHHs IS BHPIMICHHs 3pOCTAl0YHX BHMOT 10 CKJIAQJHOCTI
Ta MPOAYKTUBHOCTI B po3poOili mporpamHoro 3abesnedcHHs. Lle mocmiKeHHS po3MillyeThcs B Il KPUTHYHIN 0O0JacTi,
CIIpsIMOBaHE Ha BUKOPHCTAHHS IIEPEIOBHX METOZIB MAIIMHHOTO HaBYaHHS IS MOKPAIIEHHS iJeHTH(iKamii Ta 3aCTOCYBaHHS
CTpaTerii CKOpOYCHHS KOIY.

Meta. OCHOBHOIO METOIO € IiIBUIICHHS IPOAYKTUBHOCTI Ta €(pEKTHBHOCTI KOMIUIATOPIB Ta IHTEpPIPETaTOPIiB ILIIXOM
MOTJIMOJICHHS. PO3YMIHHS CTpaTerii CKOPOYEHHS NPOrpaMHOr0 KOOy B JIAMOma-uucieHHi. J(ocHiKeHHS cIOpsMOBaHE Ha
BUKOPHMCTaHHS MAIIMHHOTO HABYaHHS JUIS IICPETBOPEHHS JIAMOJA-TEPMiHIB y BEKTOPU O3HAK, MOJIETHIYIOYH JOCIIKCHHS
ONTHMAJIBHUX CTpATeTiil 3MEHIIICHHSI.

Metoau nociaigkenHs. J{ocmiyKeHHS BUKOPHCTOBY€E KOMIUIEKCHHH MiJIXiJl, CTBOPIOIOYH IIMPOKHHA CIIEKTpP JSIMOAA-TEpMiHIB
Uil aHanmizy. BiH BHKOpHCTOBYe Monenb BOynoByBaHHS TekcTy OpenAl st mepeTBOpPEHHs ILMX TEPMIiHIB y BEKTOPH
BOYIIOBYBaHHS, BUKOPHCTOBYIOUM Kiactepu3aniiiauii ananiz (DBSCAN 3 eBKJIJOBMMHM BHMIpIOBaHHSMH) Ta Bi3yasi3awilo
(PCA Ta t-SNE) mns BusiBIEHHs IIAOJNOHIB 1 OINIHKM BiJOKpPEeMJIIOBaHOCTI (yHKLiH. JlOCTiIPKEeHHS OpIEHTYEThCS 4Yepe3
CKJIaJIHICTh BUOOPY MK KOHKPETHUMH Ta YHIBEPCATEHIUMH CTPATETISIMU CKOPOUYCHHSI.

PesyabTaTn. OTpuMaHi AaHi BUSBISIFOTH YiTKi BIIMIHHOCTI MiX IpeJICTaBICHHSIMH JIIMOa-TEpMIiB Y BEKTOpax BOYZIOBYBaHHS,
MiATBEPPKYIOUH TiNOTEe3y Mpo Te, IO KJIACTEPHHI aHali3 MOKE BUSBHTH MIaOJIOHH, SKi MOXXHa imeHTHOikyBaTtH. OqHAK
BUHHKITM TPYAHOII Yepe3 3arajbHy crpsMoBaHicTh HapuaHHA OpenAl Embeddings Ha TekcT 1 K0J, SIKi YHUTAIOTHCS JTHOIUHOIO,
II0 YCKJIA/THIOE TOYHE NMPEACTaBICHHS TePMiHiB JIIMO1a-UHCIICHHS.

BucnoBku. Lle mocmimkeHHS TiIKpecTioe TPYAHONI Y BH3HAUYEHHI ONTHUMAIBHOI CTpaTerii CKOpOYEHHsS TEpMiHiB JIIMOmIa-
YHCIICHHS, MTiIKPECIIIOI0YN 0OMEXEHHS MOTOYHUX MAaTeMaTUYHHUX MoJieliell i moTpeOy B alanTOBaHUX MPOrpamMax MallMHHOTO
HaBuaHHs. Hes3Bakaroud Ha mepemkonu 3 amantuBHicTioO mojeni OpenAl Embeddings, mocmimkeHHs 3’SCOBYe CYTTEBE
PO3YMiHHS OTEHIIialy MAIIHHHOTO HaBYaHHS [T BIOCKOHAJIECHHS MPOIIECiB ONITUMI3allii KOMITUIATOPIB Ta iHTEPIPETATOPIB Y
cepenoBHNIax (PyHKIIOHATBHOTO MPOTPaMyBaHHS.

Knwwuoei cnosa: Jlamooa-mepmu, Knacmeprnuii Ananis, [lpempenosani Boyoysanus, [Ipuxoeanuti Ilpocmip.
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