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A second-order technique is suggested to study fluid motion in a two-dimensional hard-walled duct with two abrupt
constrictions. In this technique, the governing relationships are integrated via their rewriting in a non-dimensional form,
deriving their integral analogues, performing a discretization of the derived integral relationships, simplifying the obtained
(after making the discretization) coupled non-linear algebraic equations, and final solving the resulting (after making the
simplification) uncoupled linear ones. The discretization consists of the spatial and temporal parts. The first of them is
performed with the use of the total variation diminishing scheme and the two-point scheme of discretization of the spatial
derivatives, whereas the second one is made on the basis of the implicit three-point non-symmetric backward differencing
scheme. The noted uncoupled linear algebraic equations are solved by an appropriate iterative method.
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MopentoBaHHs Teuli y TPSIMOMY KOPCTKOCTIHHOMY KaHaJIl 3 JBOMa
MPSAMOKYTHUMHU OCECUMETPUYHUMH 3BY>KCHHSIMU.
YacTtuHa 2. AnbTepHaTUBHUHN MIXiA

Bopuciok Anapii unen-kopecnonoenm HAH Yxpainu, 0okmop izuxo-mamemamuunux HayK,
OutexcanpoBHY npOoGIOHUL HAYKOBULL CRIBPODIMHUK
Tucmumym ciopomexaniku HAH Yxpainu, eyn. Mapii Kanuicm, 8/4, 03680 Kuis
180 MCII, Ykpaina

3anporoHOBAHO AHATITUYHO-YHCENBHUH METOJA IPYroro IOPSIKY TOYHOCTI, KOTPHH [O3BOJNSE BUBYATH DPyX DIOWHH Y
JIBOBHMIpPHOMY >KOPCTKOCTIHHOMY KaHaJi 3 JJBOMa ITOCITIJOBHUMH JKOPCTKUMH OCECUMETPHYHUMU OOPUBHUMH 3BY)KCHHSIMHU.
BiH cknmamaeThest 3 I’ ATH OCHOBHHUX eTamiB. Ha mepimioMy 3 HUX BUOMPAIOTHCS BIAMOBIMHI MacuTaOu 3aaadvi, Ha OCHOBI SKHUX
MPOBOJUTHCS 0€3pO3MipIOBaHHS CIiBBIAHOIIEHb, IO ONUCYIOTh PYX PIAMHM Y JIOCHiKyBaHOMY KaHami. Jlani (apyruit eram)
BUBOJSTHCS IHTETPAIbHI AQHANOTH IUX OE3pO3MIpHUX CIIIBBIHOIIEHb 1 BUKOHYETHCS X IUCKperH3auis (Tperiii eram). Ha
YeTBEPTOMY €Talli 3B’s3aHi HEJiHiIWHI anreOpaidHi piBHSHHS Ui MIBHIKOCTI 1 THCKY, OIEpKaHi y pe3yibTaTi MPOBEICHHS
3a3Ha4eHOl IHUCKpeTH3alii, 3BONATHCA /O BIONOBIAHUX HE3AIEKHUX JiHIHHMX. J[Is OpOro mpHiMaroTbes (i3UIHO
0oOTpyHTOBaHI NPHUIYIIECHHS, BHUKOHYIOTHCS BIIOBiJHI MaTeMaTH4HI oOIepallii, a TaKOX 3aCTOCOBYEThCS IIpOLEAypa
3HAXO/KEHHS Ta Y3TOJDKEHHS MK cO0OI0 TOCHITOBHUX HAONMMKEHb HNIyKaHWX BedwdwH. [Ipu mpoMy KijgbKicTh HaOIMKEHb
BU3HAYAEThCS HEOOXITHOI TOYHICTIO PO3B’si3Ky. | Ha ocraHHbOMy (TI’SITOMY) eTarli BHOMPAEThCS METOA PO3B’sI3yBaHHS
BKa3aHUX JIIHIMHUX PiBHSAHB. 3a3HaUCHA BHUIIE TUCKPETHU3AIliS CKIANAETHCS 13 MPOCTOPOBOT Ta YacoBOi yacTuH. [leprira yactiHa
BUKOHY€EThCS Ha OCHOBI BHKOpHCTaHHs total variation diminishing cxemm, a TakoX JBOTOYKOBOI CXEMH JAMCKpeTH3aLil
MPOCTOPOBUX MOXigHUX. IIpM mnpoBemeHHI X Apyroi YacTHHM JUCKPETH3allil 3aCTOCOBYETHCS HEsIBHA TPUTOYKOBA
HECHMETpHIHA cxeMa 3 pisHumsIMH Hazag. Lo crocyeTbest MeTomy po3B’si3yBaHHS BKAa3aHHWX BHINE JIIHIHHUX PiBHAHB, TO L€ —
BIJITIOBITHUI iTepaIliitHUil METOJI, SIKMIA MOCTIJOBHO BUKOPUCTOBYE METOJIH BiIKIIaeHOT KOPEKIii Ta CIIPSHKEHUX TPaIieHTIB, a
takox consepr ICCG (ms cumerprunnx Marpuilp) Ta Bi-CGSTAB (1t acnMeTpuYHEX MaTpHUIb).

Knrwwuoei cnosa: pyx piounu, niockuil Kauau, 0OpueHe 36YHCeHHsl, Menoo.

