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Using the two-sided approximations method for the numerical research
of nanoelectromechanical systems under the action of the Casimir force

O. Konchakovska, M. Sidorov

Relevance. Developing the method of two-sided approximations for finding a positive solution to a nonlinear boundary value
problem that models an electrostatic nanoelectromechanical system under external pressure has been considered. The presented
mathematical model takes into account the influence of Casimir forces as an additional force of attraction between the
components of nanosystems. Such systems feature the nonlinear phenomenon of pull-in instability, which occurs due to the
interaction of conductive plates under a critical electric voltage. This phenomenon significantly limits the range of system’s
stable states and is typical of many nanodevices, in particular, accelerometers, switches, micromirrors, microresonators, etc. It
is suggested to study the model parameters and estimate their values in order to analyze the stable states of
nanoelectromechanical systems.

Goal. To develop a method of two-sided approximations for solving the given problem by using the methods of the nonlinear
operator theory in semi-ordered Banach spaces.

Research methods. The nonlinear elliptic equation that models the operation of the electrostatic nanoelectromechanical
system using the Green’s function method is replaced by its Hammerstein integral equation equivalent. The specified integral
equation is considered to be a nonlinear operator equation with a monotone operator in the space of continuous functions,
semi-ordered by using a cone of non-negative functions. The conditions for the existence of a unique positive solution to the
specified problem and the two-sided convergence of successive approximations to such a solution have been obtained.

The results. The developed method has been implemented and investigated by solving test problems. The results of
computational experiment are shown in graphical and tabular form.

Conclusions. The performed computational experiments have confirmed the effectiveness of the developed method and can be
used to solve the problems of mathematical modeling of nonlinear processes in micro- and nanoelectromechanical systems.
The prospects for further research may lie in applying the method of two-sided approximations for models of
nanoelectromechanical systems with repulsive Casimir forces.

Keywords: method of two-sided approximations, Green’s function, invariant conical segment, monotone operator,
nanoelectromechanical system, external pressure, Casimir force.
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1. Introduction

The development of microelectromechanical systems (MEMS) has been driven by combining the
principles of mechanics and electrostatics [1, 2]. Mathematical and numerical modeling of MEMS has
been a key principle, initially focusing on stationary states [3-5] and later expanding to models
including external pressure and non-stationary states governed by parabolic laws [4, 6].

Such systems in mathematical modeling are usually presented in partial differential equations with
appropriate initial and boundary conditions. The most common method of solving such non-stationary
problems is to reduce them (according to Rothe’s method) to a system of ordinary differential equations
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in the time variable and then to solve the resulting equations numerically or analytically. Some
discretization approaches are also used: the finite element method, the boundary element method, and
the finite difference method [7]. For the numerical analysis of the corresponding stationary problems, it
is convenient to use numerical methods with a two-sided nature of convergence. This approach allows a
posteriori estimation of the error of the approximate solution at each step of the iterative process [8].

Therefore, developing and improving existing approaches to mathematical modeling and numerical
analysis of the problems arising while studying electromechanical systems is a relevant field of
research.

2. NEMS and the impact of Casimir’s forces

When the scale of these systems decreases to the nanoscale, it is necessary to consider
nanoelectromechanical systems (NEMS). Most typical models of electrostatic NEMS consist of two
conductive plates: an elastic plate fixed along the boundary at the top and a fixed, rigid plate at the
bottom. The applied electric voltage between the two plates leads to the deflection of the elastic plate
and the following change in the system’s capacitance [9]. The operation scheme of the simplest NEMS
is shown in Figure 2.1.

Supported boundary €2 p Elastic plate at potential V

—40

™~

v Rigid ground plate

Fig. 2.1 Scheme of the electrostatic NEMS operation

The so-called pull-in instability is a distinguishing feature that limits the effectiveness of
electrostatic NEMS. This effect occurs when the applied voltage exceeds a specific critical value. As a
result, the plates snap together, limiting the range of stable operation of the devices. Many researchers
have investigated pull-in instability [9-12]. Moreover, the miniaturization of devices requires
considering the Casimir force along with the Coulomb force in a mathematical model.

