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The paper presents numerical simulations of liquid sloshing in the partially filled fuel tanks subjected to vertical acceleration.
The tanks are considered to be shells of revolution, and a liquid inside the tank is supposed to be incompressible with viscosity
effects being accounted for. The liquid motion is irrotational, and a velocity potential can be introduced. The boundary value
problem is formulated for the Laplace’s equation to obtain the velocity potential and the free surface level. Non-penetration
boundary conditions are used at the wetted surface of a shell. The kinematic and dynamic boundary conditions are given on the
free liquid surface. Effects of a surface tension are included into the Bernoulli equation as an additional pressure that is
proportional to the mean curvature of the free surface. It allows considering coupled effects of both gravitational and capillarity
waves. The boundary value problem is solved by using boundary element method. The system of the Mathieu equations is
obtained and modified according to the damping effects. These effects are estimated, and stability regions on Ince-Strutt diagram
are specified.
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JemMnpyBaHHs KOJMBAHb PilUHH Y pe3epByapax IijJ Ji€l0 BePTHKAJIbHOL
30ypOBAJIbHOI CHJIM 3 BAKOPUCTAHHAM METOAY TPAHUYHMX €JIeMEHTIB

Mupounenko Mapist acnipaum

JleoHigiBHa Incmumym npobrem mawunobyoyeanus im. A. H. Iliocopnoco HAHY, eyn.
Hooicapevroeo, 2/10, Xapxis, 61046, Yrpaiua,
acucmenm Kageopu 3eMenbHO20 AOMIHICMPYSAHHS MA  2e0IH@OPMAYIUHUX
cucmem
Xapxiecokuil HayionanvbHull yHisepcumem micvkozo eocnodapcmaa im. O.M.
bexemosa, eyn. Mapwana bBasicanosa, 17, Xapxie, 61002

VY crarTi MoAaHoO YHCENbHE MOJIENIOBAHHSA BUMYIICHHX BEPTHKANGHUX KOJIMBAHb PIJUHHU y YaCTKOBO 3alIOBHEHUX MAIMBHUX
Oakax. MeTow MaHOTO MOCTI[KEHHS € BUKOHAHHS YHCIIOBOTO aHAJi3y piBHS MiOHOMY PIAWHH TPU BpaxyBaHHI BIUIUBY
nemmyrounx QakropiB. PesepByapu po3rismaloThCcs SK OOONOHKHM OOEpPTaHHS, IO 3allOBHEHI HECTHUCIMBOIO PIIHHOKI 3
ypaxyBaHHSM BIUTHBY B's3K0cTi. [Ijis1 00070HOK 00epTaHHs, 3aIIOBHEHUX PiAMHO0, PO3TILIHYTO 3B's3aHy 3a1ady. Pyx pinuHu €
0e3BUXPOBUM, i MOXKHA BBECTH MOTeHIian mBuakocti. ChopMyIso0BaHO KpaioBy 3a1ady st piBHIHHA Jlamaca s OTpUMaHHS
MOTEHIlialy MIBUAKOCTI Ta PiBHS BUJIbHOI MoBepxHi. Ha 3MoYeHiil moBepxHi 000JOHKH BUKOPHCTOBYIOTHCS I'DaHWUYHI YMOBH
HEMPOTIKaHHs, a TaKO)K HaBeAeHI KiHEeMaTH4YHa Ta JWHAMiYHA T'PaHUYHI YMOBH Ha BUIBHIM moBepxHi pimunHu. Crodartky
MPOBE/ICHO aHali3 BILIMBY JeMI(yBaHHs Ha pi3Hi pianHu. [Ipumyckaemo, 1110 MOBEPXHEBHI HATAT HE BpaxoByeThesl. OTpUMaHO
CUCTeMY piBHSHb Matbe 3 ypaxyBaHHsAM JeMndyrounx edekTiB. [aHo omiHKK IHX edeKTiB, 1 BKa3zaHi o01acTi cTiKOCTI Ha
niarpami AliHca-CtperTa. BuBueHHS BINIMBY OBEPXHEBOTO HATSTY BUKOHYEMO, BUKOPHCTOBYIOUH CKIHUCHHI 3HAUSHHS YHCIIa
Bonna. [ToBepxHeBHil HATAT BKIIOYAIOTHCS B PIBHAHHS BepHyIuli SK NOJAaTKOBHU THUCK, MPOTOPIIHHUI cepenHiil KpUBH3HI
BiJIbHOI TOBepXHi. Lle 103BOsIe BpaxoByBaTH SIK TpaBiTalliifHi, TaK 1 KamiIsApHI SBUINA MPU PyCi BUTBHOT MOBEPXHI PiIHHU.
KpaiioBa 3agaua po3B’3y€eThbCsl METOZIOM FPAaHUYHUX eJIeMeHTIB. [IJIs JoCHiKeHHsI SIBUIIA [UIECKaHb BPAXOBAHO Pi3Hi 3HAYCHHS
yucna Bonga mnst pisHux piguH. OIMHIOIOTECS e(peKTH B'I3KOCTI Ta YTOYHIOETHCS IX BIUIMB Ha CTaOUIbHICTH pyxy. byio
IPOAEMOHCTPOBAHO, 1110 B 30HAaX HECTIHKOCTI Aiarpamu AiiHca-CTperTa IpH BpaxyBaHHI B'S3KOCTI 3'SIBISIOTHCS HEBEJIUKI 30HH
CTabiIbHOCTI PyXy Ta 30HHU CTIHKOCTi 301IBLIYIOThCS 31 301bIICHHSIM KoedinienTa aemndipyBanns. OTprMaHi YKCIOBI JaHi
BKa3yIOTb Ha T¢, 110 30LIBIICHHS ITOBEPXHEBOTO HATATY MIPUBOAUTD 10 301TbIIEHHS YaCTOTH KOJIMBAHb Ta 3MEHIIIEHHS aMILTI TN
KOJIMBAaHb.