MoaenupoBaHue TEUEHUS B IIPSIMOM KECTKOCTEHHOM KaHaJIe C IByMs
PAMOYTOJIbHBIMU OCECUMMETPUYHBIMU CYKCHUSIMH.
Yactb 2. AIbTEpHATUBHBINA MOIXO/]

Bopucox Anapeit unen-koppecnondemn HAH Yxkpaunvi, dokmop ¢uzuxo-mamemamuieckux Hayx,
AJIeKCaHIPOBUY 8€0VUULL HAYYHBII COMPYOHUK
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Hucmumym eudpomexanuxu HAH Vkpaunei, yn. Mapuu Kannucm, 8/4, 03680
Kues 180 MCII, Yxpauna

IIpemtoxkeH METOT BTOPOTO MOPSIIKA TOYHOCTH, TIO3BOJISIIONIH H3y4aTh ABIKEHHE XKUIKOCTH B IByXMEPHOM XKECTKOCTEHHOM
KaHale C JBYMsS OOpPBIBHBIMH CYKEHHSIMH. B 3TOM MeTolIe COOTHOUICHHs, OMKCHIBAIONIME BIDKEHHE HKHIKOCTH,
UHTETPUPYIOTCS MyTEM KX 00e3pa3MepHBAHMUS, MOIYYECHHS WX HHTETPANBHBIX AHAIOTOB, IUCKPETH3AIMH JTHX aHAIOTOB,
YIPOIIEHAS TOMY9ICHHBIX TIPH JTOM CBS3aHHBIX HEJIHHEHHBIX alreOpandecKux YpaBHEHHM, W IIOCIENYIONIETO PEIIeHHs
HE3aBHCHMBIX JIMHEHHBIX arebpandecKux ypaBHEHHIA, OMYYCHHBIX B PE3YNIbTaTe YKAa3aHHOTO YIPOIUCHHs. JIMCKpeTH3alus
COCTOMT W3 TIPOCTPAHCTBEHHON M BpeMeHHO# uacrteil. IlepBas 4acTh BBINOJHSETCA C HcHoIb3oBaHueM total variation
diminishing cxemsl, a Tak:Ke IBYXTOYECYHON CXEMbI JUCKPETH3AIMH MPOCTPAHCTBEHHBIX MPOM3BOIHBIX. [IpH MPOBEICHHUH Ke
BTOPOH 9aCTH IUCKPETH3ALNH IPUMCHSETCS HESIBHASI TPEXTOUCYHAsT HECHMMETPUYHAs CXeMa C Pa3sHOCTSIMH Ha3ad. YKa3aHHbIE
JIMHENHBIE aNrebpandeckne YpaBHEHHs PEIIAlOTCs COOTBETCTBYONIUM HTEPAIHOHHBIM METOIOM.

Knrwoueswle cnosa: dsusicenue sxcuokocmu, nA0CKUll KaHAl, 00pvleHOe CYACceHe, Memoo.

1. Introduction

Study of light and/or heavy fluid motions in ducts is an actual problem in gas and oil industry,
chemical industry, aircraft and car industry, architecture, medicine, municipal economy, etc. Among
others, here a significant interest is related to studying flow behavior in ducts with local constrictions,
such as wall deposits, welding joints, stenoses, etc. That is explained by the fact that such irregularities
in the duct geometry cause local changes in the flow structure and/or character, as well as changes in
the flow local and integral characteristics, etc. Those changes can result in the corresponding
consequences not only in the vicinity of, but also far from the irregularities (see, for instance, [1-8]).

As analysis of the scientific literature shows, study of fluid motions in ducts with local constrictions
has been paid much attention to. In those studies, straight hard-walled ducts and their constrictions of
the simplest geometries were considered. The basic flow (i.e., the flow upstream of a (first)
constriction) was laminar, axisymmetric and steady. As for fluids, they were assumed to be
homogeneous, incompressible and Newtonian®. These allowed one, on the one hand, to study (within
the framework of appropriate models chosen and with acceptable accuracy) the influence of the basic
parameters of duct, its constriction and the basic flow on the flow not only near but also far downstream
of the constriction(s), and, on the other hand, simplify significantly solutions to the corresponding
problems of interest (see, for example, [1-10]).

Among the results obtained in those studies, numerical methods, which have been developed to
investigate flows around duct constrictions, are of a particular interest. One of the latest of them was
presented in [11]. It has been devised to solve a problem of flow in a straight hard-walled two-
dimensional duct with two rigid constrictions of a rectangular axisymmetric shape. That method allows
one to study the fluid motion in the noted duct in the variables stream function-vorticity-pressure, has
high stability of a solution and a second order of accuracy in the spatial co-ordinates. However, its first
order of accuracy in the temporal coordinate should apparently stimulate researchers either to develop
more accurate appropriate computational techniques or to improve the method in such a way to make its
temporal accuracy higher.

In this study, an alternative technique is presented to solve the same problem. This technique uses
the fluid velocity and pressure as the basic variables, has nearly the same stability of a solution, the
same order of accuracy in the spatial coordinates and higher (i.e., the second) order of accuracy in the
temporal coordinate. However, due to the large amount of mathematical operations used in this method,
it needs more computational time to obtain a solution compared to the above one.

The paper consists of an introduction (Section 1), three main sections and a list of references. The
formulation of the problem to be solved is made and the corresponding governing equations, as well as
the boundary and initial conditions are given in Section 2. Then (in Section 3) the solution method to
the formulated problem is described in detail. Finally, the conclusions of the investigation are
formulated in Section 4 and a list of the literature cited is given.

2. Formulation of the problem

The formulation of the problem to be solved, as well as the corresponding governing equations and
the initial and boundary conditions are given in [11]. Therefore, here we shall only briefly remind all of
them.

1 The other types of ducts, their constrictions, fluids and the basic flow are not considered in this paper, because
they were studied much less intensively compared with the noted ones.
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An infinite straight hard-walled plane channel of width D, having two consecutive rigid
constrictions of a rectangular axisymmetric shape, is considered (Fig.1). The constrictions are situated
at the distance l;, from one another, and have the diameters d; and the lengths I; (i=1,2). In this
channel, a viscous homogeneous Newtonian fluid moves. The fluid has mass density o and kinematic
viscosity v . Its flow is characterized by a small Mach number and the rate q per unit depth of the

channel. In addition, the flow upstream of the first constriction (i.e., the basic flow) is steady and
laminar. It is necessary to study the flow around the constrictions.