An essential effect of quantum electrodynamics, namely, the effect of quantum fluctuations on non-
guantum objects, was theoretically demonstrated by Hendrik Casimir in 1948 [13]. He considered the
interaction of two conducting parallel plates in a vacuum and determined the force of gravity between
them

nznc
4 1
2409,
where gq is the distance between the plates, n is a Planck constant, ¢ is the speed of light in a

vacuum.

The presence of Planck’s constant indicates the purely quantum nature of the phenomenon.

The Casimir force for NEMS models is related to the interaction of plates. It is well-known that each
wave presses the plate, and the closer the plates are, the fewer waves can exist between them, and the
weaker their pressure is. At the same time, there is no limitation for the external space, so there can be
much more waves outside. This creates a relatively sizeable converging force from the outside, which is
illustrated in Figure 2.2. It turns out that the smaller the distance between the plates, the more they are
attracted. This effect restricts the stability of micro- and nanoscale systems, as the parts of the
mechanisms tend to snap together.

Consequently, to develop reliable, high-performance devices, it is necessary to determine stable

F=—
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modes of operation to prevent the occurrence of pull-in instability.

Fig. 2.2 Casimir forces acting on conductive plates

3. The research method
Let us consider a nonlinear boundary value problem modeling an electrostatic NEMS under the
influence of external pressure [14, 15]:

Cau= MO 100 by xea, (3.1)
@-uw? @-u?

u(x)>0, xeQ, (3.2)

u(x)=0, xeoQ, (3.3)

where Q is a plane domain with a piecewise smooth border 0Q, x=(x, Xy), P(x) is the external
pressure, P(x)>0, the functions f(x) and g(x) describe the dielectric properties of the plate, the
parameters A and p are the Coulomb and Casimir forces, respectively

3 80V2L2 B T]CTCZLZ

" 200hgd’ | 2400ghgt |

oy is the tension in the plate, gq is the distance between the plates, h is the thickness of the deformed
plate, &g is the vacuum dielectric constant, L is the length of the plate, V is the applied voltage, n is a

Planck constant, ¢ is the speed of light in a vacuum.
From the physical content of the problem, it follows that the functions f(x), g(x) and P(x) are

continuous and non-negative at x e Q).
The problem (3.1) — (3.3) is equivalent to the Hammerstein integral equation

A

W) = [G(x,5)| =) ~+ kg (c) 7+ P() [ds, (3.4)
Q d-u(s)” @A-u(9)
where G(X,s) is the Green’s function of this problem, s=(s;, s,) .
Let C(Q) be the Banach space of functions continuous in the domain Q=QuU aQ, with the norm
||u||=m€a(>2<|u(x)|. Let us consider a normal (and even an acute) cone of non-negative functions

K, ={ueC(Q):u(x)>0, xeQ} in space C(Q). And let us define semi-ordering in the C(Q) with a
cone K, by the rule: for u,veC(Q) u,, v, if v—ueK, . It means that [16]
u,, v, if u(x)<v(x) forall xeQ.
The nonlinear integral equation (3.4) semi-ordered by a cone K, will be considered in C(QQ) as an
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operator equation u=T (u) , where operator T acts in the C(Q) according to the rule

TU)() = [ Gxs) k”Q2+ “M$4+P@)$. (3.5)
O d-u(s)” @A-u(9)
It should be noted that if a classical solution of the problem (3.1) — (3.3) exists as a function
u* eCZ(Q)mC(S_)) that satisfies equation (3.1) and conditions (3.2), (3.3), this function will also
satisfy the integral equation (3.4). If the problem (3.1) — (3.3) does not have a classical solution, then
the equation (3.4) will be taken as the definition of the generalized solution of the problem (3.1) — (3.3).
Definition. The generalized solution of the boundary value problem (3.1) — (3.3) will be the function
u* e K, , which is the solution of the integral equation (3.4).
The properties of the operator T (3.5) has been stated in the following lemma.
Lemma. The operator T (3.5) is:
a) a positive operator;
b) is a ug -positive operator, where the function ug(x) is defined by the equality
Up(X) = [ G(x,S)ds ; (3.6)
Q
¢) is an isotonic operator;
d) has an invariant conical segment <0, B>, and the constant p, 0<B <1, is a solution of the

inequality
AM ¢ (1=B) +1uM g < (B—Mp)(L-B)", (37)
where

M¢ =max [G(x,s)f(s)ds, My
XEQQ

=max [ G(x,5)g(s)ds, Mp =max [ G(x,s)P(s)ds;
XeQ) P XGQQ

e) is a Lipschitz-continuous operator on <0, >, i.e,, for all v,we<0, > the following inequality