© Myronenko M., 2021
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Knrwwuoei cnosa: mamemamuyne Mooenr08anHs, NIECKAHHI, MENOO SPAHUYHUX eleMeHMI8, 8LIbHA NOBEPXHSL, 2PAGIMAYIIIHI XGUJ,
KaniiapHi xeui.

HNemndupoBanune KoJjed0aHuil »KUIKOCTH B pe3epByapax noj JeiicTBueM
BEPTHKAJIBHON BO3MYIIAKIIECH CHJIBI C HCII0JIB30BAHHEM METOAA
TPAHMYHBIX 3JIECMEHTOB

MuponeHko Mapust  acnupanm
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B crathe mpuBeneHBI pe3yNbTaThl YHCIEHHOTO MOJAEIHPOBAHUS BBIHYXKICHHBIX BEPTUKAIBbHBIX KONEOAHUH KHUAKOCTH B
JaCTUYHO 3allOJHEHHBIX TOIUIMBHBIX OakaX. PesepByapsl paccMaTpHBAarOTCs Kak OOOJOYKM BpallEHWs, 3alONHEHHbIE
HEC)KMMaeMOW JKUJIKOCTBIO C YYETOM BIMSHHUS BS3KOCTH. JIBH)KEHHE JKMIKOCTH SIBISETCS OE3BHXPEBBIM, M MOXKHO BBECTH
notenuan ckopoctu. ChopmynupoBaHa KpaeBas 3azava Uil ypaBHeHus Jlamiaca 1uist onpezesieHus IOTeHIMana CKOPOCTH U
YpOBHsI cBOOOIHOIT OoBepXxHOCTH. Ha cMO4YeHHOH OBEpXHOCTH 000JI0YKHU BBIIOJIHSIOTCS TPAHUYHbIE YCIOBUS HEMPOTEKAHNS,
a TaKoKe IMPHUBEICHbl KNHEMaTHIeCKOe U IMHAMIYECKOE TPAaHUYHBIE YCIOBHUSI Ha CBOOOTHON MOBEPXHOCTH KHUAKOCTH. DPDeKThI
MOBEPXHOCTHOTO HATSHKEHMS BKIIOYAIOTCA B ypaBHEHHE BepHyIH Kak JOMONHHUTENBHOE AABICHUE, MPOIOPIHOHAIBHOE
cpenHeil KpUBH3HE CBOOOJHON MOBEPXHOCTU. DTO MO3BOJIET YUUTHIBATH KaK TPAaBUTAIMOHHbIE, TAK U KAIMIIIAPHBIC SBICHUS
NP JIBHKEHUH CBOOOIHOM MOBEPXHOCTH KUAKOCTH. KpaeBas 3amada pemaercs METOAOM TPaHWYHBIX 371eMeHTOB. IlomydeHa
cucreMa ypaBHeHHI Matse ¢ yueroMm nemmn¢upyrommx 3¢dexroB. J[aHbl OHEHKH 3THX 3PQPEKTOB M yKa3aHbl 00IaCTH
ycrounBocTu Ha auarpamme AitHca-CTperra.