)C2 1
&l
q
L. d] - d2 — D
0 xl
>
by 4 ho b lq

Fig. 1. Geometry of the problem and the corresponding computational domain.

The fluid motion in the duct is governed by the two-dimensional momentum equation, viz.
%Jruj%:_lﬂﬂ/ﬁ N | i=12, (2.1)
ot aXJ P 6xi aXJ aXJ
and the continuity equation, viz.
an /aXi =0. (22)
The boundary conditions consist in absence of the fluid motion at the channel wall, S.,, and on both
constrictions, S, (j=12), viz.

ui|Sch =0, ui|Sj =0, i=12. (2.3)

Apart from these, the flow rate g must be invariable along the channel axis, viz.
0q/0ox =0, q=U,D, (2.4)
and the parabolic velocity profile is specified outside the disturbed flow region due to the constrictions?,
viz.

:U0(1—4x§/D2),

u1|x1=—lu JyHy o4y u2|xl:_|u I 0 (2.5)

Relationships (2.4) are due to mass conservation in the channel, whereas conditions (2.5) are explained
by the consideration of a laminar basic flow in the problem.
As for the pressure p, it is assumed to be constant both sufficiently far upstream of the first

constriction, viz.

p| =const, = py,

and far downstream of the second one, viz.

X]_:—Iu
In addition, the difference between p, and py, Ap=p, — pq =const >0, should ensure the existence
of the given laminar regime of the basic flow. Also, without loss of generality, the pressure pqy is taken

to be zero®, and the magnitude p, (which now is equal to Ap), like the pressure in the whole duct,
needs to be found.

2 This is the region before the constrictions, where the flow is still undisturbed by them, and far behind them,
where the flow is already undisturbed (i.e., where the flow disturbances disappear, and it becomes like the basic
one)).

% A choice of the value of py always can be compensated for by the choice of the corresponding value of p,, in
such a way that the corresponding pressure drop Ap (which governs fluid motion in the duct) remains

unchangeable.
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Apart from these, the normal pressure derivative is zero on the rigid walls of the channel and both its
constrictions, viz.

(p/én) 0, j=12. (2.6)

SenSj
Regarding the initial conditions, they are in absence of fluid motion in the channel at the time instant
t=0 [11], viz.

Uil,_g =0; Pl =0- (2.7)

In relationships (2.1)-(2.7) x,x,, X3 are the rectangular Cartesian coordinates shown in Fig. 1 (here

the axis x3 is normal to the plane x;x, and directed to us); t the time; u; the local fluid velocities in
the directions x;; Uy and

Ya :B_[')[/Zuﬂxlz_'u'|1+|12+|2+|d ax =§Uo

the maximum and averaged (over the duct cross-section) basic flow velocities, respectively; and the
values of the distances I, and I4 are given in Subsection 3.1. In addition, hereinafter the vector n

denotes the outward unit normal to appropriate surface, and a summation on repeated indices is
assumed throughout the paper.

3. Solution method

A solution to the problem formulated in the previous section consists of the six consecutive steps.
More specifically, initially a computational domain is chosen and divided into appropriate small
volumes. This is followed by rewriting the relationships of concern (presented in Section 2) in a non-
dimensional form. Then integral analogues of the obtained non-dimensional relationships are derived by
their integrating over the indicated small volumes. After that an appropriate discretization of the derived
integral relationships is performed. Finally, the algebraic equations, which are obtained after making the
discretization, are simplified in an appropriate manner and solved. Let one consider each of these steps
separately.

3.1. Computational domain and non-dimensional relationships
The domain, in which a solution to the formulated problem should be found, is shown in Fig. 1. It is

restricted by the duct sections X =—l,, X =l +ho+ly +lg and X3 =X35, X3=2X35 +dx3 (where
dxg <<1 and xg, is the arbitrary value of the coordinate X3). Herewith the left boundary of the
domain, x =-l,, is taken upstream of the first constriction, where the flow is still undisturbed by it,
and the right boundary, x =l +lj +1o+1y, behind the second constriction, where the flow
disturbances already disappear, and the flow redevelops into the basic state at x; =-I,. As for the
distances 1, and |y, for the basic flow velocities considered in this study*, their values should vary in
the ranges [2-4, 6, 7, 11]

I, <0.5D, lg <12D. (3.1)

The chosen computational domain is divided into the small volumes V,,, by the duct cross and
axial sections, X =X, and Xy =Xoy (Where X, =Xyn_gy +d%, dX <<l and Xpm =Xp(m_g) +dX2,
dx, <<1), as shown in Fig. 2. Herewith, in order to have a smooth velocity profile in an arbitrary duct
cross-section, the steps dx; and dx, are reduced in an appropriate manner as one approaches either the
duct or constrictions’ walls.

Regarding scaling factors of this problem, these are the channel width D to be used as the length
scale, the cross-sectionally averaged basic flow velocity, U, =q/D, as the velocity scale, the ratio
D/U, as the time scale, and the double mean dynamic pressure of the basic flow, pU§ as the
pressure scale.

4 Since in this paper the question is about a laminar basic flow, its velocity should not exceed the value at which
the Reynolds number (which is based on this velocity and the duct width) reaches the critical value of 2000 [1-4,
6-8, 11].



Bulletin of V.N. Karazin Kharkiv National University

22 series «Mathematical modeling. Information technology. Automated control systems» issue 51, 2021
/d'JC3
X2(m+2)
'Cn(mH) X
X(mi1) Vi(m+1)
dxy .C(n—l m o *Com .C(n+1 m X
X3
Vorvm | Vim VoriDm
Xom
*Cn(mi1)
*2(m-1) Via(m-1)
X(n-1) Xn dy X(n+l) M(n+2)

Fig. 2. A scheme of fragmentation of the computational domain into small volumes.