[TV -TW)||<y|v—w]. (3.8)

2\ 4uMy

3" 5
d-p)” @a-p)

Proof. a) The Green’s function G(x,s) of the first boundary value problem for the operator —A in

is true.

where y =

the domain is continuous for x,s€Q, x#s and

Ini

XS

0<G(x,8)<kg

where Iy =|x—s| = \/(xl - 51)2 + (X — 52)2 is the distance between the points x and s [17].

Taking into account the non-negativity and continuity of the functions u(x), f(x), g(x) and P(x)
at xeQ, the integral expression in (3.5) will also be non-negative and continuous at x,seQ, X #s,
and, therefore, the function T(u)(x) is non-negative and continuous at x (). This means that the
operator T (3.5) acts in the space C(Q) and leaves the cone K, invariant, i.e., converts the function
from K, to the function from K, . Therefore, T is a positive operator.

b) It is obvious that the function ug(x) of the form (3.6) belongs to K, \{0}. If Q; is a subdomain
of the domain Q, and n(Qg) >0, then there will be a such number y=y(Qg) >0 that the inequality
holds [17]

v[G(x,s)ds< [ G(x,s)ds.
Q Q

On the other hand, if ue K, \{6} , then for some oy >0 there is a set Qy < Q that p(Qg) >0 and

MO mg(x)
(L-u())?  @-u()*

+P(X)>aq forall xeQq. Then forall xeQ
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T(U)(X)=jG(x,s){ M) S+ Mg () 4+P(s):ldsz
0 @-u(s)” @-u(s))

M (s) ug(s)
> | G(x, P d G d G d
>££0 (x S){(l—u(s))ﬁ(l 0 + (S)} 3>0€0(£O (%) S>0€oY£J; (x,8)ds = agyuig (X) -
is true.

Next, for all xeQ

T(u)(x) = jG(x,S){ M) 5+ M9 (S) 7 +P(s):|dss
o @-u@s)” @A-u(s)

<max{ M09 + Mg (x) (X)} jG(xs)ds max{ M9 + “g(x)4+P(x)]uo(x).
xQ| (1-u(x))*  (@-u(x)* xQ| (1-u(x))*  (1-u(x)

Therefore, for all xeQ there will be a double inequality

ocuo(x)SJ'G(x,s){ M) S+ O 4+P(S)}dssﬁuo(x),
Q @-u(s)” @-u(s))

M (X) . ug(x)
@-u)? @-u)?

where a =0y >0, B= max{
xeQ

+ P(x)} >0, which means that the operator T is
the ug -positive.
c) Let vyweK, and v,, w, thatis v(x) <w(x) forall xeQ. Then for all xeQ
M09 1000 pey MO 1009 b
1-v(x))" @-v(x)) 1-w(x))”  @1-w(x))
and hence, in view of the non-negativity of the Green’s function G(X,s),
ZIONNTIO)
2 4
1-v(s))® (@-Vv(s))

T()(X) = [G(x.5)

Q

+ P(s)} ds<

st(x,s){ M) ~+ M9 (S) 4+P(s)}ds=T(w)(x).
O d-w(s)™  A-w(s))

Therefore, it follows from v,we K, and v,, w that T (v) <T(w). Therefore, the operator T (3.5) is
isotonic.

d) The invariant conical segment <vg,wgp> is defined by the inequalities T(vp)...vg and

T(wp), Wp. Letustake v =0 and wy = . Then the specified inequalities will take form

jG(x,s)[kf (s)+ug(s)+ P(s)]ds=>0 forall xeQ, (3.9
Q
[ G(x s)li ”(S) 4 _H96) +P(s)} s<p forall xeQ. (3.10)
0 1-p)? (1 B)*

The inequality (3.9) will always hold, since the Green’s function G(x,s) at X,s€Q, x#s, and

functions f(x), g(x) and P(x) at xeQ are non-negative, and parameters A and p are positive. The
inequality (3 10) can be written as