Kniroueswvie cnosa: mamemamuueckoe MO@E/ZMPOGCIHU@‘, niecKanuA, memoo CPAHUYHBLX D]1E€MEHMO8, c80000Has noeepxHocmo,
epasumayuOHHble 60JIHbl, KANUJIAPHbLE 60JIHbL.

1 Introduction

The boundary elements methods (BEM) have been widely used in engineering in last decades,
especially for solving the fluid-structure interaction (FSI) problems. The main advantage of using BEM
is reducing dimensions of the problem without losing accuracy. So, for three-dimensional FSI problems
we only have to discretize the boundary of the fluid volume. Now BEM is successfully applied to the
multi-medium problems considering fluid-solid, fluid-structure-soil or air-fluid interactions. The special
attention here should be paid to the boundary conditions on the interface surfaces. It is topical in aero-
space applications, especially considering low-gravity conditions. There is a lot of research devoted to
liquid sloshing in ground gravity conditions. The first simulations relied upon mechanical analogies of
pendulums or springs to simulate the resultant dynamic pressure on reservoirs during sloshing are
presented in [1, 2]. Comprehensive reviews of the sloshing phenomenon, including analytical and
experimental research were done by Abramson [3] and Ibrahim [4]. The boundary conditions with the
surface tension effect were obtained by Ibrahim in [4] and Myshkis et al in [5] by including the pressure
changing across the free liquid surface described by the Laplace — Young equation. The sloshing motion
that occurs in a low gravity differs drastically from the sloshing in the ground gravity [6]. It should be
noted that in [4] Ibrahim concludes that exact solutions for the linear liquid sloshing are limited to tanks
with straight walls (rectangular and upright-cylindrical containers). However, it is specified in [7], that it
is difficult to directly apply computational fluid dynamics models to designing spacecraft attitude control
devices because the analysis is very cumbersome and time-consuming. So, it is important to elaborate
effective methods based on fast numerical procedures [8, 9]. Recently, a series of sloshing model tests
for various viscous liquids have been elaborated, that allows investigating the effects of liquid viscosity
on sloshing [10, 11]. The experimental results show that the liquid viscosity has an important effect on
sloshing pressure [12, 13].

In this paper the boundary element method is applied to simulation of the liquid vibrations in rigid
tanks, the effects of viscosity and capillarity being considered. The stability regions on the Ince- Strutt
diagram are specified.

2 Problem formulation
Let us consider a shell of revolution partially filled with liquid (Fig. 2.1). Here S; is a wetted part of
the shell, and S is the liquid free surface. It should be noted that free surface So represents the interface
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surface between two mediums: water and air. It is considered as a thin membrane if effects of the surface
tension are sufficient.

Fig.2.1 Fluid-filled shell of revolution

The fundamental equations of the liquid motion are following:
ap _ . avy .
G= div(pV;) + Q, p—S=pb+ div(ay). (2.1)
Here p and V are the liquid density and velocity, Q is the mass sources, b is the vector of volume
forces, and a5 is the stress tensor. So
op=—pl+T; T= zu(s" —%(divVﬂ),
where p is the liquid pressure, | is the unit tensor, and S is the stress deviator. Supposing the fluid flow is
irrotational, we can set the velocity potential as V; = grad ¢.
As in [8], let us consider the following formulation for determining the velocity potential without
including viscosity and capillarity effects
—o 29 9l _o. 9P o K_2
49 =0; ae2lsg, anso_o' ansl_o' ot anlg,
with the following additional condition

99
ffso %dSO = 0
Let o be a surface tension. It may be included in the Bernoulli equation by using the Laplace-Young
equation [14]

Ps = OK,
where k is the surface curvature. The expression for x can be linearized as follows [4]:
K = —A.

Here A is the surface Laplace operator, the function ¢ describes the shape and location of the free
liquid surface. So, the dynamical boundary condition on the free surface can be represented as

99 _s _
5c T 98— 5. 45¢ . 0. (2.2)

The above formulation allows us to define the velocity potential and the free surface level without
including the effects of viscosity [15].