For these scaling factors, the non-dimensional forms of the momentum equations (2.1) and the
continuity equation (2.2) are as follows, respectively

oU; +U| oy; __oP N 1 0 | oy , i—12. (32)
oU; /0X; =0, (3.3)
and the non-dimensional analogues of conditions (2.3)-(2.7) and (3.1) are written as
Ui|sch,sj:°' Uil;_o=0, 8Q/dX;=0, Q=1, i,j=12,
_ 2 _
U1|Xl:_LU’L1+L12+L2+Ld _1'5(1_4)(2)’ U2|Xl:_LurLl+L12+L2+Ld =0 (34)
Py :P|X1:L1+L12+L2+Ld =0, (aP/an)Sch‘Sj =0, P_,=0, L,;<05, Lg<12.

In relationships (3.2)-(3.4) U; =u; /U, are the dimensionless fluid velocity components in the
directions  x;; Xj=Xj/D the dimensionless co-ordinates x; (i=123); T=tU,/D the
dimensionless time; P:p/(pug) the non-dimensional pressure; Rep =U,D/v the Reynolds
number of the cross-sectionally averaged basic flow; Q=q/(U,D) the non-dimensional flow rate in
the duct per its unit depth; Py = py /(pug) the non-dimensional pressure py; L,=1,/D and
Ly =lg / D the dimensionless distances I, and I4;and Ly=k/D, Lip=ky/D and L, =1, /D the
dimensionless lengths |, l;, and I, respectively.

3.2. Integral relationships and their discretization

Integral equations and their discrete analogues
Integral analogues of equations (3.2) and (3.3) are obtained by their integrating over the control
volumes® V. It gives

0 oy; oP 1 o | oY,
— [[fu;adv + [[fU; =LdV =- dv + Lldv, (3.5
e Fats
([ ou; 1 6X;dv =0. (3.6)
Vnm
The application (wherever possible) of the Gauss theorem, viz.
f[[v-gdv=[[g-ds, [[] Vydv = [ yds, dS =ndS 3.7)
Vnm Snm Vnm Snm

® In making this operation, the appropriate conservation laws take place in each volume V,, .
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to the terms of equations (3.5) and (3.6), and/or the expansion (wherever needed) of their integrands
(which, for the convenience, are denoted by f(r)) into the Taylor series around the mass center, C,,,

of the volume® V,,, (see Fig. 2), viz.
f(0) =F(re, )+ V|, (r—re,)+O((r-rg,)?)

= {[[ rdV /| Vom| ‘r—rcnm‘«l, reVom, F=Xiei, e =Xic_8, (3.8)
Vm

X]'Cnm = Xlﬂ +dX1 / 2, chnm = sz +dX2 /2, X3Cnm = X3a +dX3 /2 ,
further use of the first two terms of these series, viz.

f(r)=f(r, )+V(E),_ -1 ) (39)

and making appropriate discretization of the temporal and spatial derivatives, as well as the application
(wherever necessary) of the TVD-scheme’ [12, 13] allows one to proceed to considering the discrete
analogues of relationships (3.5) and (3.6), which have the second order of accuracy (here V is the

gradient; S,,, the lateral surface of the volume V,,; r and e the position vectors of an arbitrary

point in the region V,,, and its mass center C,,, respectively; [V, |=dX;dX,dX3 the volume of the
region V,,; the point in the Taylor series indicates scalar product of the corresponding magnitudes and
ej the unit directivity vector of the axis X;).

Indeed, taking account of the linear representation (3.9) of the integrand U;in the first (unsteady)
term of equation (3.5), viz.

Ui(1) =Uj (1, ) + VUl (r=rg,,).
as well as the use of the integral
I (r-re,, Jav =0 (3.10)
(that follows from (3.8)) results in significant simplification of the term, viz.

ST

After that the implicit three-point non-symmetric backward differencing scheme?® [8, 12, 13], viz.

| Vam| - (3.11)

kK oek-l k=2
af(rcnm’T):l'Sanm 2fCnm +0. 5f o (312)
oT AT
is applied to make discretization of the temporal derivatives in (3.11). Here AT is a small fixed time
step, fk a value of the function f at the point C,,, at the instant of time T =kAT to be found, and
nm

fkl

Cnm

and fk =2 jts known values at the same point found at the previous time moments
n

m

® Since the fluid in the duct is homogeneous (see the problem formulation), the mass center of the volume V,,

coincides with its geometrical center. The analogous situation is with the mass center of each side face of the
volume V.

" This is an abbreviation of the Total Variation Diminishing. The TVD-scheme provides satisfactory accuracy
(that is higher than the first order) and finiteness of a solution [12, 13].

8 This scheme has a second order of accuracy and is applied when the computational grid (see Fig.2) is immovable
(this provides fixed positions of the mass centers of the corresponding small integration volumes) [12, 13].
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T =(k-1)AT and T = (k —2)AT , respectively®.
As for the second (convective) term of equation (3.5), initially its integrand is rewritten (based on
the continuity equation (3. 3)) in the equivalent form, viz.
j = ZV'(UUi), U:Uiei, U3=O.
6X X |

After that the first form of the Gauss theorem (3.7) is applied to the modified convective term, viz.

jjju au, dV \{jj (V-(UUj))av = Sjj (UU;)-nds . (3.13)

Since the side surface S, of the volume V,, consists of the six flat faces Sr(]'r% which have the
outward unit normals n; (i=1,...,6, Fig.3), viz.

i
=>sfd, N =e;, Np=-€, Ng=e, Ny=-€, Ns=e€3, Ng=-€3,
-
Fo
1
1
1
1
1
-¢ ' —&3 4
P : '." _—
-
5 1 43 8E
NS s
: s nn
i e
e 4
Lo Sr(mz) .
—éy ¥

Fig. 3. The small volume V,,, its side faces S,g'n)] and their outward unit normals n; (i=1...,6).

and the integrand in the surface integral in (3.13) can be represented (to small values of the second
order of accuracy) by the linear part of its Taylor series around the mass center® Cr(]'% of the face Srﬂ'% ,
viz.