> [G(x9) f()ds+—E— [ G(x,5)g(s)ds + [ G(x,5)P(s)ds <B forall xeQ.
(1—13) 1-B)"a O
Taking the maximum in the last inequality leads to

AM M
f 200 i mp<p, (311)

@-p? @-p*
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where M =max [ G(x,s)f (s)ds, My
XEQQ

=max [ G(x,5)g(s)ds, Mp =max [G(x,s)P(s)ds.
XEQQ XEQQ
It follows from physical considerations that 0<p<1. Then after multiplying by (1—[5)4 the

inequality (3.11) takes the form (3.7).
e) Let us denote

Fqu(q)=—) . _HO0) .
1-u00)?  (1-u(x)

Let us choose v,we<0, B> and consider the expression
|F(x,v(x)) = F (x,w(x))| =

B T [C RPN W B (O O N I
Q-v(x)?®  @-v(x)* Q-w(x)?  @-w(x)*

1 1 1 1
Af — _
(X)[(l—v(x»z (1—w(x))2J+Mg (X)[a—v(x))“ —w()"

The triangle inequality leads to

IF (%, () — F (, W00)| < AF (3)|— - ! 2|+p.g(x) L - 1 4|.
1-v(x)?  1-w(x)?| A-ve)*  @-wx)*|
Sinceat O<v, w<f
|1 1| 2 e, Lot v,
av? a-w? " a-py a-v* a-w? a-p°

then the inequality holds

|F (%, V(X)) — F (x,w(x))| < { 2M (x) , 4ng(x)

@-p° @-p)°

}I (X) —w(x)|.
Therefore

T v) =T W)= max [TW)) =T W)(x)| = max a3

f G(X,S)[F(s,v(s)) — F(s,w(s))]ds
Q

< 22 maij(x s) f (s)ds + i 3 max | G(x,s)g(s)ds |- max|v(x) —w(x)| =
(1 B) xeQ) Q (1—[3) XEQQ xeQ)
{mvlf 4uM 4
a-p° @-py°
The lemma has been proven.
Obviously, the operator T (3.5) is continuous and completely continuous.
Let us proceed to constructing the method of two-sided approximations for finding the positive

solution of the integral equation (3.4) (and, therefore, the boundary value problem (3.1) — (3.3)).
Since the ends of the invariant conical segment <0, 3> will be chosen as the initial approximation,

let us investigate the inequality (3.7) wunder the condition O<B<1 and denote
o(B)=AM ¢ (1-B)* +uMy, w(B)=(B—Mp)L-P)*. Then the inequality (3.7) takes the form
e(B)<y(P). It is obvious that ¢(B)>uMgy>0 if 0<B<1. On the other hand y(0)=-Mp <0,
y(@)=y(Mp)=0 and if Mp =1, then y(B)<0 for 0<P <1 and the inequality (3.7) will not hold.
Therefore, the condition 0<Mp <1 must be fulfilled and y(B) >0, if Mp <B<1. In addition, the

inequality (3.7) cannot be satisfied if sup y(B) < inf o(B).
0<p<l 0<pd

} == v,
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81 a1 \5
Accordingly, sup w(B) =\y(4MP +1j= 2’ (1-Mp) . inf @(B)=puM . If the inequality (3.7) has a
0<p<1 5 5° 0<p<l

solution, then the following inequality should be satisfied
8 5
- 2°(1-Mp) '
55
It is obvious that the inequality (3.7) has the solution ESBSB when
IMp +1) 221-Mp)°  (4aMp+1) 24
sup () —| M| EE L o Mt o) g
0<B<1 5 5 5
namely

uM (3.12)

g

2'5°M t (1-Mp)? +5°uM ¢ <22 (1-Mp)°. (3.13)
It is clear that the inequality (3.12) is a consequence of the inequality (3.13).
It should be noted that the inequality (3.7) will hold only at one point B = if

2'5° M £ (1-Mp)? +5°uM ¢ =28 (1-Mp)°.