2.1 Estimation of viscosity effects
The following presentations are applied for the velocity potential and the free surface level functions
[14]
@ = Y= €05 M 0 X3y dpic ()P (1, 2),
{ =5 Zinmo c0smO Ty A (P (7, 0).
Here
dmir(t) = ¢pe(t), m=0,1,...M, k=12,...N.
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The functions ¢,,,,(r, z) are obtained by using BEM described in [16]. These functions are the
solutions of the following boundary value problems (supposing for simplicity ¢, (1, z) = w(r, z)

2y =0 ¥ —og ¥_2 %
72y =0, an|51 =0, =% ¢| {fy, 5%dSo = 0. (2.3)
The equations (2.3) are reduced to the system of integral equatlons in the following form:

2mp + [f;, 1 () 451 = [, o e p| Sy + [Ty, o 2 (i) dSo = 0
- ffslwl%(m_—m) d51 — 2mpy + L [, o dSy = 0,

where |P — P,| is the Cartesian distance between points P and Po. In the equations (2.4) we denote by
the values of potential  in the nodes of the free surface So, and by y its values in the nodes of the wetted
surfaces S; of the shell. For the numerical implementation of the equations (2.4) the methods have been
developed in [17, 18].
After obtaining functions 1., (r, z) and the frequencies ., from [14] the next differential equations
are formed for evaluating the time-dependent coefficients ¢, (t)
Cnie(8) + A2 (14 “Z“)) cnk(®) =0, m=01,...M, k=1.2,...N. (2.5)
Here g is the gravity acceleration, . are sloshing frequencies.
It should be noted that the equations (2.5) are the Mathieu’s equations. Therefore, we suppose that
g,(t) = a,cosw,t. (2.6)
According to [19], the equations (2.5) are modified to calculate the viscosity and gravity effects as

Emic(®) + 7 Coie(O) + oy, (14 “Z“)) k() =0, m=01,...M, k=12,...N. (2.7)

Here
y = 4,47 /w P Wi = GoXmic + 2 ka (2.8)
111%0

It should be noted that the equations (2.7) are so called the damped Mathieu equations [20]. For their
numerical implementation the Runge-Kutta 4 order method is used.

(2.4)

3 Numerical simulation

Let us consider a cylindrical tank with the following geometrics: the filling level H=1m, the shell
radius R=1m. Taking into account different values of the Bond number, i.e., studying the effect of
damping on a liquid at different levels of gravity. First, consider the case when B, = oo, so we neglect
the surface tension forces. In the equation (2.8) we have the following expression for the frequency:
wo? = gox?,. Let us consider the vibrations corresponding to the first harmonic. The values of the
characteristic wave numbers are given in Table 1.

Table 1. Characteristic wave numbers for the 1st harmonic

n Characteristic values y;,
1 1.841183781
2 5.331442774
3 8.536316366
4 11.70600490
5 14.86358863

We consider various variable components of the residual acceleration g,(t), but we believe that this
acceleration is harmonious.

In Table 2 the values of kinematic viscosity for some typical liquids, such as water, nitric acid,
kerosene, hexane, and nitrogen tetraoxid are shown.
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Table 2. Kinematic viscosity value

. . Kinematic viscosity, v o
Ne Fluid 105 m2/sec. Temperature, C
1,13 15,6
! Water 0,55 54,4
5 Nitric acid 25 % 0,6957 20,0
Nitric acid 100 % 0,4934 20,0
3 Kerosene 1,2-45 (2,71) 20,0
4 Hexane 0,683 178
0,401 37,8
5 Nitrogen tetraoxide 0,2917 20,0
The surface tension values for typical liquids at various Bond numbers B, = 1,B, = 2,By = 3, By =
4, B, = 5 are presented in Table 3.
Table 3. Surface tension values
Densit Surface tension, H/m
. . ensity,
Ne Fluid kg/ m3 Bond number, B,
1 2 3 4 5
1000 100,00 50,00 33,33 25,00 20,00
1 | Water
986 98,60 49,30 32,87 24,65 19,72
2 | Nitric acid 25 % 1150 115,00 57,50 38,33 28,75 23,00
3 | Nitric acid 100 % 1520 152,00 76,00 50,67 38,00 30,40
4 | Kerosene 850 85,00 42,50 28,33 21,25 17,00
5 | Hexane 684 68,40 34,20 22,80 17,10 13,68
643 64,30 32,15 21,43 16,08 12,86
6 | Nitrogen tetraoxide 1440 144,00 72,00 48,00 36,00 28,80

We are interested in the damping effect during vibrations with a frequency w,, which approaches to
w41 or a double value 2w, ;.