— . Ar =T ¢ () - X.e: - B
f(r)—f(rcr(].r%)+V(f)|r:rq(1in)1 (r rcg.%), ro _Sj(.lf) rdS/‘S SALr=Xiei, o = chr(].r%ej, (3.14)
this allows one to simplify relationship (3.13) significantly, viz.

4

mu au, T gy = z [ (U;)-njds = z(uu ), g J‘s )‘ 71anu () (319)

J j 15(1) j

(in (3.15) ‘Sr(]rjr?‘ is the area of the face S,("Jn) (see Fig. 3) and

R =U(r(p)N;

Srgr%w)‘=Ui(ngrjn))nji

s,ﬁrin)‘ (3.16)

the fluid flow across the face Sr("Jn) ; in addition, here the integral

° They are computed at the indicated (previous) time stages, whereas at the initial time T =0 all the parameters of
the problem are the known values.
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I} (r—rc(j))dS =0

H nm
9

has been used that follows from (3.14) and is similar to (3.10)).
Further the values of the functions U; (i=12) at the mass centers Cr("JT? of the faces S,("Jn) in
relationships (3.15), (3.16) are determined via the values of these functions at the mass centers of the

control volumes having the joint faces S,ﬁ,!n) (see Fig. 2 and Fig. 3). For this purpose, the following
TVD-scheme’ is used [12, 13]

f(rcm):fl(”+CD(f2(J)—f1(J)), (3.17)

Here £ is the value of the function f at the point C{ found with the use of the backward
differencing scheme which has the first order of accuracy, viz.

(i) )" em ) Fig) >0,
) B <o,

the point C; the mass center of the control volume having the joint face Sr(#n) with the volume V,, ,
viz.

C1=Chnm: C2=Cn-nm+ C3=Cnm1), C4 =Cr(m-1) -

£$) the value of the function f at the point C{}) obtained on the basis of the central differencing
scheme of the second order of accuracy, viz.

i =ajf(r, ) +Q-api(r,),

with the coefficient «j which is the ratio of the distances between the appropriate mass centers, viz.

/

aj= rcr("jn) —I’Cj rcnm —er

and @ the nonlinear flow restrictor, viz.
o0 =max{Omin(zn; 143, 13 ={u{rgg )0, Jrlo(, - legy |
where the coefficient S is chosen to be equal to' 0.5.

The simplification procedure for the third (gradient) term of equation (3.5) is based on application of
the second form of the Gauss theorem (3.7) to it, viz.

[[] vPdv = [ Pnds,

and further performing the operations with the surface integral which allowed one to proceed from
(3.13) to (3.15). It gives

Py S ()
\{” > V= le I(I,) Pnj;dS = J_ZlP(rcgrjg nji ‘Snm‘ : (3.18)
nm =S =

After that the pressure values at the points Cr(]r{? in (3.18) are found with the use of the TVD-scheme
(3.17).

10 In general, the parameter S can vary in the ranges 0< £ <1. Herewith the decrease of A corresponds to

higher accuracy and lower stability of the computation, and vice versa, the computation accuracy decreases and
the computation stability increases as £ increases [8, 12-16].
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Finally, the fourth (diffusive) term of equation (3.5) can be simplified after rewriting its integrand as
_0 |9Yi =V, =V-VU;,
X j| 0K
further application of the first form of the Gauss theorem (3.7), viz.
m [ Jdv [[| v-vU;dv = [[ VU;-nds
Vnm Snm

and making the operations with the surface integral which have been used in proceeding from (3.13) to
(3.15). These result in

m [ Jdv > [ VU;-njds = zvu S (3.19)
j—ls(J) c q)
After that the following discretization of the spatial derivatives VU; | ) is performed in (3.19)°
oS
Vf|r:rc%) =eg; (of mxi)'”%ggg , (3.20)

(of /6X1)|r=rca> - ( F (o)~ T e )) JdXy, (oF 10%,)| . =( o)~ TP )) /dXy,

nm

(of /ax2)|r:rc(3) =(f(rCn )~ f(rcnm))/dxz, (of /ax2)|r:rc(4) =(f(rcnm)— t(r,, (mfl)))/dxz.
The availability of relationships (3.11), (3.12), (3.15), (3.17)-(3.20) allows one to write a discrete
form of the integral momentum equation (3.5):

k k-1 k-2
150" —-2U.7 " +0.5U. 4 4
IChm IChm 1IChm |V |+ F(J)kU k( )= ZVU_k(-) n
AT j=1 ICnrJn ReD j=1 ICnrln

i S(J) _

nm

s (3.21)

ZP(J) Jl

In (3.21) Fn(r{])k is the fluid flow across the face S,(#n) at the instant of time T =KkAT, P(J) the

pressure at the point Cr(vjn) at the time kAT , the fluid velocity components at T =kAT , Uit“) , are
nm

found on the basis of the scheme (3.17), and relationships (3.20) are used to compute the velocities’

k
gradients VU el

The right part of equation (3.21) also can be represented in the equivalent form, viz.

—(oP 1 0X; ) |vnm| (3.22)

It is obtained after expansion of the integrand in the gradient term in (3.5) into the Taylor series around
the mass center C,, of the volume V,,, further considering only the first two terms of the series and
using formula (3.10), viz.

HJ [Var|-
8X| r=re, T:kAT
As for the discrete form of the integral continuity equation (3.6), it looks as follows
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4 .
S U, g lsh

2

4 4

k j jk

= YU njilSsil|= X R« =o0. (3.23)
j=1 1o j=1

Here the fluid velocities Uit(j) are computed with the use of the TVD-scheme (3.17).
Relationship (3.23) is derived by rewriting (3.6) as

f[[ v-udv =0, (3.24)
Vnm

applying the first form of the Gauss theorem (3.7) to (3.24), viz.

[[[v-udv = [[ U-ndS =0,
Vnm Snm

subsequent making the operations with the surface integral which allowed one to proceed from (3.13) to
(3.15), viz.