Therefore, the set of solutions of the inequality (3.7) for B forms the segment [B, B8], only under the

conditions:
0<Mp <1, 2%5°AM ¢ (1-Mp)? +5°uM 5 <28(1-Mp)°.
Consequently,
221-Mp)* -5°uM
2*53M ¢ (1- Mp)?

and the positivity of the parameter A leads to

<28(1—'V|P)5
5 )
5°M,
or
2B1-Mp)° 2953 M (1-Mp)? 8(1_Mo)°
n< (d=Me) - (M) < 4§ (@=Me) 5. (3.14)
5° My 253M ¢ (1-Mp)
At the same time Mp <B<pB<1.
Let us form an iterative process according to the scheme
v () = [G(x,9) ”k(s) ~+ “gk(s) 7P |ds, k=0,1,2, .. (3.15)
o @-vi(s)?  @-vs)
w9 () = [ G(x,5) “IES) S+ “gk(s) S+PE) |ds, k=0,12..;  (3.16)
o @-whE)?  a-wh())
vO =0, wO(x)=B. (3.17)

The sequence {v(k) (X)} is non-decreasing under the cone K, and the sequence {w(k) (X)} is non-
increasing under the cone K, since the conical segment <0, 3 > is invariant for the isotonic operator
T (3.5). The existence of boundaries v*(x) and w"(x) of these sequences follows from the normality
of the cone K, and the complete continuity of the operator T . Therefore, the chain of inequalities
holds

OZV(O) 2 v(l) 99 "ty V(k) 99 "ty V* 2 W* 99 "ty W(k) 99 "ty W(l) 2 W(O) :B'

There are two possible cases: v* <w" and v* =w". In the second case u* :=v* =w" is unique fixed

point of the operator T on the conical segment <0, B>, and therefore u™ is unique positive solution of
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the considered boundary value problem (3.1) — (3.3).
To obtain the conditions for the case v* =w", let us estimate the norm HW("“) _y(k+)

‘ . Taking the

inequality (3.8) into account leads to
- fr )T 9] )T

< Y2 Hw(k—l) _V(k—l)H <. < yk+1 W@ _,© H _ yk+1B '

It follows that lim Hw(k”) —y(k+)
k—0

So, the following theorem is true.

‘:o, e v =w", if y<1.

Theorem 3.1. Let <0, B> be an invariant conical segment for the operator T (3.5) and y <1. Then
the iterative process (3.15) — (3.17) converges from two sides in the space C(Q) norm to the continuous
positive solution u* of the boundary value problem (3.1) — (3.3), which is unique for the segment.

For the approximate solution of the boundary value problem (3.1) — (3.3) at the k -th iteration let us
choose the function

(k) (k)
099 -0
considering the mentioned above, the error of this approximation will be estimated by the inequality
a0 < Lo ) <L
u —u HSZHW v Hszy B. (3.18)

Therefore, if the accuracy € >0 is specified, the iterative process (3.15) — (3.17) should be carried
out until the inequality

Hw(k) —vk) H = r)w(weaé((w(k) (x)— vk (X)) < 2¢

or inequalities ka < 2¢ are satisfied, so with the accuracy ¢ it can be stated that u™(x) ~ u (x).
The number of iterations required to achieve the specified accuracy ¢ can be estimated from a priori

estimation (3.18) and the inequality %ykﬁ <g,le.

In B
ko(e) =| —2& | +1,
1
In=
Y
where the square brackets denote the whole part of the number.
Thus, it is necessary to choose B=f for the fastest convergence of the iterative process.

4. Numerical experiments
Let us consider the problem (3.1) — (3.3) in the domain Q={x=(x,X,)]| x12 + x% << R2. Green’s

function in this case has the form
G(x,s):ilni—iln ! ,
2n I 2m Ll

where x=(X{,X2), S=(51,57), p=\/312 +s§ , points s, st are symmetrical about the unit circle, ry,
%! is the distance between the points x, s and X, st respectively.

The researchers [4] suggest using functions of the plate’s dielectric properties for the circle domain
in the form

£(x) = S0 _gf0E 08D g _ 04D _ 008D

where { is a non-negative constant.
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To simulate the influence of external pressure, let us select a function
2 2
P(x) = 1—[x2)Ee ¥ +e Py« 5 w>0, a=(0.75,0.75), b=(-0.15;-0.15)

(x=0is the case of no external pressure).
Let £=3, k=05, x=3, =5. Then M =0.0343, Mg =0.0343, Mp =0.0510. The graph of

the surface of the functions f(x) and g(x) is presented in Figure 4.1, and the graph of the function

P(x) surface is presented in Figure 4.2.