First, the effect of damping on various fluids is analyzed, the surface tension not being taken into
account. The frequency w, = 3Hz has been chosen for forced vibrations, and it is not close to either w,

LALLM
VY

Fig.3.1 Influence of damping on vibration amplltudes for various liquids
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Figure 3.1 shows the amplitudes of fluid vibrations under the following conditions. It is assumed that
a, in the formula (2.6) is equal to a, =0.01, w, = 3Hz, g, = 0.1g.

Number 1 indicates the graph of the function in the absence of damping, namely, at y = 0, figures 2-4
refer to nitric acid (100%), water and kerosene respectively (the value of kinematic viscosity 2.71 10
éxm?/sec is taken).
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Further, taking into account the kinematic viscosity, we will consider kerosene, since the damping
effect is the most prominent in that case,.

Let us consider forced vibrations with the frequency w, = 1.8412Hz, atg, = 0.1g and at different
a,. As could be seen from Table 1, this frequency is practically equal to the fundamental frequency of
fluid vibrations.

Figure 3.2 shows the time dependences for the coefficient c;,(t) in the expansion for the function .

; VAVAVAVAVAVAUGﬁ\vAV%%%%%v %ﬂﬂ Q\, :
| I

2

Fig.3.2 Time dependence of ¢, (t) for different a, at w, = 1.8412Hz

Here numbers 1-5 correspond to the values a, = 0.01,0.05,0.07,0.09, 0.1. In contrast to the Mathieu
equation without damping, there is a zone of stability in the first unstable region (Fig. 3.3).
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Fig.3.3 Ince-Strutt diagram

It should be noted that in zones of instability of the Ince-Strutt diagram small zones of motion stability
appear, when viscosity is taken into account. According to [18], the stability zones increase with the
increasing damping coefficient.

A similar pattern is observed with forced vibrations of a fluid with a frequency equal to twice the
fundamental. The calculation data are shown in Fig. 3.4.

Here the numbers 1-4 correspond to the values a, = 0.01, 0.0075, 0.005, 0.004. In the case of
parametric resonance, only the motions at a, < 0.004 will be stable in the second zone (Fig. 3.3).
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Fig. 3.4 Time dependence of ¢;,(t) for different a, at w, = 3.6824Hz
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Next, we study the effect of surface tension, namely, we move to the finite values of the Bond number.
In this case, the frequency values are determined by the formula
0% =2 = e (1452) tan (ki o) (3.1)
mn g/Rz mn BO mn R2 '
Figure 3.5 shows the values of the free surface amplitudes for kerosene at various Bond numbers,
namely, By = 1,By = 2,By = 3,By = 4,By, = 5, B, = co. We investigate the movements caused by the
external load with a frequency of w, = 3Hz.

i
!

9

Fig. 3.5 Time dependence of ¢;,(t) for various Bond numbers at w, = 3.0 Hz

Here the numbers 1-6 correspond to the following values of the Bond number: B, = 1,B, = 2,
By = 3,By = 4,B, = 5, By = oo. From the numerical data it can be concluded that with the increasing
surface tension, the vibration frequencies increase and the vibration amplitudes decrease.

4 Conclusions

The boundary element method is applied to humerical estimations of the surface tension and viscosity
effects on liquid vibrations in rigid shells of revolution partially filled with the liquid. For the velocity
potential the boundary value problem is formulated with modified boundary conditions on the free
surface, taking into account the surface tension. The basic functions corresponding to the problem of free
surface vibrations have been obtained without considering the surface tension. Then the modified
boundary condition on the free surface has been used for obtaining the unknown coefficients. Various
Bond’s numbers for liquid sloshing of different liquids have been considered. The viscosity effects have
been estimated, and their influence on stability of motion has been specified. It has been demonstrated
that in the zones of instability of the Ince-Strutt diagram small zones of motion stability appear, when
viscosity is taken into account, and the stability zones increase with increasing damping coefficient.
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