6 4 .

[fu-nds=3 [J U-njdS=3 Urp)n; ‘sg,{?‘:o, (3.25)
Sun i=Lsif =

applying scheme (3.17) to the velocity U(rc(,-)) in (3.25) and taking account of relationship (3.16).

Discrete analogues of the boundary conditions and their application to equations (3.21), (3.23)
The discrete analogues of the boundary conditions for the velocity components and the flow rate

from (3.4) have the following form
ul'“ =1.5(1—4x§), u'z“ -0, (3.26)

Xy=—Ly, L+ L+ Ly +Ly Xp=—Ly L+l tlytly

uk =0, oQX/aX;=0, QX=1, L, <05, Ly<12, i,j=12.

Seh:Sj

They allow one to find the fluid flow, Fn(r{'])k , and the velocities’ gradients, VUikC(j) , in equations (3.21)
nm

and (3.23) on the boundary of the computational domain. In fact, it follows from relationships (3.16)
and (3.26) that (as expected) the fluid flow across the impenetrable walls of the duct and both
constrictions is zero, viz.

i

—(uk nalsi _ _
SchrSr (Uicrgrjn)njl‘snmms O, ' 1'2

ch,Sy

At the entrance and exit of the noted domain (which can be touched on by only the faces SS%) and
s of the volume V,p, , respectively (see Figs. 1 and 3)) one has

F (2k —_1.5(1-4X2)dX,dX2, F Dk —1.5(1=4X2)dX,dX»,
nm =L, ( 2) 2UA3 nm Xy=Ly+Lip+Lo+ly ( 2) 2UAN3
F )k — 4k =0.

My e Ly Ll tlptly 1 IXy=—Ly L+l Loty

As for the gradients VUikC(j) , on the upper and lower walls of the duct (which can be touched on by
nm

only the faces Sr(,f’% and Sr(]ﬁq) , respectively) they are determined in the following way

=ezu-k /dXZ,

k
/dX,, VU .
X2:*1/2

k
vuk, o

ichm

IC
X,=1/2 nm

—LUSX]_SO, L1SX1SL1+L12, L1+L12+L2£X1SL1+L12+L2+Ld.
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At the entrance and exit of the computational domain the velocity gradients are as follows

k _ k __
VUlC(Z) = —12)(292 s VU]_C(I) = 12X292 ,
nm X]_:—Lu nm X1:L1+L12+L2+Ld
vuk , =0, vu¥, =0.
2¢ 2¢
nm X1=—LU nm X1=L1+L12+L2+Ld

Finally, on the constrictions’ surfaces the magnitudes VU ikc( j) are written as
nm

k
vu
o)

_ k
= —elUiCnm /Xm,

X1=0,D1/2<X9<1/2,-1/2< X9 <-Dy /2
X1=L1+192,D2/2<X5<1/2,-1/2<Xp<-Dy /2

vuk

ic,(]rzn)

ik
XyoLy, Dy /2<X, <2 —12<X <Dy = Mic, [ dX1

Xl:Ll+L12+L2,Dz/ZSXZSJJZ,—UZSXzS—Dz/Z

=—92U-k /de ,

ICym

vuk

1Chm

OSX]_SL]_,XZZD]_/Z;L1+L12$X1§L1+L12+L2,X2:D2/2

=e2U-k /dX2

1Cm

k
vu¥,

'Cnm)

0< X<y, Xo=—Dy /2,1y +Lyp <X <L+ Lo+, X, =—D, /2
(here Dy=d; /D, Dy=d,/D, and also it was taken into account that the left sides of the
constrictions can be touched on by only the face Sr(,}% , the right sides — the face Sr(]rzn) , the upper ones —

the face S, and the lower ones — the face S{4) of the volume V).

As for the discrete analogues of the boundary conditions for the pressure from relationships (3.4),
they have the following form

pk. =0, (aP*/oxy) =0, (aP*/en) =0,  j-12.

o
Com IX =1+ Ly, +Lp+Ly Sen j

Discrete analogues of the initial conditions and their application to equations (3.21), (3.23)
The discrete analogues of the initial conditions from relationships (3.4) are written as

ukP=o0,  P*¥0=op. (3.27)

With their help one can determine the appropriate terms of equations (3.21), (3.23) at the initial instant
of time in the computational domain. Indeed, one can see from relationships (3.16) and (3.27) that the

fluid flow across each face S{1) of the volume V,, at the time instant T =0 is zero, viz.

F(k=0 _o.
According to (3.20) and (3.27), the gradients VU_k .y at the indicated time are equal to zero too, viz.
o)

k=0 _
VUicgrjn) =0.
Also, based on conditions (3.27), the derivatives in (3.22) are zeroat T =0, viz.
E _ C(n+l)m C(n—l)m -0 oP _ Cn(m+1) Cn(m—l) 0
X1 Jo 2dXy ’ X3 )e 2dX, '
nm k=0 nm k=0

3.3. Solution method to equations (3.21), (3.23)
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The system of equations (3.21), (3.23) is solved numerically. In making this, one has to deal with the
two significant problems. The first of them is connected with nonlinearity of the discrete momentum
equation (3.21)* which is used to find the velocity components. The second one is due to absence of
equation for the pressure which is available in the right part of equation (3.21)2.

In order to solve the first problem, in this work the flow Fn(,{)k is modified in the appropriate way.
More specifically, initially the velocity components in it are replaced by their values found at the
previous time step. After that the components are replaced by their known previous approximations.
These replacements allow one to proceed from solving the coupled systems of non-linear algebraic
equations to the corresponding uncoupled linear ones.

The second problem is solved via introducing the pressure in the discrete continuity equation (3.23)
and subsequent agreeing the velocity and the pressure with one another when making the noted
modification of the flow F{)¥. The velocity and pressure values, which are obtained in making this,

are corrected at each step by performing appropriate operations. Let one demonstrate the above-said in
more detail.