%1

Fig. 4.2 The surface of the function P(X)

The condition (3.14) leads to a set of solutions for the parameters A and p, which is shown in
Figure 4.3. According to (3.14): A <3.1929. Let A=2, so u<0.6875. Let us choose n=0.5. Then

according to (3.7): 0.1998<p<0.4363. Thus, the conical
<0,B>=<0,>=<0,0.1998>. In this case y=0.4764. Since y<1, according to Theorem 3.1, the

successive approximations formed by the scheme (3.15) — (3.17) converge from two sides to the
positive solution of the problem, which is unique on the cone <0, 3 >.

segment has the form
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Fig. 4.3 The set of solutions for the parameters A and p

Let the accuracy be ¢ =107%. Since the condition is fulfilled on the fifth iteration
max(w(s) (x)- v®) (x)) =0.285 1073,
XeQ

w® (x) + v (x)
2
In this case HU(S)H =0.1621. The two-sided nature of the convergence of successive approximations

and with the accuracy 0.57 1074, u*(x) = u® X)= can be chosen.

is illustrated in Figure 4.4, where the graphs of the upper (solid line) and lower (dashed line)
approximations to the solution at x, =0are shown. The contour lines and the surface of the
approximate solution u® (x) are shown in Figures 4.5 and 4.6, respectively.

A computational experiment has been performed for different values of A . Table 1 presents the
value of the approximate solution norm of the problem (3.1) — (3.3) depending on the parameters A and

n.

Table 1. The value of the approximate solution norm depending on the problem parameters

¢ Amax (€) A Hmax () [ ||U||
0 1.8403 1.80 0.1389
1 1.2639 1.20 0.1545
3 3.1929 2 0.6875 0.50 0.1621
3 0.1112 0.10 0.1896
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Fig. 4.4 Cross-sections of upper and lower approximations to the solution at x, =0
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Fig. 4.5 The contour lines of the approximate solution
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Fig. 4.6 The surface of the approximate solution
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The analysis of the results of computational experiment shows that for a fixed value ¢, the
parameter value pmay (A) decreases with the increase of 2, and the norm |u|| increases. Those results

define stable modes of operation for electrostatic NEMS. It should be noted that the choice of an
unevenly and asymmetrically distributed external pressure leads to a violation of the radial symmetry of
the solution.

5. Conclusions

The paper considers a generalized mathematical model of electrostatic nanoelectromechanical
systems, which takes into account the Coulomb and Casimir forces and the external pressure. The
method of two-sided approximations based on the usage of Green’s function has been applied for the
first time to the analysis of the proposed mathematical model, therefore, making it possible to obtain
both the conditions for the existence of a unique positive solution of the problem and the two-sided
convergence of successive approximations to it. The computational experiment conducted for the test
values of the parameters has shown that this novel method is effective and can be used to study the
parameters and modes of operation of real NEMS.

The research into Casimir’s repulsive forces is a promising area of study due to the potential
application in developing ultra-low friction and eliminating pull-in instability. The experiments have
shown that repulsion occurs in one specific configuration; a plate and a sphere, instead of two flat
plates, have been used in the model, as it is difficult to arrange the plates in parallel at such a small
distance.
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Bukopucranus MmeToay ABOOIYHMX HAOJMKEHD VISl YUCEJIbHOT0
AOCJIIIKEHHSI HAHOEJIeKTPOMEeXaHIYHUX cucTeM i giero cuian Kasumupa