Equations for the velocity and the pressure

If one formally solves relationship (3.21) with respect to the velocity components, one obtains the
equation whose generalized form is as follows

|cnm Aﬁcnm +Aﬁcnm (Aic /|Vnm|)z P(J) J'
According to (3.22), equation (3. 28) also can be rewritten as

UK =AY <A —AD (aP/oXi)S . (3.29)

m

‘ (3.28)

In relationships (3.28) and (3.29) the term A is a rational function whose numerator contains the
known velocity values Uk 1 and Ul'é 2 found at the previous time steps at the point C,,. Its
nm

denominator involves the flow Fn(r{])k that linearly depends on the unknown velocity components (see

(3.16)). The term A{f:nm also is a rational function whose denominator only differs from that of the
function Aﬁnm in the multiplier |Vnm|/AT . Its numerator has both the unknown velocity components
at the point C;j at the instant of time T =kAT and the unknown products Fn(rjﬁ)kUiij- As for the
fractional multiplier Aﬁgnm , its numerator only consists of the time step AT , whereas the denominator

coincides with that of the function Aﬁ
nm

From relationships (3.28), (3.29) one can obtain (by means of interpolation) an equation for the
velocity components at the mass centers C{}) of the side faces S{}) of the volume V,p, , viz.

(r)
UK a0 Ak pP (1/|Vnm|) Z PX (r)nl'l ‘S

IC(J) - |C(J) ICr("Jn) |Cr(]J) j=1,...,4. (330)

(0P 1X; )C(,) ,

If now (3.30) is substituted into (3.16) and then the obtained relationship into (3.23) this yields a
desired equation for the pressure, viz.

11 This nonlinearity is due to a dependence of the flow Fn(r%)k on the velocity components (see (3.16)).

12 Within the framework of the incompressible fluid model, there is no equation for the pressure. Therefore, in
case of necessity, one should find a way to derive it.
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_z Apm (0P /X )C(J) nji (3.31)

9) 0 k y
‘ Z(Ac(n +AC(J)jnJ|
J:

Further the coupled equations (3.28)/(3.29), (3.31)® are used to find the fluid velocity components
and the pressure.

Gradual approximations of and agreeing between the velocity and the pressure

The system of equations (3.28)/(3.29), (3.31) is solved by means of finding gradual approximations
of the velocity and the pressure, and their corresponding agreeing with one another. Herewith the
number of the approximations is determined by the prescribed accuracy of the solution. The detailed
description of this procedure is given in [14-17].

The first approximations of the velocity and the pressure

We begin to solve the system of equations (3.28)/(3.29), (3.31) with finding the first approximations
of the fluid velocity components which are marked by the superscript asterisk'®. For this purpose,
equation (3.28) is modified in the appropriate way. More specifically, here the unknown pressure values

Pk () are replaced by the known ones pk= ! J) obtained at the previous time step T =(k —=1AT . Also, all

the functions As in (3.28) are modified by replacing the unknown velocity components in the flow
nm

Fn(,%)k (which is contained in A ) with their known magnitudes computed at T =(k —1AT . This

results in the following system of linear algebraic equations for the first approximations of the velocity
components at the points C,y, and C; (j=1,...,4):

Ul =AY AL (A2 /IVnmI) > Pl iy [SiR (332

IChm

(here Ai(.:'rllm are the functions A"C'nm modified in accordance with the just noted; herewith ATCnm

Aigl are independent of the unknown velocity components and A'f:' are linear functions of the
nm nm

velocities Ui'f: ). Relationships (3.32) are independent of the pressure at the time instant T =KAT to be
J

found.
Once the first approximations of the velocity components are found from system (3.32)%, they are

further used to obtain the corresponding values of the operators Ai"c'( i) » Which are then substituted into
nm

(3.31). This yields the system of linear algebraic equations for the first approximation of the

pressure**** at the points Cpyy and C; (j=1,...,4), viz.

(AO* + AR j ‘s(l) (3.33)

4
p* AR ()
Eﬁcgg(ﬁplaxl)cgg”u‘snm‘ 2| AL o)

j=1
(here Alcfj) are the just noted values of the operators Ai"c'( jy)- System (3.33) is independent of the
nm nm

unknown velocity components at the instant of time T =KkAT .

13 Equations (3.28)/(3.29) for the velocity components depend on the unknown pressure, whereas equation (3.31)
for the pressure depends on the velocity components to be found.

14 Hereinafter the first approximations of the magnitudes to be found are marked by the upper index *, whereas the
second and third ones by the upper indices ** and ***, respectively.

15 The method of solution of this system is described in subsection ‘Solution of equations for the gradual
approximations of the velocity and the pressure’.
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The second approximations of the velocity and the pressure
In this subsection, one applies a procedure which is similar to that described in the previous
subsection. More specifically, the first approximations of the pressure found from (3.33)% are

. . . k . . . ik -
substituted into (3.28) instead of chrjn). Also, in the functions A‘Cnm in (3.28), the flow Fn(r%) IS

modified by replacing the unknown velocity components in it with their first approximations obtained
from (3.32). This results in the systems of linear algebraic equations for the second approximations (or
the first corrections) of the velocity components** at the points C,,,, and Cj (j=1..4), viz.

ICnm h Aicnm A‘Cnm ( /|Vnm|) z P (J) J| ‘Snm‘ (334)

(here A""'* are the functions A~ in which the just noted flow modification has been performed; in
Cnm Cnm

addition, the magnitudes %'* and A]EI* are independent of the unknown second approximations of
nm nm

the velocity, and A"C'* depends linearly on Ui'g*). Relationships (3.34) are independent of the pressure
nm J

to be found.
After that the second approximations of the velocity, obtained from (3.34)%°, are used to obtain the

values Ai'(':'r(1 b of the operators Ai"c"g ) Subsequent replacement of the magnitudes Ai"c'r(] h in (3.31) with

these values allows one to write a system of linear algebraic equations for the second approximation (or
the first correction) of the pressure'*** at the points Cy, and C; ( j =1,...,4) which is similar to (3.33),

viz.

S AP (0P ox ) n s = 3 A\ s () (3.35)
'21 i l)c,(]g) nJ" nm ‘ 2 ,C(n+ e nll‘ nm" '
j=

nm =1

—

System (3.35) is independent of the unknown velocity.

The third approximations of the velocity and the pressure
The third approximations of the velocity and the pressure can be found with the use of the procedure

described in the previous subsection. More specifically, the unknown pressure values Pck( j) in(3.28) are
nm
replaced with their second approximations obtained from the system of equations (3.35)°. Also, the
unknown velocities in the flow Fn(,{'])k (which is available in all the operators A ) in system (3.28)
nm

are replaced with their second approximations found from (3.34). This yields the systems of linear
algebraic equations for the third approximations (or the second corrections) of the velocity
components**** at the points Cy,, and Cj (j =1...,4), viz.

Uk a0 kl**_( pl= /|Vnm|)2p“) J,‘S(J) (3.36)

'Cnm Cnm Cnm

(here A‘ ™ denotes the corresponding operator A“C'nm in which the flow Frfr{'])k has been modified in

the above-noted manner; in addition, A{é'ﬂ is a linear function of the unknown velocities Ui‘gﬂ,
nm i

whereas Ak and ﬁgl are independent of Uk ). Relationships (3.36) are independent of the
nm nm

unknown pressure.
When the third approximations of the velocity components are found from (3.36)'°, they allow one
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to determine the corresponding values of the operators Ai"c'( jy In (3.31). Subsequent substitution of these
nm

values into (3.31) gives one the system of linear algebraic equations for the third approximation (or the
second correction) of the pressure**** at the points Cpy, and C; (j=1,...,4) which is similar to (3.35),

VIZ.

4 4
ko i [0 id e ;
z Aig(j) (ap/axi )C(J) Nji ‘Sr(lrjrz‘ = Z(Aic(j) + Aic(j) jnji ‘Sr(njn) (3.37)
m nm ‘ A\, ()

j=1 ™ j=1

(here Auc,i:,;; are the indicated values of the operators Ai"c'r(] h ). System (3.37) is independent of the

unknown velocities.

If the accuracy of the third approximations of the velocity components and the pressure is not
satisfactory, then the just-described procedure must be carried out until the accuracy becomes as
desired.

Solution of equations for the gradual approximations of the velocity and the pressure

The systems of linear algebraic equations (SLAES) for the gradual approximations of the velocity
components and the pressure, which have been obtained above, can be rewritten in the following
generalized form;

Cnm nm

4
k 2k k 2k _pk
a §Cnm +i§1aci éci =b (3.38)

where 5(':‘ and 5(':‘_ are the magnitudes to be found, and a< | a(':‘_ and bX  the known coefficients. In
nm 1 1

Cnm Cnm

a scientific literature, such systems are solved by methods which, in general, can be divided into the two
main groups. The first of them is formed by the direct methods, whereas the second one by the iterative
methods. Usually, the direct methods are applied to small systems of equations and give good results
[12, 13, 16-19]. However, when one deals with big SLAES (especially with systems whose matrices are
rarified), the direct methods need a huge amount of time!® to obtain their solutions, and therefore here
their application is unreasonable. The iterative methods, when applied to big SLAESs, need much less
computational memory and time, save the rarefaction degree of their matrices (when the matrices are
rarified) and give satisfactory results [12, 13, 16-19].

Proceed from the just-said, as well as from the dimension and the rarefaction degree of the matrix of
system (3.38), in this paper an iterative method is chosen to solve the system. Within its framework,
initially an initial approximation of the solution is chosen, which is then improved by making iterations
until its accuracy reaches the prescribed value. Herewith the attention is paid to the following two
features. The first of them concerns with the necessity of providing domination of the diagonal terms in
the matrix of system (3.38). In this study, it is realized by applying the deferred correction
implementation method [12, 13, 18, 19] to the convective term. In accordance with this method, the part
of the convective term, which corresponds to the backward differencing scheme, is inserted into the
matrix, whereas its remainder is placed into the right part of SLAE (3.38).

The second feature is related to a desire to have as minimal as possible number of the iterations. In
this work, it is made by the use of the method of conjugate gradients [12, 13, 18, 19], which belongs to
the most effective methods of solving SLAEs of big dimension. This method allows one to solve a
SLAE via the iterations’ number that does not exceed the number of its unknown values. Herewith, if a
successful choice of the initial approximation is made, the number of iterations sharply decreases. Also,
the preconditioning results in a significant reduction of the iterations’ number. For this purpose, in this
research the solvers ICCG (for symmetric matrices [18-20]) and Bi-CGSTAB (for asymmetric matrices
[18-20]) are used.

16 1n the direct methods, the number of operations needed to obtain a solution grows as the square of the number
of the unknown values.
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4. Conclusions

1. A second order analytical and numerical technique is suggested to study fluid motion in a two-
dimensional straight hard-walled duct with two axisymmetric abrupt constrictions.

2. In this technique, the governing relationships are integrated via their rewriting in a non-
dimensional form, deriving their integral analogues, performing a discretization of the derived integral
relationships, simplifying the obtained (after making the discretization) coupled non-linear algebraic
equations, and final solving the resulting (after making the simplification) uncoupled linear ones.

3. The discretization consists of the spatial and temporal parts. The first of them is performed with
the use of the total variation diminishing scheme and the two-point scheme of discretization of the
spatial derivatives, whereas the second one is made on the basis of the implicit three-point non-
symmetric backward differencing scheme.

4. The above-noted uncoupled linear algebraic equations for the velocity and the pressure are solved
by an appropriate iterative method, which uses the deferred correction implementation technique and
the technique of conjugate gradients, as well as the solvers ICCG (for the symmetric matrices) and Bi-
CGSTAB (for the asymmetric matrices).
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