0O.C. Konuakoscbka, M.B. Cunopos

AKTyaJbHicTb. Po3rimsgHyTo mHMTaHHA NOOYIOBM METOAY OBOOIYHMX HAOMMKEHb 3HAXO/DKEHHS IOAATHOTO pPO3B’SI3KY
HEIiHIIHOT KpalioBO1 3a7adi, [0 MOJENTIOE EIEKTPOCTATHYHY HAaHOCIEKTPOMEXaHIYHy CUCTEMY IIiJ] i€l 30BHIMIHBOTO TUCKY.
HaBenena MmaremMaTH4Ha MOJENIb BPaxoBye BIUIMB cuil KasumMupa sK JOJAaTKOBY CHIIYy TSDKIHHS MDK KOMIOHEHTaMH
HanocucteM. OCOOIMBICTIO TAaKMX CHCTEM € HEIHIMHE SBHILE HeCTaOlIbHOCTI BIAXHMIISHHS, SIKE€ BUHUKAE BHACIIIOK B3a€MOIIL
CTPYMOTIPOBITHUX TUIACTHH i/ JIEF0 KPUTHYHOT eJIEKTPUYHOI HanpyrH. Lle siBuie 3HauHO 00MEKye iana3oH CTIMKUX CTaHIB
CHCTEMH Ta XapakTepHe Uil 0araTboX HaHONPHCTPOiB, 30KpeMa, aKCelIepoOMETpiB, IEepeMHKadiB, MIKpOI3epKal Ta
MiKpope3oHaTopiB Tomo. [ NOCII/DKEHHS! CTIHKMX CTaHiB HAaHOEJIEKTPOMEXAHIYHHX CHCTEM 3alpOIIOHOBAHO JOCIIIHTH
mapamMeTpy MOJICNI Ta OTPUMATH iX OLlIHKH.

Merta. Kopucryrounck MeToqaMu Teopii HETiHIIHUX ONepaTopiB y HamiByHOPSIKOBAaHMX OaHAaXOBHX MPOCTOpaxX PO3pOOHTH
MeTo/ ABOOIYHUX HAOMMKEHb PO3B’3aHHS [TOCTABIICHOT 3a/1a4i.

Metonu pocaiinxkennsi. HeniniliHe enminTH4YHe PIBHSHHSA, IO MOJETIOE POOOTY €IEKTPOCTATHYHOI HAHOEIEKTPOMEXaHIIHOT
CHCTEMH 3a JOIIOMOTOI0 MeToAy (YHKLiH I'piHa 3aMiHIOETbCS €KBIBaJEHTHUM iHTETpaibHUM DIBHAHHAM [ amMeprureiina.
3a3HayeHe iHTerpajgbHe PIBHSAHHS PO3TIIIIA€THCS SIK HENiHIHHE olepaTopHe PIBHSHHS 3 MOHOTOHHHM OIIEpaToOpoOM y IPOCTOpi
HeTlepepBHUX (YHKIIH, HaMIBYIOPSIKOBAHOMY 3a JOIIOMOTOI0 KOHyca HeBix eMHHMX (yHKIiH. OTpHMaHO yMOBH iCHYBaHHS
€IMHOTO JTOJIATHOTO PO3B’ 3Ky PO3MIISAAYBaHOI 3a/1a4i Ta JBOOIYHOT 301KHOCTI 10 HHOTO MOCIiTIOBHUX HAOIMKEHb.

PesyasTaT. Po3pobnennit MeTon mporpaMHO peanizoBaHO Ta JOCIIDKEHO NMPU PO3B’s3aHHI TECTOBUX 3ajad. PesymbraTn
00YHCITIOBANEHOTO EKCIIEPUMEHTY HaBEJICHO Y BUTILAAI TpadiuHoi Ta TabmmyHo1 iHdopMmarii.

BucnoBkn. [IpoBeneHi 00YHCITIOBaTIbHI €KCIEPUMEHTH MiATBEPAWIN €(EKTHUBHICT PO3pOOJIEHOTO MeTona i MOXYTh OyTH
BUKOPHUCTaHHI Ha MPAaKTHUII TPH pPO3B’SA3aHHS 33Ja4 MAaTEeMaTHYHOTO MOJENIOBAHHS HENIHIMHUX TIPOLECiB Yy MIiKpo- Ta
HAHOEJIECKTPOMEXaHIYHUX CHCTeMax. [IepCHeKTHBH MOAANBLIMX JOCTIIKEHb MOXYTh IOJATaTH y 3acTOCYBaHHI METONY
ITBOOTYHUX HAOMMKEHB U1l MOJIENIel HaHOSIIEKTPOMEXaHIYHIX CHCTEMaxX 3 BIAMITOBXYIOUNMH cuiiaMu Kasumupa.

Knrwowuoei cnosa: memoo 0606iunux nHabausxcens, yuxyia I pina, ineapianmuuil KonycHull 8i0pi3oK, MOHOMOHHUL ONepamop,
HAHOENeKMPOMEXAHIUHA cucmemd, 308HIuHIL muck, cunu Kazumupa.
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